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1 Introduction
The aim of this paper is to use umbral calculus and to study powers under umbral compo-
sition and degeneration for Sheffer sequences. Umbral calculus (see [, ]) has been used
in numerous problems of applied mathematics, theoretical physics, approximation theory,
and several diverse areas of mathematics. In this paper, umbral calculus is considered for
some special Sheffer polynomials (to be defined in next section) such as Bell polynomials,
Bernoulli polynomials, Frobenius-Euler polynomials, Korobov polynomials, degenerate
Bernoulli polynomials, and falling factorial polynomials.

The order O(f (t)) of the non-zero power series f (t) is the smallest integer k for which
the coefficient of tk does not vanish. A series g(t) with O(g(t)) =  is called an invertible
series and a series f (t) with O(f (t)) =  is called a delta series.

Let g(t) be an invertible series and let f (t) be a delta series. Then there exists a unique
sequence sn(x) of polynomials such that 〈g(t)f (t)k|sn(x)〉 = n!δn,k , for n, k ≥  (see []). The
sequence sn(x) is called the Sheffer sequence for the Sheffer pair (g(t), f (t)), which is indi-
cated by sn(x) ∼ (g(t), f (t)). It is well known that sn(x) ∼ (g(t), f (t)) if and only if


g(f̄ (t))

exf̄ (t) =
∑

n≥

sn(x)
tn

n!
,

where f̄ (t) is the compositional inverse of f (t) determined by f (f̄ (t)) = f̄ (f (t)) = t.
For each nonnegative integer m, the mth power of an invertible series g(t) will be indi-

cated by (g(t))m, while the compositional powers of a delta series f (t) will be denoted by
f m(t) = f ◦ f ◦ · · · ◦ f (t). For pn(x) and qn(x) =

∑n
k= qn,ktk , the umbral composition of qn(x)
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with pn(x), denoted by qn ◦pn(x), is defined by qn ◦pn(x) =
∑n

k= qn,kpk(x). The main goal of
this paper is to study the powers under umbral composition and degeneration for Sheffer
sequences. Moreover, we present several applications related to Bernoulli polynomials,
Frobenius-Euler polynomials, falling factorial polynomials and Bell polynomials and their
degeneration cases (for definitions, see below). For instance, see Corollaries ., ., .,
and ..

2 Preliminaries: powers under umbral composition and degeneration for
Sheffer sequences

We start by stating the following theorem, which is given as Theorem .. in Roman’s
book [].

Theorem . The set of Sheffer sequences is a group under operation of umbral composi-
tion. If sn(x) ∼ (g(t), f (t)) and rn(x) ∼ (h(t),�(t)), then rn(x) ◦ sn(x) ∼ (g(t)h(f (t)),�(f (t))).
The identity under umbral composition is xn ∼ (, t), and the inverse of the sequence
sn(x) ∼ (g(t), f (t)) is the Sheffer sequence for (g(f̄ (t))–, f̄ (t)).

As a corollary, we see that, if sn(x) ∼ (g(t), f (t)) and rn(x) ∼ (,�(t)), then the generating
function for rn ◦sn(x) is obtained from that for sn(x) by substituting �̄(t) for t. As rn ◦sn(x) ∼
(g(t),�(f (t))), and the compositional inverse of �(f (t)) is f̄ (�̄(t)),

g
(
f̄
(
�̄(t)

))–exf̄ (�̄(t)) =
∑

n≥

rn ◦ sn(x)
tn

n!
. ()

From the definition of umbral composition, we see that the mth power under umbral com-
position of rn(x) ∼ (h(t),�(t)) is given by

r(m)
n (x) ∼

(m–∏

i=

h
(
�i(t)

)
,�m(t)

)
, ()

for m ∈ Z>. In particular, for the Appel sequence rn(x) ∼ (h(t), t), we have r(m)
n (x) ∼

((h(t))m, t); for the associated sequence rn(x) ∼ (,�(t)), we have r(m)
n (x) ∼ (,�m(t)).

