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Abstract
In this paper, we are interested in the approximation of a stochastic generalized
Swift-Hohenberg equation with quadratic and cubic nonlinearity by using the natural
separation of time-scales near a change of stability. The main results show that the
behavior of the SPDE is well approximated by a stochastic ordinary differential
equation describing the amplitude of the dominant mode. The cubic and the
quadratic nonlinearities lead to cubic nonlinearities of opposite sign. Here we study
the interesting case, where both contributions cancel and in the right scaling a
quintic nonlinearity emerges in the amplitude equation. Also, we give a brief
indication of how the effect of additive degenerate noise (i.e. noise that does not act
directly to the dominant mode) might lead to the stabilization of the trivial solution.
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1 Introduction
We consider the stochastic generalized Swift-Hohenberg equation (SGSH) in the follow-
ing form:

du =
[
–
(
 + ∂

x
)u + νεu + γ u – u]dt + με dW , ()

where νε is the control parameter, W is a finite dimensional Wiener process. The Swift-
Hohenberg equation (), which describes the temperature and fluid velocity dynamics of
the thermal convection, was derived with γ = με =  by Swift and Hohenberg [] in the
year . Also, it plays key role in the studies of pattern formation []. Here the quadratic
term γ u plays an essential role; it was first introduced into the GSH equation mathemat-
ically in [] in order to model the threshold character of periodic pattern formation.

In [], I derived rigorously the stochastic amplitude equation with additive noise of the
SGSH equation () in the two cases when γ  < 

 and γ  = 
 . Also, I supposed that the

noise acts directly on the dominant modes. While in our previous papers [, ] (written in
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collaboration with Blömker and Klepel), we assumed that γ  < 
 and derived rigorously

the amplitude equation for the amplitude of the dominant modes {cos, sin} of the SGSH
equation () with νε = εν and με = ε in the following form:

dbi =
[(

ν –


ρ + ργ 

)
bi +




(
γ 


– 
)

bi
(
b

 + b
–
)
]

dT

+ γρbi dβ̃ for i = ±, ()

where the noise is a constant in the space (W (t) = ρβ(t)) and β̃ is a rescaled version of a
Brownian motion, and we showed that the solution of equation () is well approximated
by

u(t) = εb
(
εt
)

+ error.

In this paper we deal with the case γ  = 
 and the noise does not act directly to the

dominant mode, which is not treated in [–]. In this case the amplitude equation () loses
its cubic nonlinearity term and it becomes a linear equation only. Therefore, the scaling
we considered lead to solutions that were too small to see any of the nonlinear effects.
Here we will change the scaling, and go to larger time-scales (of order ε–) and closer to
bifurcation (i.e., νε of order ε). But changing the scaling considered here to the time-scale
of order ε– considered in [, ] (i.e. by replacing ε by ε̂) one could see that this would
lead to a larger scaling (of order ε̂–/) of the solutions in the ansatz and a larger noise
strength of order ε̂–/. Moreover, due to noise and nonlinear interaction, deterministic
linear terms appear in the amplitude equation. Other examples of this effect are [–].
Related work in this direction is in [, ].

Our aim of this paper is to derive rigorously this amplitude equation with the quintic
nonlinearity for the SGSH equation () with νε = εν , με = ε and γ  = 

 . Furthermore,
we discuss the stabilization, without proof, by looking at the amplitude equation with
Stratonovich type. We show that degenerate additive noise (i.e. noise that does not act
directly to the dominant mode) has the potential to stabilize or destabilize the dynamics
of the dominant modes. For example, if we consider () with respect to periodic bound-
ary conditions on the interval [, π ], then we obtain the stochastic amplitude equation
with multiplicative noise and with an additional deterministic linear term, appearing due
to noise and nonlinear interaction, in the Stratonovich form:

dbi =
[(

ν –



ρ
)

bi – Cbi
(
b

 + b
–
)
]

dT + ρbi ◦ dβ̃ for i = ±,

where C is a positive constant. We note that if ρ is large compared with ν , then the con-
stant in front of the linear term, (ν – 

 ρ) is negative. In this case the degenerate additive
noise stabilizes the dynamics of the dominant modes.

The rest of this paper is organized as follows. In Section  we state our precise assump-
tions. In Section  we derive rigorously the amplitude equation with error term and state
the main theorem of this paper. In Section  we prove the main results of this paper. Fi-
nally, we give several cases of the amplitude equation of the stochastic generalized Swift-
Hohenberg depending on the type of the noise and the boundary conditions.
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2 Assumptions and definitions
We work in some Hilbert space H equipped with scalar product 〈·, ·〉 and norm ‖ · ‖. For
a more general setting, we study the following abstract equation:

du =
[
Au + ενu + γ B(u) – F (u)

]
dt + ε dW , ()

whereA is a non-positive operator with finite dimensional kernel, ενu is a linear small de-
terministic perturbation, B(u, u) = B(u) is a quadratic nonlinearity given by bilinear map,
F (u, u, u) = F (u) is a cubic nonlinearity given by trilinear map, and W is a finite dimen-
sional Wiener process. To be more precise we make the following assumptions.

