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Abstract
In this paper, we establish two sufficient conditions for the oscillation of forced
fractional difference equations with damping term of the form

(1 + p(t))�(�αx(t)) + p(t)�αx(t) + f (t, x(t)) = g(t), t ∈N0,

with initial condition �α–1x(t)|t=0 = x0, where 0 < α < 1 is a constant, �αx is the
Riemann-Liouville fractional difference operator of order α of x, and N0 = {0, 1, 2, . . .}.
MSC: 26A33; 39A12; 39A21
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1 Introduction
In the past few years, the theory of fractional differential equations and their applications
have been investigated extensively. For example, see monographs [–]. In recent years,
fractional difference equations, which are the discrete counterpart of the corresponding
fractional differential equations, have comparably gained attention by some researchers.
Many interesting results were established. For instance, see papers [–] and the refer-
ences therein.

The oscillation theory as a part of the qualitative theory of differential equations and
difference equations has been developed rapidly in the last decades, and there have
been many results on the oscillatory behavior of integer-order differential equations and
integer-order difference equations. In particular, we notice that the oscillation of fractional
differential equations has been developed significantly in recent years. We refer the reader
to [–] and the references therein. However, to the best of author’s knowledge, up to
now, very little is known regarding the oscillatory behavior of fractional difference equa-
tions [–]. Unfortunately, the main results of paper [] are incorrect. The main reason
for the mistakes in [] is an incorrect relation of t(α–) and t(–α). In fact, noting the defi-
nition of t(α) = �(t+)

�(t+–α) , it is easy to observe that t(α–)t(–α) �= .
In this paper we investigate the oscillation of forced fractional difference equations with

damping term of the form

(
 + p(t)

)
�

(
�αx(t)

)
+ p(t)�αx(t) + f

(
t, x(t)

)
= g(t), t ∈N, ()
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with initial condition �α–x(t)|t= = x, where  < α <  is a constant, �αx is the Riemann-
Liouville difference operator of order α of x, and N = {, , , . . .}.

Throughout this paper, we assume that
(A) p(t) and g(t) are real sequences, p(t) > –, f : N ×R →R, and xf (t, x) >  for x �= ,

t ∈N.
A solution x(t) of the Eq. () is said to be oscillatory if it is neither eventually positive nor

eventually negative; otherwise, it is nonoscillatory.

2 Preliminaries
In this section, we present some preliminary results of discrete fractional calculus.

Definition . ([]) Let ν > . The νth fractional sum f is defined by

�–ν f (t) =


�(ν)

t–ν∑

s=a
(t – s – )(ν–)f (s), ()

where f is defined for s = a mod(), �–ν f is defined for t = (a+ν) mod(), and t(ν) = �(t+)
�(t+–ν) .

The fractional sum �–ν f maps functions defined on Na = {a, a + , a + , . . .} to functions
defined on Na+ν = {a + ν, a + ν + , a + ν + , . . .}, where � is the gamma function.

Definition . ([]) Let μ >  and m –  < μ < m, where m is a positive integer, m = �μ�.
Set ν = m – μ. The μth fractional difference is defined as

�μf (t) = �m–ν f (t) = �m�–ν f (t), ()

where �μ� is the ceiling function of μ.

Lemma . ([]) Let f be a real-valued function defined on Na, and let μ,ν > . Then the
following equalities hold:

�–ν
[
�–μf (t)

]
= �–(μ+ν)f (t) = �–μ

[
�–ν f (t)

]
; ()

�–ν�f (t) = ��–ν f (t) –
(t – a)(ν–)

�(ν)
f (a). ()

Lemma . Let x(t) be a solution of Eq. (), and let

E(t) =
t–+α∑

s=t

(t – s – )(–α)x(s), t ∈N. ()

Then

�E(t) = �( – α)�αx(t). ()

Proof Using Definition ., it follows from () that

E(t) =
t–+α∑

s=t

(t – s – )(–α)x(s) =
t–(–α)∑

s=t

(t – s – )((–α)–)x(s)

= �( – α)�–(–α)x(t).
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Therefore,

�E(t) = �( – α)��–(–α)x(t) = �( – α)�αx(t).

The proof of Lemma . is complete. �

Lemma . ([]) Let μ ∈R \ {. . . , –, –}. Then

�–νt(μ) =
�(μ + )

�(μ + ν + )
t(μ+ν). ()

3 Main results
In this section, we establish the oscillation results for Eq. ().

Theorem . Suppose that, for t ∈N,

lim inf
t→∞

{ t–α∑

s=

(t – s – )(α–)

V (s)

[

M +
s–∑

ξ=t

g(ξ )V (ξ )

]}

<  ()

and

lim sup
t→∞

{ t–α∑

s=

(t – s – )(α–)

V (s)

[

M +
s–∑

ξ=t

g(ξ )V (ξ )

]}

> , ()

where M is a constant, and

V (t) =
t–∏

s=t

(
 + p(s)

)
. ()

Then every solution x(t) of Eq. () is oscillatory.