For n ≥ , we write rn(x) =
∑n

k= rn,kxk =
∑

k≥ rn,kxk , where we agree that ri,j =  for all
i < j. In general, we write

r(m)
n (x) =

n∑

k–

r(m)
n,k xk =

∑

k≥

r(m)
n,k xk ,

for all m ∈ Z>. Then we see that

r(m)
n,k =

n∑

�,...,�m–=

rn,� r�,� · · · r�m–,k , m ≥ , ()

r()
n,k = rn,k
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(from now on, the sum in () is understood as rn,k for m = ). From (), the generating
function for r(m)

n (x) is given by

∑

n≥

r(m)
n (x)

tn

n!
=


∏m–

i= h(�i(�̄m(t)))
ex�̄m(t) =


∏m–

i= h(�̄m–i(t))
ex�̄m(t).

Let R = Rh(t),�(t) be the lower triangular matrix of infinite size where rows and columns
are indexed by nonnegative integers and the nth row consists of the coefficients of rn(x),
namely rn,, . . . , rn,n, , , . . . . Then, as was noted in [], from () we see that r(m)

n,k is the (n, k)-
entry of Rm.

Let rn(x) =
∑n

k= rn,kxk ∼ (h(t), t). Thus, by (), we have

r(m)
n (x) =

n∑

k=

r(m)
n,k xk ∼ ((

h(t)
)m, t

)
.

Observe here that the notation r(m)
n (x) for the mth power of rn(x) under umbral composi-

tion agrees with that for mth order polynomial of rn(x).
Now let us give two examples. At first, let α > . Let us first consider the Bernoulli poly-

nomials B(α)
n (x) of order α (see []). So, if

rn(x) = B(α)
n (x) =

n∑

k=

(
n
k

)
B(α)

n–kxk ∼
((

et – 
t

)α

, t
)

,

then

r(m)
n (x) = B(αm)

n (x) =
n∑

k=

(
n
k

)
B(αm)

n–k xk ∼
((

et – 
t

)αm

, t
)

.

Thus, from (), we get the following result.

Theorem . For all n ≥ k ≥  and α, m ∈ Z>,

(
n
k

)
B(αm)

n–k =
n∑

�,...,�m–=

(
n
�

)(
�

�

)
· · ·

(
�m–

k

)
B(α)

n–�
B(α)

�–�
· · ·B(α)

�m––k .

As a second example, let us take the Frobenius-Euler polynomials H (α)
n (x|λ) of order α,

 �= λ ∈C (see [–]). So, if

rn(x) = H (α)
n (x|λ) =

n∑

k=

(
n
k

)
H (α)

n,k (λ)xk ∼
((

et – λ

 – λ

)α

, t
)

,

then

r(m)
n (x) = H (αm)

n (x|λ) =
n∑

k=

(
n
k

)
H (αm)

n,k (λ)xk ∼
((

et – λ

 – λ

)αm

, t
)

.

Thus, again from (), we obtain the following result.



Kim et al. Advances in Difference Equations  (2016) 2016:66 Page 4 of 11

Theorem . For all n ≥ k ≥  and α, m ∈ Z>,

(
n
k

)
H (αm)

n–k =
n∑

�,...,�m–=

(
n
�

)(
�

�

)
· · ·

(
�m–

k

)
H (α)

n–�
(λ)H (α)

�–�
(λ) · · ·H (α)

�m––k(λ).

3 Powers under umbral composition applied to associated sequences
In this section, we study the powers under umbral composition applied to associ-
ated sequences. Throughout this section, let rn(x) =

∑n
k= rn,kxk ∼ (, f (t)) and r(m)

n (x) =
∑n

k= r(m)
n,k xk ∼ (, f m(t)).