For the linear operator A in () we assume the following.

Assumption  (Linear operator A) Suppose A is a non-positive self-adjoint operator on
H with eigenvalues

 = λ = · · · = λn < λn+ ≤ · · · ≤ λk ≤ · · · and λk ≥ Ckm

for all sufficiently large k, for one m > , and for a constant C > . The corresponding
eigenvectors {ek}∞k= form a complete orthonormal system in H such that –Aek = λkek (cf.
Courant and Hilbert []).

We use the notation C := kerA, where C has the finite dimension n and orthonormal
basis (e, . . . , en). Define S = C⊥ the orthogonal complement of C inH, and Pc for the or-
thogonal projection Pc : H → C and define Ps := I – Pc where I is the identity operator
on H.

Definition  For σ ∈R, we define the fractional interpolation space Hσ as

Hσ =

{ ∞∑

k=

ηkek :
∞∑

k=

η
k kσ < ∞

}

with norm

∥
∥∥
∥∥

∞∑

k=

ηkek

∥
∥∥
∥∥



σ

= η
 +

∞∑

k=

η
k kσ .

Moreover, the operator A given by Assumption  generates an analytic semigroup
{etA}t≥ (cf. Dan Henry []), on the space Hσ defined by

eAt

( ∞∑

k=

ηkek

)

=
∞∑

k=

e–λk tηkek ∀t ≥ . ()

Lemma  For all t ≥  and all u ∈Hσ , then there exists an  < ω < λn+ such that

∥∥etAPsu
∥∥
Hσ ≤ e–ωt‖Psu‖Hσ . ()

Proof From () we obtain

∥∥etAPsu
∥∥
Hσ =

∥∥
∥∥
∥

∞∑

k=

e–λk tηkek

∥∥
∥∥
∥
Hσ

≤
∥∥
∥∥
∥

∞∑

k=

e–λn+tηkek

∥∥
∥∥
∥
Hσ

≤ e–ωt

∥∥
∥∥
∥

∞∑

k=

ηkek

∥∥
∥∥
∥
Hσ

≤ e–ωt‖Psu‖Hσ . �
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For the cubic term defined in (), we assume the following.

Assumption  Assume that F : (Hσ ) → Hσ is trilinear and symmetric, and it satisfies
the following condition for some C > :

∥∥F (u, v,ω)
∥∥

σ
≤ C‖u‖σ ‖v‖σ ‖w‖σ ∀u, v, w ∈Hσ . ()

Symmetry of F means that any permutation of the arguments yields the same result.
For the quadratic nonlinearity B defined in (), we assume the following.

Assumption  (Bilinear operator B) Let B be a bounded bilinear mapping from Hσ ×Hσ

to Hσ . Suppose that B is symmetric and satisfies the following conditions for some C > :

∥
∥B(u, w)

∥
∥

σ
≤ C‖u‖σ ‖w‖σ ∀u, w ∈Hσ ()

and

PcB(ek , ek) =  for k ∈N. ()

Assumption  We assume for u ∈ C that
.. γ Bc(u,A–

s Bs(u)) + Fc(u) = ,
.. Bc(u,A–

s Fs(u)) = ,
.. Bc(u,A–

s Bs(u,A–
s Bs(u))) = ,

.. Fc(u, u,A–
s Bs(u)) = ,

..
∑∞

k,=n+
Bk (u)B(u)
λ(λk+λ) Bc(ek , e) = ,

where B(u) = 〈B(u), e〉.

We denote the projections by indices. This means Fc = PcF , Fs = PsF , Bc = PcB, and
Bs = PsB. Moreover, we use Fs(u) = Fs(u, u, u) and Bs(u) = Bs(u, u) for short. Note that in
Assumption , we need . in order for the cubic term to vanish in the amplitude equa-
tion and the other .-. for quartic terms disappear in the amplitude equation. These
conditions need to be checked in examples.

For the noise W defined in () we have the following.

Assumption  We assume α = α = · · · = αn = αN+ = · · · =  and let W be a finite Wiener
process on an abstract probability space (�,�,P). For t ≥ , we can write W (t) (cf. Da Prato
and Zabczyk []) as

W (t) =
N∑

k=n+

αkβk(t)ek for some N ≥ n + ,

where (βk)k∈{n+,...,N} are independent, standard Brownian motions in R and (αk)k∈{n+,...,N}
are real numbers.

