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Abstract
In this paper, we study a class of damped vibration systems,

ü(t) + Bu̇(t) – L(t)u(t) +∇W(t,u(t)) = 0, ∀t ∈R,

whereW(t,u) is of indefinite sign. By using a critical point theorem of Ding, we
establish a new criterion to guarantee that the above system has infinitely many
nontrivial homoclinic orbits under the assumption thatW(t,u) is asymptotically
quadratic or subquadratic as |u| → ∞. Recent results in the literature are generalized
and significantly improved.
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1 Introduction
In this paper, we consider the following damped vibration system:

ü(t) + Bu̇(t) – L(t)u(t) + ∇W
(
t, u(t)

)
= , ∀t ∈R, (.)

where u ∈ R
N , B is an antisymmetric N × N constant matrix, L ∈ C(R,RN×N ) is a sym-

metric matrix-valued function, and W ∈ C(R×R
N ,R). As usual, we say that a solution u

of system (.) is homoclinic to zero if u ∈ C(R,RN ), u(t) → , and u̇(t) →  as |t| → ∞.
In addition, if u(t) �≡ , then u(t) is called a nontrivial homoclinic solution.

Homoclinic orbits have been found in various models of continuous dynamical systems
and play an important role in the study of the behavior of dynamical systems; see [].
Thus, the study of homoclinic orbits has become one of the most important directions in
the research of dynamical systems.

When B = , system (.) reduces to the following second order Hamiltonian system:

ü(t) – L(t)u(t) + ∇W
(
t, u(t)

)
= , ∀t ∈R. (.)
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As a special case of dynamical systems, Hamiltonian systems play an important role in
practical problems concerning relativistic mechanics, gas dynamics, nuclear physics, fluid
mechanics. With the aids of the variational methods, the existence and multiplicity of
homoclinic orbits for (.) have been extensively investigated in many recent papers; see
[–].

Compared with the case where B = , the case where B �=  is more difficult. The study of
homoclinic orbits for system (.) has attracted a lot of attention by many researchers; see
[–]. This work is mainly based on variational methods. Some of the authors consid-
ered the superquadratic case [, , , , ]; the authors of [, , ] considered the
subquadratic case; for the asymptotically quadratic case, except for [], few researchers
have investigated this case. More precisely, in [], Chen studied system (.) under the
assumption that W (t, u) is subquadratic as |u| → ∞. In detail, he obtained the following
result.

Theorem . ([]) Assume that the following conditions hold.

(L) There exists a constant υ >  such that

meas
{

t ∈R : |t|–υL(t) < TIN
}

, ∀T > ,

where IN denotes the N × N identity matrix.
(L) There exists a constant β ≥  such that

l(t) := inf|u|=

(
L(t)u, u

) ≥ –β , t ∈R.

(H) W (t, u) ≥ , ∀(t, u) ∈R×R
N , and there exist constants κ ∈ (, ) and R >  such that

(∇W (t, u), u
) ≤ κW (t, u), ∀t ∈R and |u| ≥ R

and

(∇W (t, u), u
) ≤ W (t, u), ∀t ∈R and |u| ≤ R.

(H) There exists a >  such that

W (t, u) ≤ a|u|, ∀t ∈R and |u| ≤ R.

(H) lim inf|u|→∞ W (t,u)
|u| ≥ b uniformly in t ∈R, where b >  is a constant.

(H) lim|u|→
W (t,u)
|u| = +∞ uniformly in t ∈R.

(H) W (t, –u) = W (t, u), ∀(t, u) ∈R×R
N .

Then system (.) has infinitely many nontrivial homoclinic orbits.

In [], W (t, u) being asymptotically quadratic as |u| → ∞, by using the variant fountain
theorem, Chen obtained the following result.

Theorem . ([]) Assume that (L), (L), and (H) hold. Moreover, we assume that the
following conditions are satisfied:
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(H) W̃ (t, u) = W (t, u) – (/)(∇W (t, u), u) → +∞ as |u| → ∞ uniformly in t ∈R.
(H) There are constants τ ∈ (, ) and a, a, a >  such that

a|u|τ ≤ W (t, u) ≤ a|u|, ∀t ∈R and |u| ≤ a.