3.1 Generalized falling factorial polynomials
As a first interesting case, let us consider the generalized falling factorial polynomials
(x|λ)n = x(x – λ) · · · (x – (n – )λ), for n ≥ , and (x|λ) =  (see []). So

rn(x) = (x|λ)n =
n∑

k=

λn–kS(n, k)xk ∼ (
, f (t)

)

with f (t) = eλt–
λ

. Then, by (), we obtain

r(m)
n,k =

n∑

�,...,�m–=

λn–� S(n,�)λ�–� S(�,�) · · ·λ�m––kS(�m–, k)

= λn–k
n∑

�,...,�m–=

S(n,�)S(�,�) · · ·S(�m–, k). ()

To proceed, we recall the transfer formula (see []): for pn(x) ∼ (, f (t)) and qn(x) ∼ (,�(t)),
we have qn(x) = x(f (t)/�(t))nx–pn(x), for all n ≥ . As xn ∼ (, t), we have, for n ≥ ,

rn(x) = x
(

λt
eλt – 

)n

x–xn = x
∑

k≥

β
(n)
k

λk

k!
tkxn–

= x
n–∑

k=

(
n – 

k

)
λkβ

(n)
k xn––k = x

n–∑

k=

(
n – 

k

)
λn––kβ

(n)
n––kxk

=
n∑

k=

(
n – 
k – 

)
λn–kβ

(n)
n–kxk .

Thus, for n ≥ ,  ≤ m ≤ n – , we observe that

(
f (t)

)mx–rn(x) =
(
f (t)

)m(
t/f (t)

)nxn– =
(
t/f (t)

)n–mtmxn–.

Therefore,

(
f (t)

)mx–rn(x) =
n––m∑

�=

(n – )�+m

�!
λ�B(n–m)

� xn––�–m.
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Now, we get, for n ≥ , r()
n (x) = x(f (t)/f (t))nx–rn(x), which gives

r()
n (x) = x

n–∑

k=

B(n)
k

λk

k!
(
f (t)

)k x–rn(x)

=
n–∑

k=

n––k∑

k=

(
n – 

k, k, n –  – k – k

)
λk+k B(n)

k
B(n–k)

k
xn–k–k

=
n∑

k=

( ∑

k+k=n–k

(
n – 

k, k, k – 

)
λn–kB(n)

k
B(n–k)

k

)
xk . ()

By induction on m, we obtain the following result.

Theorem . For all m, n ≥ ,

r(m)
n (x) =

n∑

k=

(
∑

k+···+km=n–k

(
n – 

k, . . . , km, k – 

)
λn–k

m∏

j=

B
(n–

∑m
i=j+ ki)

kj

)
xk .

Note that by combining the two expressions (see () and Theorem .) for r(m)
n (x), we

obtain the same result as obtained in [], Theorem :

Corollary . For all  ≤ k ≤ n and m ≥ ,

n∑

�,...,�m–=

S(n,�)S(�,�) · · ·S(�m–, k)

=
∑

k+···+km=n–k

(
n – 

k, . . . , km, k – 

)
B(n)

km
B(n–km)

km–
· · ·B(n–km–···–k)

k
.

Note that for m = , the above corollary reduces to S(n, k) =
(n–

k–
)
B(n)

n–k .

3.2 Degenerate Bell polynomials
Now, let us take the associated sequence rn(x) to f (t) = (+t)λ–

λ
. So rn(x) =

∑n
k= S(n,

k|λ)xk ∼ (, f (t)) and r(m)
n (x) =

∑n
k= r(m)

n,k xk ∼ (, f m(t)). Here, S(n, k|λ) are the degener-
ate Stirling numbers of the second kind obtained by 

k! (( + λt)/λ – )k =
∑

n≥k S(n, k|λ) tn

n!
(see []). Indeed, as f̄ (t) = ( + λt)/λ – , we get

∑

n≥

rn(x)
tn

n!
= ex((+λt)/λ–) =

∑

k≥

(
( + λt)/λ – 

)k xk

k!

=
∑

n≥

( n∑

k=

S(n, k|λ)xk

)
tn

n!
.