Remark  We take N < ∞ in the above assumption for simplicity of presentation. For
N = ∞, we can prove the most results by using the same method of proof. We only need
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to control the convergence of various infinite series, which is possible if the noise is not
too irregular, which means for αk decaying sufficiently fast for k → ∞.

For the quintic nonlinearities term G , which is defined later in (), we assume the fol-
lowing.

Assumption  There are constants δ, δ ≥  such that for u, w ∈ C (identify C ∼= R
n) the

following inequalities are satisfied:

〈
G(u, u, u, w, w), u

〉≤ –δ|u||w| ()

and

〈
G(u, w, w, w, w), u

〉≤ –δ|u||w|. ()

Remark  Setting u = w in the above assumption we obtain for some δ ≥ 

〈
G(u), u

〉≤ –δ|u|. ()

For our result we rely on a cut off argument. We consider only solutions (a,ψ) that are
not too large, as given by the next definition.

Definition  For the C × S-valued stochastic process (a,ψ) that will be defined later in
() we define, for some T >  and κ ∈ (, 

 ), the stopping time τ ∗ as

τ ∗ := T ∧ inf
{

T >  :
∥
∥a(T)

∥
∥

σ
> ε–κ or

∥
∥ψ(T)

∥
∥

σ
> ε–κ

}
. ()

For a real-valued family of processes {Xε(t)}≥ we say Xε = O(fε), if for every p ≥  there
exists a constant Cp such that

E sup
t∈[,τ∗]

∣∣Xε(t)
∣∣p ≤ Cpf p

ε . ()

We use also the analogous notation for time-independent random variables.

3 Amplitude equation
In this section we derive the amplitude equation with error term. We are interested here
the studying behavior of the solutions of () on time-scales of order ε–. So, we split the
solution u into

u(t) = εa
(
εt
)

+ εψ
(
εt
)
, ()

where a ∈ C and ψ ∈ S. After rescaling to the slow time-scale T = εt, we obtain the fol-
lowing system of equations:

da =
[
νa + γ ε–Bc(a,ψ) + γ ε–Bc(ψ) – ε–Fc(a)

– ε–Fc(a, a,ψ) – Fc(a,ψ ,ψ) – εFc(ψ)
]

dT ()
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and

dψ =
[
ε–Asψ + νψ + γ ε–Bs(a + εψ) – ε–Fs(a + εψ)

]
dT + ε– dW̃s, ()

where W̃s(T) := εWs(ε–T) is a rescaled version of the Wiener process with W̃s = PsW̃ .
Equation () reads in integrated form

a(T) = a() + ν

∫ T


a dτ +

γ

ε

∫ T


Bc(a,ψ) dτ +

γ

ε

∫ T


Bc(ψ) dτ –


ε

∫ T


Fc(a) dτ

– ε–
∫ T


Fc(a, a,ψ) dτ – 

∫ T


Fc(a,ψ ,ψ) dτ – ε

∫ T


Fc(ψ) dτ . ()

First, let us apply Itô’s formula to Bc(a,A–
s ψ) in order to obtain the cubic term

Bc(a,A–
s Bs(a)). After that, we use Assumption (.) to remove the cubic term

[γ Bc(a,A–
s Bs(a)) + Fc(a)] from the amplitude equation. Applying Itô’s formula to

Bc(a,A–
s ψ), yields

γ

ε

∫ T


Bc(a,ψ) dτ

= –
γ 

ε

∫ T


Bc
(
a,A–

s Bs(a)
)

dτ – γ 
∫ T


Bc
(
Bc(a,ψ),A–

s ψ
)

dτ

+ γ

∫ T


Bc
(
Fc(a),A–

s ψ
)

dτ – γ 
∫ T


Bc
(
a,A–

s Bs(ψ)
)

dτ

–
γ 

ε

∫ T


Bc
(
a,A–

s Bs(a,ψ)
)

dτ +
γ

ε

∫ T


Bc
(
a,A–

s Fs(a)
)

dτ

+ γ

∫ T


Bc
(
a,A–

s Fs(a, a,ψ)
)

dτ – γ

∫ T


Bc
(
a,A–

s dW̃s
)

+ R, ()

where the error term R contains only terms that contain at least one ε, and it is given by

R(T) = εγ Bc
(
a(T),A–

s ψ(T)
)

– εγ Bc
(
a(),A–

s ψ()
)