(H) lim sup|u|→
|∇W (t,u)|τ /(τ–)

W̃ (t,u) = P(t) uniformly in t, |P(t)| < ∞.
(H) W (t, u) ≥ (/)(∇W (t, u), u) ≥ , ∀(t, u) ∈R×R

N .
(H) lim|u|→∞ W (t,u)

|u| = f (t) uniformly in t, where inft∈R f (t) ≤ supt∈R f (t) < +∞.

Then system (.) has infinitely many nontrivial homoclinic orbits.

Motivated by the above facts, in this paper, our aim is to generalize some results in
[, ]. Moreover, our approach is different from [, ].

We will use the following conditions:

(W) ∇W (t, u) = S(t)u + ∇G(t, u), where S : R → R
N×N is bounded symmetric N × N

matrix-valued function.
(W) W (t, ) = G(t, ) =  and there exist ā, b̄ >  and  < ν <  such that

∣
∣∇G(t, u)

∣
∣ ≤ ā + b̄|u|ν , ∀(t, u) ∈R×R

N .

(W) W̃ (n, u) ≥ , ∀(t, u) ∈R×R
N .

Now, we state our main result.

Theorem . Assume that (L), (L), (H)-(H), (W)-(W) hold. Then system (.) has
infinitely many nontrivial homoclinic orbits.

Remark . When S �≡ , Theorem . generalizes Theorem .. First of all, we remove
conditions (H) and W (t, u) ≥  for any (t, u) ∈R×R

N . Second, condition (H) is weaker
than (H). In fact, condition (H) implies (H). Third, it is clear that condition (W) is
weaker than (H). Furthermore, there are many functions satisfying our Theorem . and
not satisfying Theorem .. For example, let W (t, u) = g(t)|u| + |u| for all (t, u) ∈R×R

N ,
where g : R → R is bounded continuous function such that g �≡ . It is easy to check that
W (t, u) satisfies all conditions of Theorem ., but it does not satisfy condition (H) of
Theorem ..

Remark . When S ≡ , Theorem . generalizes Theorem .. First, conditions (H) and
(H) imply conditions (H) and (W). Second, conditions (H) and (H) imply (W). Third,
we remove conditions (H) and W (t, u) ≥  for any (t, u) ∈ R × R

N . Furthermore, there
are many functions W (t, u) satisfying our Theorem . and not satisfying Theorem .. For
example, set

W (t, u) =

{

 |u| – |u| 

 , |u| < ,
u

(|u|+ln |u|) , |u| ≥ 

for all (t, u) ∈R×R
N . It is easy to check that W (t, u) satisfies all conditions of Theorem .,

but it does not satisfy condition (H) of Theorem .. Set

W (t, u) =

{

 |u|, |u| < ,

 |u| – u

(|u|+ln |u|) , |u| ≥ 
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for all (t, u) ∈R×R
N . It is easy to check that W (t, u) satisfies all conditions of Theorem .,

but it does not satisfy condition (H) of Theorem ..

The remainder of this paper is organized as follows. In Section , some preliminary
results are presented. In Section , we give the proof of Theorem ..

2 Preliminaries
In this section, we give the variational setting for (.) and some related preliminary lem-
mas. Let X := H(R,RN ) be a Hilbert space with the inner product and the norm given,
respectively, by

〈u, v〉X =
∫

R

[(
u̇(t), v̇(t)

)
+

(
u(t), v(t)

)]
dt and ‖u‖X = 〈u, u〉 


X , ∀u, v ∈ X.

We define an operator K : X → X by

(Ku, v) =
∫

R

(
Bu(t), v̇(t)

)
dt, ∀u, v ∈ X.

Since B is an antisymmetric N × N constant matrix, K is self-adjoint on X. Moreover,
we denote by J the self-adjoint extension of the operator – d

dt + L(t) + K with the domain
D(J) ⊂ L(R,RN ).