Proof Suppose to the contrary that there is a nonoscillatory solution x(t) of Eq. () which
has no zero in Nt = {t, t + , t + , . . .}. Then x(t) >  or x(t) <  for t ∈Nt .

Case . x(t) > , t ∈Nt . Noting assumption (A), from Eq. () we have

(
 + p(t)

)
�

(
�αx(t)

)
+ p(t)�αx(t) = –f

(
t, x(t)

)
+ g(t) < g(t). ()

Therefore, using the fundamental property of � and noting the definition of V (t), we get

�
((

�αx(t)
)
V (t)

)
= �

(
�αx(t)

)
V (t + ) + �αx(t)�V (t)

= �
(
�αx(t)

)(
 + p(t)

)
V (t) + �αx(t)p(t)V (t)

< g(t)V (t). ()

Summing both sides of () from t to t – , we obtain

(
�αx(t)

)
V (t) <

(
�αx(t)

)
V (t) +

t–∑

s=t

g(s)V (s) = M +
t–∑

s=t

g(s)V (s),
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where M = (�αx(t))V (t), that is,

�αx(t) <
M

V (t)
+


V (t)

t–∑

s=t

g(s)V (s). ()

Applying the �–α operator to inequality (), we have

�–α�αx(t) < �–α

[
M

V (t)
+


V (t)

t–∑

s=t

g(s)V (s)

]

. ()

On the one hand, applying Lemma . to the left-hand side of (), we obtain

�–α�αx(t) = �–α��–(–α)x(t)

= ��–α�–(–α)x(t) –
t(α–)

�(α)
x

= x(t) –
x

�(α)
t(α–). ()

On the other hand, using Definition ., it follows from the right-hand side of () that

�–α

[
M

V (t)
+


V (t)

t–∑

s=t

g(s)V (s)

]

=


�(α)

t–α∑

s=

(t – s – )(α–)

[
M

V (s)
+


V (s)

s–∑

ξ=t

g(ξ )V (ξ )

]

. ()

Combining ()-(), we get

x(t) <
x

�(α)
t(α–) +


�(α)

t–α∑

s=

(t – s – )(α–)

[
M

V (s)
+


V (s)

s–∑

ξ=t

g(ξ )V (ξ )

]

. ()

It follows from () that

�(α)t–αx(t) < xt(α–)t–α

+ t–α

t–α∑

s=

(t – s – )(α–)

[
M

V (s)
+


V (s)

s–∑

ξ=t

g(ξ )V (ξ )

]

. ()

By using the Stirling formula []

lim
t→∞

�(t)tε

�(t + ε)
= , ε > ,

we obtain

lim
t→∞ t–αt(α–) = lim

t→∞ t–α �(t + )
�(t +  – α + )

= lim
t→∞ t–α t�(t)

(t +  – α)�(t + ( – α))
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= lim
t→∞

t
t +  – α

�(t)t–α

�(t + ( – α))
= . ()

From (), taking then limit as t → ∞ in (), we have

lim inf
t→∞

{
t–αx(t)

} ≤ –∞,

which contradicts with x(t) > .
Case . x(t) < , t ∈Nt . By assumption (A), from Eq. () we have

(
 + p(t)

)
�

(
�αx(t)

)
+ p(t)�αx(t) = –f

(
t, x(t)

)
+ g(t) > g(t). ()

Therefore,

�
((

�αx(t)
)
V (t)

)
> g(t)V (t). ()

Summing both sides of () from t to t – , we obtain

(
�αx(t)

)
V (t) >

(
�αx(t)

)
V (t) +

t–∑

s=t

g(s)V (s) = M +
t–∑

s=t

g(s)V (s),

where M = (�αx(t))V (t), that is,

�αx(t) >
M

V (t)
+


V (t)

t–∑

s=t

g(s)V (s). ()

Using the procedure of the proof of Case , we conclude that

�(α)t–αx(t) > xt(α–)t–α

+ t–α

t–α∑

s=

(t – s – )(α–)

[
M

V (s)
+


V (s)

s–∑

ξ=t

g(ξ )V (ξ )

]

. ()

By (), taking the limit as t → ∞ in (), we have

lim sup
t→∞

{
t–αx(t)

} ≥ ∞,

which contradicts with x(t) < . The proof of Theorem . is complete. �

Theorem . Suppose that, for t ∈N,

lim inf
t→∞

t–∑

s=t


V (s)

{

M +
s–∑

ξ=t

g(ξ )V (ξ )

}

= –∞ ()

and

lim sup
t→∞

t–∑

s=t


V (s)

{

M +
s–∑

ξ=t

g(ξ )V (ξ )

}

= ∞, ()
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where M is a constant, and V (t) is defined by (). Then every solution x(t) of Eq. () is
oscillatory.