– γ νε
∫ T


Bc
(
a,A–

s ψ
)

dτ – γ ε

∫ T


Bc
(
Bc(ψ),A–

s ψ
)

dτ

+ γ ε

∫ T


Bc
(
Fc(a, a,ψ),A–

s ψ
)

dτ + γ ε
∫ T


Bc
(
Fc(a,ψ ,ψ),A–

s ψ
)

dτ

+ γ ε
∫ T


Bc
(
Fc(ψ),A–

s ψ
)

dτ + γ ε

∫ T


Bc
(
a,A–

s Fs(a,ψ ,ψ)
)

dτ

+ γ ε
∫ T


Bc
(
a,A–

s Fs(ψ)
)

dτ . ()

Now, applying Itô’s formula to Bc(ψkek ,ψe) we obtain

γ

ε

∫ T


Bc(ψ ,ψ) dτ =


ε

∑

k,

γ 

(λk + λ)

∫ T


Bc
(
Bk(a)ek ,ψe

)
dτ

+
∑

k,

γ 

(λk + λ)

∫ T


Bc
(
Bk(a,ψ)ek ,ψe

)
dτ

–
∑

k,

γFk(a)
(λk + λ)

∫ T


Bc(ek ,ψe) dτ + O

(
ε–κ

)
, ()
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where we used Bk(w) = 〈B(w), ek〉, and Fk(w) = 〈F (w), ek〉 for short hand notation. Substi-
tuting equations () and () into equation () yields

a(T) = a() + ν

∫ T


adτ – γ 

∫ T


Bc
(
Bc(a,ψ),A–

s ψ
)

dτ

– γ 
∫ T


Bc
(
a,A–

s Bs(ψ)
)

dτ –
γ 

ε

∫ T


Bc
(
a,A–

s Bs(a,ψ)
)

dτ

+ γ

∫ T


Bc
(
Fc(a),A–

s ψ
)

dτ – γ

∫ T


Bc
(
a,A–

s dW̃s
)

+ γ

∫ T


Bc
(
a,A–

s Fs(a, a,ψ)
)

dτ +
γ

ε

∫ T


Bc(ψ) dτ

–

ε

∫ T


Fc(a, a,ψ) dτ – 

∫ T


Fc(a,ψ ,ψ) dτ

+

ε

∞∑

k,=n+

γ Bk(a)
(λk + λ)

∫ T


Bc(ek ,ψe) dτ

+
∞∑

k,=n+

γ 

(λk + λ)

∫ T


Bc
(
Bk(a,ψ)ek ,ψe

)
dτ

–
N∑

k,=n+

γF k(a)
(λk + λ)

∫ T


Bc(ek ,ψe) dτ + R(T), ()

where we used Assumption (.) and the error term R is given by

R(T) = R(T) – ε

∫ T


Fc(ψ) dτ + O

(
ε–κ

)
. ()

To remove ψ from the right hand side of (), we note that there are two kinds of terms in
that equation that contains ψ . The first its kind contains only one ψ , which is Fc(a, a,ψ),
Bc(a,A–

s Bs(a,ψ)), Bc(Fc(a),A–
s ψ), Bc(a,A–

s Fs(a, a,ψ)), and Bc(ek ,ψe). For these terms,
let us define �(·,�ψ) as one of them, where � is an operator (such as � = I or � = A–

s ).
Now, to get rid of ψ from �(·,�ψ), we apply the Itô formula to �(·,�A–

s ψ) and subse-
quently the following two cases arise.

First case: if there is no ε– in front of �(·,�ψ), then we obtain

�(·,�ψ) = –γ�
(·,�A–

s Bs(a)
)

+ O
(
ε–κ

)
.

Second case: if there is ε– in front of �(·,�ψ), then, by using Assumption , we obtain
the following formula:

ε–�(·,�ψ) = �
(·,�A–

s Fs(a)
)

+ γ �
(·,�A–

s Bs
(
a,A–

s Bs(a)
))

+ O
(
ε–κ

)
.

The second of its kind contains ψ, which is Bc(Bc(a,ψ),A–
s ψ), Bc(a,A–

s Bs(ψ)), Bc(ψ),
Fc(a,ψ ,ψ) and Bc(Bk(a,ψ)ek ,ψe). Let us define �(·,�ψ ,�ψ) as one of the previous
terms, where �i is an operator for i = ,  (�i = I or �i = A–

s , for i = , ). To remove ψ from
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�(·,�ψ ,�ψ), we apply the Itô formula to �(·,�ψkek ,�ψe) and therefore we get

�(·,�ψ ,�ψ) =
∞∑

k,=n+

γ Bk(a)B(a)
λ(λk + λ)

�(·,�ek ,�e)

+
N∑

k=n+

α
k

λk
�(·,�ek ,�ek) + O

(
ε–κ

)
.