Let E := D(|J| 
 ) be the domain of |J| 

 , which is a Hilbert space equipped with the inner
product and norm given by

〈u, v〉E =
(|J| 

 u, |J| 
 v

)
 + (u, v),

‖u‖E = 〈u, u〉 

E

for u, v ∈ E, where (·, ·) denotes the inner product in L(R,RN ). Let ‖ · ‖p denote the usual
norm on Lp(R,RN ) (p ∈ [,∞]).

Lemma . ([]) Assume that L satisfies (L) and (L). Then E is compactly embedded in
Lp(R,RN ) for any  ≤ p ≤ ∞.

By Lemma ., the spectrum σ (J) consists of eigenvalues numbered by η ≤ η ≤ · · · ≤
ηk ≤ · · · → ∞ (counted in their multiplicities) and a corresponding system of eigenfunc-
tions {ek} (Jek = ηkek) which forms an orthogonal basis in L(R,RN ).

Set

n– = 	{i|ηi < }, n = 	{i|ηi = }, n+ = n– + n,

and

E– = span{e, . . . , en–}, E = span{en–+, . . . , en}, E+ = clE
(
span{en++, . . .}).

Thus, we have the orthogonal decomposition

E = E– ⊕ E ⊕ E+
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with respect to the inner product 〈·, ·〉E . Now we introduce on E the following inner prod-
uct:

〈u, v〉 =
(|J| 

 u, |J| 
 v

)
 +

(
u, v)

 (.)

and the norm

‖u‖ = 〈u, u〉 
 , (.)

where u, v ∈ E with u = u– +u +u+ and v = v– +v +v+. It is easy to verify that ‖·‖E and ‖·‖
are equivalent; see []. Evidently, the aforementioned decomposition is also orthogonal
with respect to both inner products (·, ·) and 〈·, ·〉.

Define the functional 
 on E by


(u) =
∫

R

[


∣∣u̇(t)

∣∣ +


(
Bu(t), u̇(t)

)
+



(
L(t)u(t), u(t)

)
– W

(
t, u(t)

)
]

dt

=


∥∥u+∥∥ –



∥∥u–∥∥ –

∫

R

W
(
t, u(t)

)
dt, ∀u ∈ E. (.)

It follows from the assumptions that 
 is defined on E and belongs to C(E,R), and one
can easily check that


 ′(u)v =
〈
u+, v+〉

–
〈
u–, v–〉

–
∫

R

(∇W
(
t, u(t)

)
, v(t)

)
dt (.)

for any u, v ∈ E with u = u– + u + u+ and v = v– + v + v+. Furthermore, it is routine to verify
that any critical point of 
 in E is a solution of system (.) with u(±∞) =  = u̇(±∞) (see
[, ]). In view of Lemma ., there exists Dp >  such that

‖u‖p ≤ Dp‖u‖, ∀u ∈ E, (.)

where p ∈ [, +∞].
Define Ej = Rej,

Yk =
k⊕

j=

Ej, Zk =
∞⊕

j=k

Ej, k ∈ N. (.)

Lemma . Under assumptions (L) and (L), for ς ∈ [, +∞],

βk(τ ) = sup
u∈Zk ,‖u‖=

‖u‖ς →  as k → ∞. (.)

Proof It is clear that  < βk+(ς ) ≤ βk(ς ), so that βk(ς ) → β̃(ς ), k → ∞. For every k ≥ ,
there exists uk ∈ Zk such that ‖uk‖ =  and ‖uk‖ς > βk

 . For any v ∈ X, let v =
∑∞

i= b̄iei, by
the Cauchy-Schwartz inequality, one has

∣∣〈uk , v〉∣∣ =

∣∣
∣∣∣

〈

uk ,
∞∑

i=

b̄iei

〉



∣∣
∣∣∣

=

∣∣
∣∣∣

〈

uk ,
∞∑

i=k

b̄iei

〉∣∣
∣∣∣

≤ ‖uk‖
∥∥
∥∥
∥

∞∑

i=k

b̄iei

∥∥
∥∥
∥

=
∞∑

i=k

‖b̄iei‖ →  as k → ∞,
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which implies that uk ⇀ . It follows from Lemma . that uk →  in Lq(R,RN ). Thus we
have proved that β̃(ς ) = . �

By Lemma ., we can choose a positive integer k ≥ n+ +  such that

‖u‖
 ≤ 

m
‖u‖, (.)

where m = supt∈R[supx∈RN ,|x|=(S(t)x, x)].
In order to prove our main result, we need the following lemma.