Thus, rn(x) =
∑n

k= S(n, k|λ)xk . As λ → , rn(x) tends to the Bell polynomial Beln(x) =∑n
k= S(n, k)xk . Hence they may be called the degenerate Bell polynomials. From (), we

obtain

r(m)
n,k =

n∑

�,...,�m–=

S(n,�|λ)S(�,�|λ) · · ·S(�m–, k|λ). ()
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On the other hand, from the transfer formula, we get, for n ≥ , rn(x) = x(λt/(( + t)λ –
))nx–xn.

Recall that the Korobov polynomials Kn,(r)(λ, x) of order r (see []) are given by generat-
ing function (λt/(( + t)λ – ))r( + t)n =

∑
n≥ Kn,(r)(λ, x) tn

n! . For x = , Kn,(r)(λ) = Kn,(r)(λ, )
are called the Korobov numbers of order r. Note that Kn,(r)(λ, x) should be distinguished
from K (r)

n (λ, x), which denotes the rth power under umbral composition of Kn(λ, x). Thus,

rn(x) = x
∑

k≥

Kk,(n)(λ)
tk

k!
xn– =

n∑

k=

(
n – 
k – 

)
Kn–k,(n)(λ)xk .

To proceed further, we observe the following: for  ≤ m ≤ n – ,

f (t)mx–rn(x) = f (t)m(
t/f (t)

)nxn– =
(
t/f (t)

)n–mtmxn–

= (n – )m
(
λt/

(
( + t)λ – 

))n–mxn––m

= (n – )m
∑

�≥

K�,(n–m)(λ)
t�

�!
xn––m

=
n––m∑

�=

(n – )�+m

�!
K�,(n–m)(λ)xn––�–m.

Thus, by induction on m and (), we can state the following formula.

Theorem . For all m, n ≥ ,

r(m)
n (x) =

n∑

k=

(
∑

k+···+km=n–k

(
n – 

k, . . . , km, k – 

) m∏

j=

Kkj ,(n–
∑m

i=j+ ki)(λ)

)
xk .

Combining the two expressions for r(m)
n (x) (see () and Theorem .), we obtain the

following corollary.

Corollary . For all  ≤ k ≤ n and m ≥ ,

n∑

�,...,�m–=

S(n,�|λ)S(�,�|λ) · · ·S(�m–, k|λ)

=
∑

k+···+km=n–k

(
n – 

k, . . . , km, k – 

) m∏

j=

Kkj ,(n–
∑m

i=j+ ki)(λ).

Note that the above corollary with m =  shows that S(n,�|λ) =
(n–

k–
)
Kn–k,(n)(λ).

3.3 Degenerate falling factorial polynomials
As for third example, let us consider the associated sequence rn(x) to f (t) = ( + λt)/λ –
. So, rn(x) =

∑n
k= S(n, k|λ)xk ∼ (, f (t)) and r(m)

n (x) =
∑n

k= r(m)
n,k xk ∼ (, f m(t)). Here,

S(n, k|λ) are the degenerate Stirling numbers of the first kind (see [, ]) given by 
k! (( +

t)λ – )k/λk =
∑

n≥k S(n, k|λ) tn

n! . rn(x) may be called the degenerate falling factorial polyno-
mials, since, as λ → , rn(x) tends to the falling factorial polynomial (x)n =

∑n
k= S(n, k)xk .
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From (), we obtain

r(m)
n,k =

n∑

�,...,�m–=

S(n,�|λ)S(�,�|λ) · · ·S(�m–, k|λ). ()

We recall that the degenerate Bernoulli polynomials βn,(r)(λ, x) of order r are defined by
the generating function

tr/
(
( + λt)/λ – 

)r( + λt)x/λ =
∑

n≥

βn,(r)(λ, x)
tn

n!
.

For x = , βn,(r)(λ) = βn,(r)(λ, ) are called the degenerate Bernoulli numbers of order r.
Here, βn,(r)(λ, x) should not be confused with β

(r)
n (λ, x), which denotes the rth power under

umbral composition of βn(λ, x). So, by these definitions, for n ≥ , we have

rn(x) = x
tn

(( + λt)/λ – )n xn– = x
∑

k≥

βk,(n)(λ)
tk

k!
xn–

=
n∑

k=

(
n – 
k – 

)
βn–k,(n)(λ)xk .