Thus, we can obtain the following amplitude equation with error terms:

a(T) = a() +
∫ T



[
L(a) + G(a)

]
(τ ) dτ +

N∑

k=n+

γαk

λk

∫ T


Bc(a, ek) dβ̃k(τ ) + R(T), ()

where the linear term L(a) and the quintic term G(a) are defined as, respectively,

L(a) = νa +
N∑

k=n+

γ α
k

λ
k

Bc
(
Bc(a, ek), ek

)

–
N∑

k=n+

γ α
k

λk
Bc
(
a,A–

s Bs(ek)
)

–
N∑

k=n+

α
k

λk
Fc(a, ek , ek) ()

and

G(a) =
∞∑

k,=n+

γ Bk(a)B(a)
λ

(λk + λ)
Bc
(
Bc(a, ek), e

)
– γ Bc

(
Fc(a),A–

s A–
s Bs(a)

)

– γ Bc
(
a,A–

s Bs
(
a,A–

s Bs
(
a,A–

s Bs(a)
)))

– γ Bc
(
a,A–

s Bs
(
a,A–

s Fs(a)
))

–
∞∑

k,=n+

γ Bk(a)B(a)
λ(λk + λ)

Bc
(
a,A–

s Bs(ek , e)
)

– γ Bc
(
a,A–

s Fs
(
a, a,A–

s Bs(a)
))

–
∞∑

k,=n+

γ Bk(a)
λ(λk + λ)

Bc
(
ek , B

(
a,A–

s Bs(a)
)
e

)
–

∞∑

k,=n+

γ Bk(a)F (a)
λλk

Bc(ek , e)

–
∞∑

k,=n+

γ Bk(a)B(a)
λ(λk + λ)

Fc(a, ek , e) – γ Fc
(
a, a,A–

s Bs
(
a,A–

s Bs(a)
))

+
∞∑

k,,j=n+

γ Bj(a)B(a)
λ(λk + λ)(λj + λ)

Bc
(
Bk(a, ej)ek , e

)
– Fc

(
a, a,A–

s Fs(a)
)
. ()

The main result of this paper is that near a change of stability on a time-scale of order ε–

the solution of () is of the type

u(t) = εb
(
εt
)

+ error, ()

where b is the solution of the amplitude equation on the slow time-scale

db =
[
L(b) + G(b)

]
dT +

N∑

k=n+

γαk

λk
Bc(b, ek) dβ̃k , ()
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where the linear term L(b) and the quintic term G(b) are defined in () and (), respec-
tively.

The main result of this paper is the following.

Theorem  (Approximation) Under Assumptions , , , , , and  let u be a solution
of () defined in () with the initial condition u() = εa() + εψ() with a() ∈ C and
ψ() ∈ S where a() and ψ() are of order one, and b is a solution of () with b() = a().
Then, for all p ≥  and T >  and all κ ∈ (, 

 ), there exists C >  such that

P

(
sup

t∈[,ε–T]

∥
∥u(t) – εb

(
εt
)∥∥

σ
> ε–κ

)
≤ Cεp, ()

for all sufficiently small ε > .

4 Proof of the main result
Lemma  Under Assumptions , , and , there is a constant C >  such that, for κ from
the definition of τ ∗ and p ≥ ,

E sup
T∈[,τ∗]

∥∥ψ(T) – Q(T)
∥∥p

σ
≤ Cεp–pκ , ()

where

Q(T) = eε–TAsψ() + γ ε–
∫ T


eε–As(T–τ )Bs(a) dτ + Z(T), ()

with

Z(T) = ε–
∫ T


eε–As(T–τ ) dW̃s(τ ). ()

Proof The mild formulation of () is

ψ(T) = eε–TAsψ() + ν

∫ T


eε–As(T–τ )ψ dτ +

γ

ε

∫ T


eε–As(T–τ )Bs(a) dτ

+
γ

ε

∫ T


eε–As(T–τ )Bs(a,ψ) dτ +

γ

ε

∫ T


eε–As(T–τ )Bs(ψ) dτ

–

ε

∫ T


eε–As(T–τ )Fs(a + εψ) dτ + Z(T). ()

Using the triangle inequality

∥
∥ψ(T) – Q(T)

∥
∥

α
≤ C

∥∥
∥∥

∫ T


eε–As(T–τ )ψ dτ

∥∥
∥∥

σ

+ Cε–
∥
∥∥
∥

∫ T


eε–As(T–τ )Bs(a,ψ) dτ

∥
∥∥
∥

σ

+ ε–C
∥∥
∥∥

∫ T


eε–As(T–τ )Bs(ψ) dτ

∥∥
∥∥

σ
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+ Cε–
∥
∥∥∥

∫ T


eε–As(T–τ )Fs(a + εψ) dτ

∥
∥∥∥

σ

=: I + I + I + I.