Proof Suppose to the contrary that there is a nonoscillatory solution x(t) of Eq. () that
has no zero in Nt . Then x(t) >  or x(t) <  for t ∈Nt .

Case . x(t) > , t ∈ Nt . As in the proof of Case  in Theorem ., we obtain (). By
Lemma . it follows from () that

�E(t) <
�( – α)

V (t)

{

M +
t–∑

s=t

g(s)V (s)

}

. ()

Summing both sides of () from t to t – , we have

E(t) < E(t) + �( – α)
t–∑

s=t


V (s)

{

M +
s–∑

ξ=t

g(ξ )V (ξ )

}

. ()

Letting t → ∞ in (), we obtain a contradiction with E(t) > .
Case . x(t) < , t ∈ Nt . As in the proof of Case  in Theorem ., we obtain (). By

Lemma . it follows from () that

�E(t) >
�( – α)

V (t)

{

M +
t–∑

s=t

g(s)V (s)

}

. ()

Summing both sides of () from t to t – , we have

E(t) > E(t) + �( – α)
t–∑

s=t


V (s)

{

M +
s–∑

ξ=t

g(ξ )V (ξ )

}

. ()

Letting t → ∞ in (), we obtain a contradiction with E(t) < . This completes the proof
of Theorem .. �

4 Examples
In this section, we conclude from the following two examples that the assumptions of
Theorem . and Theorem . cannot be dropped.

Example . Consider the following fractional difference equation:



�

(
�


 x(t)

)
+

(
–




)
�


 x(t) +

�(t + 
 )

t�(t)
x(t) =

 – �( 
 )


, t ∈N, ()

with the initial condition �– 
 x(t)|t= = .

Here α = 
 , p(t) = – 

 , f (t, x(t)) = �(t+ 
 )

t�(t) x(t), g(t) = –�( 
 )

 . It is easy to see that

V (t) =
t–∏

s=

(
 + p(t)

)
=

t–∏

s=




=
(




)t–

, g(t) =
 – �( 

 )


> .



Li Advances in Difference Equations  (2016) 2016:70 Page 7 of 9

Therefore, we have

t– 
∑

s=

(t – s – )(– 
 )

V (s)

[

M +
s–∑

ξ=

g(ξ )V (ξ )

]

=
t– 

∑

s=

(t – s – )(– 
 )

(



)s–
[

M +
s–∑

ξ=

 – �( 
 )



(



)ξ–
]

> , ()

which shows that condition () of Theorem . does not hold. It is not difficult to see that
x(t) = t( 

 ) is a nonoscillatory solution of Eq. ().
Indeed, on the one hand, using Lemma ., we obtain

�

 x(t) = �


 t( 

 ) = �
(
�– 

 t( 
 ))

= �

(
�( 

 + )
�( 

 + 
 + )

t( 
 + 

 )
)

= �

(


�

(



)
t()

)

= �

(


�

(



)
t
)

=


�

(



)
()

and

�
(
�


 x(t)

)
= �

(
�


 t( 

 )) = . ()

On the other hand, we have

x(t) = t( 
 ) =

�(t + )
�(t +  – 

 )
=

t�(t)
�(t + 

 )
. ()

Combining ()-(), we conclude that x(t) = t( 
 ) is a solution of Eq. ().

Example . Consider the following fractional difference equation:



�

(
�


 x(t)

)
+

(
–




)
�


 x(t) +

�(t + 
 )

t�(t)
x(t) =

 – �( 
 )


, t ∈N, ()

with the initial condition �– 
 x(t)|t= = .

Here α = 
 , p(t) = – 

 , f (t, x(t)) = �(t+ 
 )

t�(t) x(t), g(t) = –�( 
 )

 . Obviously,

V (t) =
t–∏

s=

(
 + p(t)

)
=

t–∏

s=




=
(




)t–

, g(t) =
 – �( 

 )


> .
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Therefore, we have

t–∑

s=


V (s)

[

M +
s–∑

ξ=

g(ξ )V (ξ )

]

=
t–∑

s=

s–

[

M +
s–∑

ξ=

 – �( 
 )



(



)ξ–
]

> . ()

Thus, condition () of Theorem . does not hold. In fact, we can easily verify that x(t) =
t( 

 ) is a nonoscillatory solution of Eq. ().
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