Thus, for  ≤ m ≤ n – , we have

f (t)mx–rn(x) =
(
t/f (t)

)n–mtmxn–

= (n – )m
tn–m

(( + λt)/λ – )n–m xn––m

=
n––m∑

�=

(n – )�+m

�!
β�,(n–m)(λ)xn––�–m.

By using similar arguments to (), we obtain

r()
n (x) = x

(
f (t)/f (t)

)nx–rn(x)

=
n∑

k=

( ∑

k+k=n–k

(
n – 

k, k, k – 

)
βk,(n)(λ)βk,(n–k)(λ)

)
xk .

Hence, by induction on m, we derive the following result.

Theorem . For all m, n ≥ ,

r(m)
n (x) =

n∑

k=

(
∑

k+···+km=n–k

(
n – 

k, . . . , km, k – 

) m∏

j=

βkj ,(n–
∑m

i=j+ ki)(λ)

)
xk .

Combining the two expressions for r(m)
n (x) (see () and Theorem .), we obtain the

following corollary.
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Corollary . For all  ≤ k ≤ n and m ≥ ,

n∑

�,...,�m–=

S(n,�|λ)S(�,�|λ) · · ·S(�m–, k|λ)

=
∑

k+···+km=n–k

(
n – 

k, . . . , km, k – 

) m∏

j=

βkj ,(n–
∑m

i=j+ ki)(λ).

Note that the above corollary with m =  shows that S(n, k|λ) =
(n–

k–
)
βn–k,(n)(λ).

3.4 Generalized Bell polynomials
One more example is Bell polynomials, also called the exponential polynomials, which
are given by the generating function ex(et–) =

∑
n≥ Beln(x) tn

n! (see []). Let rn(x) =
λnBeln(x/λ) =

∑n
k= λn–kSn(n, k)xk ∼ (, f (t)) with f (t) = 

λ
log( + λt). Thus, f̄ (t) = eλt–

λ
,

which implies

∑

n≥

rn(x)
tn

n!
= e

x
λ

(eλt–) =
∑

n≥

λnBeln(x/λ)
tn

n!

=
∑

n≥

( n∑

k=

λn–kS(n, k)xk

)
tn

n!
.

Thus, from (), we get

r(m)
n,k = λn–k

n∑

�,...,�m–=

S(n,�)S(�,�) · · ·S(�m–, k). ()

To proceed we recall that the Bernoulli polynomials of the second kind bn,(r)(x) of order r
are given by the generating function

(
t/ log( + t)

)r( + t)x =
∑

n≥

bn,(r)(x)
tn

n!

(see []). For x = , bn,(r) = bn,(r)() are the Bernoulli numbers of the second kind of order r.
Here, bn,(r)(x) should be distinguished from b(r)

n (x), which denotes the rth power under
umbral composition of bn(x). So, for n ≥ ,

rn(x) = x
(

λt
log( + λt)

)n

xn– = x
∑

k≥

bk,(n)
λktk

k!
xn–

=
n∑

k=

(
n – 
k – 

)
λn–kbn–k,(n)xk .

For  ≤ m ≤ n – , we observe that

f (t)mx–rn(x) =
(
t/f (t)

)n–mtmxn– =
n––m∑

�=

(n – )�+m

�!
λ�b�,(n–m)xn––�–m.

Thus, by induction on m (similar to Theorem .), one can obtain the following formula.
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Theorem . For all m, n ≥ ,

r(m)
n (x) =

n∑

k=

(
∑

k+···+km=n–k

λn–k
(

n – 
k, . . . , km, k – 

) m∏

j=

bkj ,(n–
∑m

i=j+ ki)

)
xk .

Combining the two expressions for r(m)
n (x) (see () and Theorem .), we obtain the

following corollary.