We now bound all four terms separately. For the first term, using () we obtain for all
T ≤ τ ∗

I ≤ C
∫ T


e–ε–w(T–τ )∥∥ψ(τ )

∥∥
σ

dτ ≤ C sup
τ∈[,τ∗]

∥∥ψ(τ )
∥∥

σ

∫ ε–wT


e–η dη ≤ Cε–κ ,

where we used the definition of τ ∗. For the second term, we obtain by using () and As-
sumption 

I ≤ Cε–
∫ T


e–ε–w(T–τ )∥∥Bs(a,ψ)(τ )

∥
∥

σ
dτ

≤ Cε sup
[,τ∗]

{‖a‖σ‖ψ‖σ

} ·
∫ ε–wT


e–η dη ≤ Cε–κ ,

where we used again the definition of τ ∗. Analogously, for the third term we obtain

I ≤ ε–
∫ T


e–ε–w(T–τ )∥∥Bs(ψ)(τ )

∥∥
σ

dτ

≤ Cε sup
[,τ∗]

‖ψ‖
σ

∫ ε–wT


e–η dη ≤ Cε–κ .

For the fourth term, we obtain by using () and Assumption 

I ≤ Cε–
∫ T


e–ε–w(T–τ )∥∥Fs(a + εψ)

∥∥
σ

dτ

≤ Cε
(

sup
[,τ∗]

‖a‖
σ + ε sup

[,τ∗]
‖ψ‖

σ

)∫ ε–wT


e–η dη ≤ Cε–κ ,

where we used the definition of τ ∗. Combining all results yields (). �

The next lemma provides bounds for the stochastic convolution Z(T) defined in ().

Lemma  Under Assumption , for every κ >  and p ≥ , there is a constant C > ,
depending on p, αk , λk , κ, and T, such that

E sup
T∈[,T]

∥∥Z(T)
∥∥p

σ
≤ Cε–κ .

Proof See the proof of Lemma  in []. �

We now need the following simple estimate.

Lemma  Using τ ∗ defined in Definition , then

E sup
T∈[,τ∗]

∥∥
∥∥

∫ T


eε–As(T–τ )Bs(a, a) dτ

∥∥
∥∥

p

σ

≤ Cεp–pκ , ()

for all ε ∈ (, ).
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Proof Using () we obtain for T < τ ∗

∥∥
∥∥

∫ T


eε–As(T–τ )Bs(a) dτ

∥∥
∥∥

σ

≤ C
∫ T


e–ε–ω(T–τ )∥∥Bs(a)

∥
∥

σ
dτ

≤ Cε sup
τ∈[,τ∗]

∥∥a(τ )
∥∥

σ

∫ ε–ωT


e–η dη

≤ Cε–κ . �

The following corollary states that ψ(T) is with high probability much smaller than ε–κ

as asserted by the Definition  for T ≤ τ ∗. We will show later τ ∗ ≥ T with high probability
(cf. the proof of Theorem ).

Corollary  Under the assumptions of Lemmas  and , if ψ() = O(), then for all
p ≥  and for all κ >  there exist a constant C >  such that

E

(
sup

T∈[,τ∗]

∥
∥ψ(T)

∥
∥p

σ

)
≤ Cε–κ . ()

Proof From (), by the triangle inequality and Lemmas  and  we obtain

E sup
T∈[,τ∗]

∥∥ψ(T)
∥∥p

σ
≤ C + Cε–pκ + Cεp–pκ ,

for κ < 
 and κ ≤ κ , which yields (). �

Now the next step is to bound the remainder R defined in ().

Lemma  If Assumption  holds, then for all p ≥  there exists a constant C >  such that

E

(
sup

T∈[,τ∗]

∥∥R(T)
∥∥p

σ

)
≤ Cεp–pκ . ()

Proof We follow the proof of Lemma  to obtain (). �

We need the following a priori estimate for solutions of the amplitude equation ().

Lemma  Let Assumptions , , and  hold. Define b(t) in C as the solution of (). If the
initial condition satisfies E|b()|p ≤ C for some p ≥ , then there exists another constant C
such that

E sup
T∈[,τ∗]

∣∣b(T)
∣∣p ≤ C. ()

Proof See the proof of Lemma  in []. �

Definition  Define the set �∗ ⊂ � such that all these estimates

sup
[,τ∗]

‖ψ‖σ < Cε– 
 κ , ()

sup
[,τ∗]

‖R‖σ < Cε–κ , ()
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and

sup
[,τ∗]

|b| < Cε– 
 κ , ()

hold on �∗.