Lemma . ([]) Let E be an infinite dimensional Banach space and  ∈ C(E,R) be even,
satisfy the (PS) condition, and 
() = . If X = Y ⊕ Z, where Y is finite dimensional, and

 satisfies

(S) 
 is bounded from below on Z;
(S) for each finite dimensional subspace Ẽ ⊂ E, there are positive constants ρ = ρ (̃E) and

α = α(̃E) such that 
|Bρ∩Ẽ ≤  and 
|∂Bρ∩Ẽ ≤ –α, where Bρ = {x ∈ E : ‖x‖ ≤ ρ}.

Then 
 possesses infinitely many nontrivial critical points.

Remark . As shown in [], a deformation lemma can be proved with condition (C)
replacing (PS) condition, and it turns out that Lemma . holds true under condition (C).
We say that 
 satisfies condition (C), i.e. for any {un} ⊂ E, {un} has a convergent subse-
quence if 
(un) is bounded and ( + ‖un‖)‖
 ′(un)‖ →  as n → ∞.

3 Proof of Theorem 1.3
Set Y = Yk , Z = Zk .

Lemma . Suppose that (W) and (W) are satisfied. Then 
 is bounded from below
on Z.

Proof By virtue of (W), (W), (.), (.), and (.), we have


(u) =


∥
∥u+∥

∥ –


∥
∥u–∥

∥ –
∑

n∈Z
W

(
n, u(n)

)

=


‖u‖ –

∑

n∈Z
W

(
n, u(n)

)

≥ 

‖u‖ – m‖u‖

 – ā‖u‖ – b̄‖u‖ν+
ν+

≥ 


‖u‖ – āD‖u‖ – b̄Dν+
ν+‖u‖ν+ → +∞ (.)

as ‖u‖ → ∞ and u ∈ Zk . The proof is completed. �

Lemma . Assume that (H) holds. Then for each finite dimensional subspace Ẽ ⊂ E,
there are positive constants ρ = ρ (̃E) and α = α(̃E) such that 
|Bρ∩Ẽ ≤  and 
|∂Bρ∩Ẽ ≤ –α,
where Bρ = {x ∈ E : ‖x‖ ≤ ρ}.
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Proof Let Ẽ ⊂ E be any finite dimensional subspace. Then there exists M >  such that

‖u‖ ≤ M‖u‖
, ∀u ∈ Ẽ. (.)

By virtue of (H), for M given above, there exists a constant σ > ,

W (t, u) ≥ M|u|, ∀t ∈R and |u| ≤ σ . (.)

In view of (.), for any u ∈ Ẽ with ‖u‖ ≤ σ
D∞ , we have

‖u‖∞ ≤ σ . (.)

By (.)-(.), we have


(u) =


∥∥u+∥∥ –



∥∥u–∥∥ +

∫

R

W
(
t, u(t)

)
dt

≤ 

∥∥u+∥∥ –

∫

R

W
(
t, u(t)

)
dt

≤ 

∥∥u+∥∥ – M‖u‖



≤ –


‖u‖ (.)

for any u = u– + u + u+ ∈ Ẽ with ‖u‖ ≤ σ
D∞ . Then there exist ρ = ρ (̃E) >  and α = α(̃E) > 

such that


(u) ≤ , ∀u ∈ Bρ ∩ Ẽ; 
(u) ≤ –α, ∀u ∈ ∂Bρ ∩ Ẽ.

The proof is completed. �

Lemma . Under the assumptions of Theorem ., 
 satisfies condition (C).