Corollary . For all  ≤ k ≤ n and m ≥ ,

n∑

�,...,�m–=

S(n,�)S(�,�) · · ·S(�m–, k)

=
∑

k+···+km=n–k

(
n – 

k, . . . , km, k – 

) m∏

j=

bkj ,(n–
∑m

i=j+ ki).

Note that the above corollary with m =  shows that S(n, k) =
(n–

k–
)
bn–k,(n).

4 Degenerations of Sheffer sequences
Let sn(x) ∼ (g(t), f (t)) and rn(x) ∼ (,�(t)). Then g(f̄ (t))–exf̄ (t) =

∑
n≥ sn(x) tn

n! . In view of
Theorem . and (), we have

g
(
f̄
(
�̄m(t)

))–exf̄ (�̄m(t)) =
∑

n≥

r(m)
n ◦ sn(x)

tn

n!
.

In other words, the generating function for r(m)
n ◦ sn(x) is obtained from that of sn(x) by

replacing t by �̄(t) exactly m times. In particular, for �(t) = 
λ

(eλt – ) (resp. �(t) = 
λ

log( +
λt)), r(m)

n ◦ sn(x) will be called the mth degeneration of sn(x) by �̄(t) = 
λ

log( + λt) (resp.
�(t) = 

λ
(eλt – )).

The research in this section was motivated by the following example (see []) bn(x) ∼
(t/(et – ), et – ) = (g(t), f (t)) and rn(x) = (x|λ)n ∼ (, (eλt – )/λ) = (,�(t)). Note here that
bn(x) is the Bernoulli polynomial of the second kind whose generating function is given
by

t
log( + t)

( + t)x =
∑

n≥

bn(x)
tn

n!
. ()

From this consideration, we see that the generating function of r(m)
n ◦ bn(x), the mth de-

generation of bn(x) by �̄(t) = 
λ

log( + λt), is obtained from bn(x) in () by replacing t by

λ

log( + λt) exactly m times. The polynomial r(m)
n ◦ bn(x) is denoted by c(m)

n,λ (x) in [] and
is given by

c(m)
n,λ (x) =

n∑

k=

λn–k

( n∑

�,...,�m–=

S(n,�)S(�,�) · · ·S(�m–, k)

)
bk(x).

This agrees with the result in [].
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In general, the mth degeneration of sn(x) ∼ (g(t), f (t)) by �̄(t) = 
λ

log( + λt) is given by

r(m)
n ◦ sn(x) =

n∑

k=

λn–k

( n∑

�,...,�m–=

S(n,�)S(�,�) · · ·S(�m–, k)

)
sk(x),

where rn(x) ∼ (, (eλt – )/λ) = (,�(t)).
Also, the mth degeneration of sn(x) ∼ (g(t), f (t)) by �̄(t) = 

λ
(eλt – ) is given by

r(m)
n ◦ sn(x) =

n∑

k=

λn–k

( n∑

�,...,�m–=

S(n,�)S(�,�) · · ·S(�m–, k)

)
sk(x),

where rn(x) ∼ (, log( + λt)/λ) = (,�(t)). On the other hand,

r(m)
n ◦ sn(x) =

n∑

k=

( n∑

�,...,�m–=

S(n,�|λ)S(�,�|λ) · · ·S(�m–, k|λ)

)
sk(x)

are polynomials whose generating function is obtained from that of sn(x) ∼ (g(t), f (t)) by
replacing t by �̄(t) = (+λt)/λ – exactly m times (here rn(x) ∼ (,�(t)) = (, ((+ t)λ –)/λ)).

In addition,

r(m)
n ◦ sn(x) =

n∑

k=

( n∑

�,...,�m–=

S(n,�|λ)S(�,�|λ) · · ·S(�m–, k|λ)

)
sk(x)

are the polynomials whose generating function is obtained from that of sn(x) ∼ (g(t), f (t))
by replacing t by �̄(t) = (( + t)λ – )/λ exactly m times (here rn(x) ∼ (,�(t)) = (, ( +λt)/λ –
)).
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