In the following we show that the set �∗ has approximately probability .

Proposition  For any p ≥  there is a constant C >  such that

P
(
�∗)≥  – Cεp,

for all ε sufficiently small.

Proof �∗ has probability

P
(
�∗) ≥  – P

(
sup

[,τ∗]
‖ψ‖σ ≥ Cε– 

 κ
)

– P

(
sup

[,τ∗]
‖R‖σ ≥ Cε–κ

)

– P

(
sup

[,τ∗]
|b| ≥ Cε– 

 κ
)

.

Using the Chebychev inequality, Corollary , and Lemmas , , we obtain for sufficiently
large q > p

κ
for any p ≥ 

P
(
�∗)≥  – C

[
ε


 qκ + εqκ + ε


 qκ
]≥  – Cε


 qκ ≥  – Cεp. ()

�

Theorem  Assume that Assumption  holds and suppose a() = O() and ψ() = O().
Let b be a solution of () and a is defined in (). If the initial conditions satisfy a() = b(),
then for κ < 

 , we obtain

sup
T∈[,τ∗]

∣
∣a(T) – b(T)

∣
∣≤ Cε–κ on �∗ ()

and

sup
T∈[,τ∗]

∣
∣a(T)

∣
∣≤ Cε– 

 κ on �∗. ()

Proof See the proof of Theorem  in []. �

Now, we can use the above results to prove the main result of Theorem  for the ap-
proximation of the solution () of the SPDE ().

Proof of Theorem  For the stopping time, we note that

� ⊃ {τ ∗ = T
}⊇

{
sup

T∈[,T]

∥
∥a(T)

∥
∥

σ
< ε–κ , sup

T∈[,T]

∥
∥ψ(T)

∥
∥

σ
< ε–κ

}
⊇ �∗.
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Hence

P
{
τ ∗ < T

}≤ P

{
sup

[,τ∗]
‖a‖σ > ε–κ , sup

[,τ∗]
‖ψ‖σ > ε–κ

}
≤ Cεqκ , ()

where we used Chebychev’s inequality and (). Now let us turn to the approximation
result. Using () and the triangle inequality yields

sup
T∈[,τ∗]

∥
∥u
(
ε–T

)
– εb(T)

∥
∥

σ
≤ ε sup

[,τ∗]
‖a – b‖σ + ε sup

[,τ∗]
‖ψ‖σ .

From () and (), we obtain

sup
t∈[,ε–T]

∥∥u(t) – εb
(
εt
)∥∥

σ
= sup

t∈[,ε–τ∗]

∥∥u(t) – εb
(
εt
)∥∥

σ

≤ Cε–κ on �∗.

Thus

P

(
sup

t∈[,ε–T]

∥
∥u(t) – εb

(
εt
)∥∥

σ
> ε–κ

)
≤  – P

(
�∗).

Using (), the above estimate yields (). �

5 Stochastic generalized Swift-Hohenberg equation
We consider the SGSH equation () with γ  = 

 . The Swift-Hohenberg equation was first
used as a toy model for the convective instability in Rayleigh-Bénard problem (see [] or
[]). Today it is one of the most popular equations for the examination of the dynamics
of pattern formation.

For this model (), we note that

A = –
(
 + ∂

x
), B(u) = u, and F (u) = u.

In the following we derive the amplitude equation of () with respect to Neumann bound-
ary condition on the interval [,π ] and with respect to periodic boundary conditions on
[, π ].

5.1 Neumann boundary condition
Define

ek(x) =

⎧
⎨

⎩

√
π

if k = ,
√


π

cos(kx) if k > ,

and

H = L([,π ]
)

and C = span{cos}.
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Then the eigenvalues of –A = ( + ∂
x ) are λk = ( – k) for k ∈ N with m = , λ =  > 

and limk→∞ λk = ∞. Moreover, with σ = , it is easy to check that for u, v, w ∈H

∥∥F (u, v, w)
∥∥
H = ‖uvw‖H ≤ C‖u‖H‖v‖H‖w‖H

and

∥∥B(u, w)
∥∥
H = ‖uw‖H ≤ C‖u‖H‖w‖H .

Moreover, Assumption  is satisfied as follows:

Bc
(
a cos(kx), a cos(kx)

)
= Pc

[
a cos(kx)

]
=

a


Pc
[
 + cos(kx)

]

=  for u = a cos(kx) ∈H.