Proof Let {un} ⊂ E is a (C) sequence of 
 , that is, {
(un)} is bounded and

(
 + ‖un‖

)∥∥
 ′(un)
∥∥ →  as n → ∞, (.)

then there exists a constant M >  such that

∣∣(um)
∣∣ ≤ M,

(
 + ‖un‖

)∥∥
 ′(un)
∥∥ ≤ M (.)

for every n ∈N. We choose k ≥ n+ +  large enough such that

‖u‖ ≥ m‖u‖
, ∀u ∈ Zk , (.)

where m = supt∈R[supx∈RN ,|x|=(S(t)x, x)]. We now prove that {un} is bounded in E. In fact,
if not, we may assume by contradiction that ‖un‖ → ∞ as n → ∞. Let un = w̃n + ṽn, zn =

un
‖un‖ , then ‖zn‖ = , zn = wn + vn ∈ E, where wn = w̃n

‖un‖ , vn = ṽn
‖un‖ , w̃n ∈ Yk , ṽn ∈ Zk . After

passing to a subsequence, we have zn ⇀ z, wn → w, and γ = limn→∞ ‖vn‖ exists.
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Case . γ = . Since dim Yk < ∞, we obtain ‖wn‖ → ‖w‖ = . It follows from (.) that




M ≥ 
(un) –



 ′(un)un ≥

∫

R

(
W

(
t, un(t)

)
–



(∇W

(
t, un(t)

)
, un(t)

))
dt. (.)

By virtue of (H), for any η > , there exists M >  such that

W̃ (t, u) = W (t, u) –


(∇W (t, u), u

) ≥ η, ∀t ∈R, |u| ≥ M. (.)

For any ε > , define �ε := {t ∈ R : |w(t)| ≥ ε} and �nε := {t ∈ R : |vn(t)| ≥ ε
 }. First, we

claim that there exists ε >  such that

meas
{

t ∈R :
∣
∣u(t)

∣
∣ ≥ ε

} ≥ ε, ∀u ∈ Yk with ‖u‖ = .

Otherwise, for any positive integer m, there exists wm ∈ Yk with ‖wm‖ =  such that

meas

{
t ∈R :

∣∣wm(t)
∣∣ ≥ 

m

}
<


m

. (.)

Passing to a subsequence if necessary, we may assume wm → w in E for some w ∈ Yk

since dim Yk < ∞. Evidently, ‖w‖ = . By the equivalence of the norms on the finite di-
mensional space Yk , we have

∫

R

∣
∣wm(t) – w(t)

∣
∣ dt →  as m → ∞. (.)

Thus there exists ε >  such that

meas
{

t ∈R :
∣∣w(t)

∣∣ ≥ ε
} ≥ ε. (.)

In fact, if not, then, for all positive integers m, we have

meas

{
t ∈R :

∣
∣w(t)

∣
∣ ≥ 

m

}
= . (.)

It implies that

 ≤
∫

R

∣
∣w(t)

∣
∣ dt <


m ‖w‖

 →  as m → ∞.

Hence w = , which contradicts that ‖w‖ = . Thus, (.) holds.
Now set

ϒ =
{

t ∈R :
∣
∣w(t)

∣
∣ ≥ ε

}
, ϒm =

{
t ∈R :

∣
∣wm(t)

∣
∣ <


m

}
,

and ϒ c
m = R \ ϒm = {t ∈R : |wm(t)| ≥ 

m }. By virtue of (.) and (.), we obtain

meas(ϒm ∩ ϒ) = meas
(
ϒ \ ϒ c

m ∩ ϒ
)

≥ meas(ϒ) – meas
(
ϒ c

m ∩ ϒ
)

≥ ε –

m
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for all positive integers m. Let m be large enough such that 
ε – 

m > 
ε. Thus, for m

large enough,

∫

R

∣∣wm(t) – w(t)
∣∣ dt ≥

∫

t∈ϒ∩ϒm

∣∣wm(t) – w(t)
∣∣ dt

≥ 


∫

t∈ϒ∩ϒm

∣∣w(t)
∣∣ dt –

∫

t∈ϒ∩ϒm

∣∣wm(t)
∣∣ dt

≥
(



ε –


m

)
meas(ϒm ∩ ϒ)

≥ ε



> ,

which is a contradiction to (.). Thus, there exists ε >  such that meas(�ε) ≥ ε.
In view of (.), we obtain

meas(�nε) ≤ 
ε

∫

R

∣∣vn(t)
∣∣ dt ≤ D


ε ‖vn‖ →  as n → ∞.

Then we have meas(�ε \ �nε) → meas(�ε) as n → ∞. Therefore, there exists N >  such
that |zn(t)| ≥ ε

 , ∀t ∈ �ε \�nε and n ≥ N, then we have |un(t)| ≥ ε
‖un‖, ∀t ∈ �ε \�nε and

n ≥ N. By (W), (.), and (.), there exists N >  such that




M ≥
∫

R

W̃
(
t, un(t)

)
dt ≥

∫

t∈�ε\�nε

η dt ≥ η meas(�ε \ �nε), ∀n ≥ N,

which gives a contradiction due to the arbitrariness of η.
Case . γ > . In view of (W), (W), (.), (.), (.), and Hölder’s inequality, we get

M ≥ 
 ′(un)ṽn = ‖ṽn‖ –
∫

R

(∇W
(
t, un(t)

)
, ṽn(t)

)
dt

≥ ‖ṽn‖ –
∫

R

[(
S(t)un(t), ṽn(t)

)
+

(
ā + b̄

∣
∣un(t)

∣
∣ν)

∣
∣v̄n(t)

∣
∣]dt

≥ ‖ṽn‖ – m‖ṽn‖
 – ā‖ṽn‖ – b̄‖un‖ν

ν‖ṽn‖

≥ 

‖ṽn‖ – āD‖ṽn‖ – b̄DDν

ν‖un‖ν‖ṽn‖

≥ 

‖ṽn‖ – āD‖un‖ – b̄DDν

ν‖un‖ν+. (.)

Dividing by ‖un‖ on both sides of (.), we obtain

 ≥ γ 


> ,

which gives a contradiction.
Thus, {un} is bounded. Next, we show that {un} has a convergent subsequence. In view

of the boundedness of {un}, without loss of generality, we may assume that

un ⇀ u, u+
n ⇀ u+, u–

n → u–, u
n → u. (.)
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It follows from (.) that

∥∥u+
n – u+∥∥ =

(

 ′(un) – 
 ′(u)

)(
u+

n – u+)

+
∫

R

(∇W (t, un) – ∇W (t, u), u+
n – u+)

dt. (.)

It is clear that

(

 ′(un) – 
 ′(u)

)(
u+

n – u+) →  as n → ∞. (.)

By (.), Lemma ., (W), (W), and Hölder’s inequality, we have

∫

R

(∇W (t, un) – ∇W (t, u), u+
n – u+)

dt

≤ ā
∥
∥u+

n – u+∥
∥

 +
(
m‖un‖ + b̄‖un‖ν

ν

)∥∥u+
n – u+∥

∥


+ ā
∥
∥u+

n – u+∥
∥

 +
(
m‖u‖ + b̄‖u‖ν

ν

)∥∥u+
n – u+∥

∥


≤ ā
∥∥u+

n – u+∥∥
 +

(
mD‖un‖ + b̄Dν

ν‖un‖ν
)∥∥u+

n – u+∥∥


+
(
mD‖u‖ + b̄Dν

ν‖u‖ν
)∥∥u+

n – u+∥∥
 →  (.)

as n → ∞. Therefore, by (.)-(.), we get ‖u+
m – u+‖ →  as n → ∞. Consequently,

un → u. The proof is completed. �

Proof of Theorem . Obviously, 
 ∈ C(X,R) is even and () = . It follows from Lem-
mas .-. that all conditions of Lemma . are satisfied. By Lemma ., we see that 


possesses infinitely many nontrivial critical points, that is, system (.) possesses infinitely
many nontrivial homoclinic orbits. �
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