If γ  = 
 and u = a cos(x) ∈ C , then we have

γ Bc
(
u,A–

s Bs(u)
)

+ Fc(u) =



(
γ 


– 
)

a cos(x) = 

and

Bc
(
u,A–

s Fs(u)
)

= Bc

(
a cos(x),

–a

λ
cos(x)

)
=

–a

λ
Pc
[
cos(x) cos(x)

]

=
–a

λ
Pc
[
cos(x) + cos(x)

]
= ,

Bc
(
u,A–

s Bs
(
u,A–

s Bs(u)
))

= Bc

(
u,A–

s Bs

(
u,

–a



(
 +


λ

cos(x)
)))

=
a

λλ
Pc
[
cos(x) cos(x)

]
= ,

Fc
(
u, u,A–

s Bs(u)
)

= Fc

(
u, u,

–a



(
 +


λ

cos(x)
))

=
–a


Pc

[
(
 + cos(x)

)
(

 +

λ

cos(x)
)]

=
–a


Pc

[



+



cos(x) +



cos(x)

]
= ,

and

∑

k,

Bk(u)B(u)
λ(λk + λ)

Bc(ek , e) =
∑

k �=

Bk(u)B(u)
λ(λk + λ)

Bc(ek , e)

=
B(u)B(u)


Bc(e, e) +

B(u)B(u)


Bc(e, e)

=
a


Pc
[
cos(x)

]
= .
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After a straightforward calculation of () we derive

G(b) := –Cb cos(x) with C � ..

The function G satisfies the condition (), for u =
√


π
γ cos(x) ∈ C and w =

√

π
γ cos(x) ∈

C (C ∼= R
n) as follows:

〈
G(u, u, u, w, w), u

〉
= –
√

π


Cγ


 γ 

 cos(x) ≥ –δγ

 γ 

 ≥ –δ|u||w|,

where δ =
√

π
 C. We argue analogously for the conditions () and ().

For Assumption  we consider two cases.
First case: the noise is a constant in the space (i.e. W (t) = α√

π
β(t)).

In this case our main theorem states that the solution of () is of the type

u(t, x) = εv
(
εt, x

)

and

v(T , x) = b(T) cos(x) + O
(
ε–κ

)
,

where b is the solution of the amplitude equation of Itô type

db =
[(

ν –



ρ


)
b – Cb

]
dT + ρb dβ̃, ()

where ρ =
√


π

α.
The Stratonovich version of () is obtained:

db =
[(

ν –



ρ


)
b – Cb

]
dT + ρb ◦ dβ̃. ()

Now, let us show the influence of the additive degenerate noise on the stabilization of
the solution of the amplitude equation () by looking at the sign of the linear drift term.
The constant solution  is locally stable if (ν – 

 ρ
) <  and unstable if (ν – 

 ρ
) > . This

is well known in the literature (see for instance Arnold [], Arnold et al. [], Mao []).
We use the Euler Maruyama method stated in [] to simulate equation ().

From Figure  we can deduce that if the noise intensity ρ increases, then the solution
of the amplitude tends to zero.

Second case: the noise acts on the second mode, i.e. the noise takes the form

W (t, x) = αβ(t)e(x).

The amplitude equation of Itô type in this case takes the form

db =
[(

ν –
ρ




)
b – Cb

]
dT +

ρ
√




√


b dβ̃, ()

where ρ = α

√

π

.
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Figure 1 The solution of amplitude equation (45) with different values of the noise intensity ρ0.

5.2 Periodic boundary conditions
In this case

ek(x) =

⎧
⎪⎪⎨

⎪⎪⎩

√
π

sin(kx) if k > ,
√
π

if k = ,
√
π

cos(kx) if k < ,

and kerA = span{cos x, sin x},

then we have

G(b) := –C
(
b

 + b
–
)[b sin(x) + b– cos(x)

]
.

Here we consider two cases depending on the type of the noise.
First case: the noise is constant in the space (W (t) = α√

π
β(t)). In this case the amplitude

equation of Itô type is a system of two equations where the dimension of kerA equals two
(i.e. for b ∈ kerA, we can write b as b = b(T) sin(x) + b–(T) cos(x)). Hence, the amplitude
equation takes the form

dbi =
[(

ν –



ρ


)
bi – C|b|bi

]
dT + ρbi dβ̃ for i = ±. ()

Our main theorem in this case states that the rescaled solution of (),

u(t, x) = εv
(
εt, x

)
,
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takes the form

v(T , x) = b(T) sin(x) + b–(T) cos(x) + O
(
ε–κ

)
,

where b and b are the solution of the system of the amplitude equations ().
Second case: the noise takes the form

W (t, x) = αβ(t) cos(x).

In this case the amplitude equation of Itô type takes the form

dbi =
[(

ν –
ρ




)
bi – C|b|bi

]
dT +

iρ
√




√


bi dβ̃ for i = ±. ()
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