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Abstract

By using the variational minimizing method and the saddle point theorem, the
periodic solutions for non-autonomous second-order discrete Hamiltonian systems
are considered. The results obtained in this paper complete and extend previous
results.
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1 Introduction and main results

Consider the second-order discrete Hamiltonian system
A’u(n - 1) = VF (n,u(n)), (1.1)

where A?u(n) = A(Au(n)) and VF(n,x) denotes the gradient of F with respect to the sec-
ond variable. F satisfies the following assumption:

(A) F(n,x) € CHRN,R) forany n € Z, F(n + T,x) = F(n,x) for (n,x) € Z x RN, T'is a

positive integer.

Since Guo and Yu developed a new method to study the existence and multiplicity of
periodic solutions of difference equations by using critical point theory (see [1-4]), the ex-
istence and multiplicity of periodic solutions for system (1.1) have been extensively studied
and lots of interesting results have been worked out; see [5-16] and the references therein.
System (1.1) is a discrete form of classical second-order Hamiltonian systems, which has
been paid much attention to by many mathematicians in the past 30 years; see [17-24] for
example.

In particular, when the nonlinearity VF(n,x) is bounded, Guo and Yu [3] obtained one
periodic solution to system (1.1). When the gradient of the potential energy does not ex-
ceed sublinear growth, i.e. there exist M; > 0, M, >0, and « € [0, 1), such that

|VE(n,x)| < M|x|* + My,  V(m,x) € Z[1,T] x RN, (1.2)

where Zla, b] := Z N [a, b] for every a, b € Z with a < b, Xue and Tang [12, 13] considered

the periodic solutions of system (1.1), which completed and extended the results in [3]
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under the condition where

T

lxlliinoo |x| 2 ;F(rz, x) = +00, (1.3)
or
T
Ixllignoo [ > F(n,x) = —o0. (1.4)

Under weaker conditions on VF(n,x), i.e.,

lim |x|2 F(n,x) < +00, 1.5
dim 572D Fn, %) (L5)
or
T
lim |x|72 F(n,x) > —00, 1.6
dim 572 Fn, ) (L6)

Tang and Zhang [11] considered the periodic solutions of system (1.1), which completed
and extended the results in [12, 13].

In this paper, we will further investigate periodic solutions to the system (1.1) under the
conditions of (1.5) or (1.6). Our main results are the following theorems.

Theorem 1.1 Suppose that F(n,x) = F1(n,x) + Fo(x), where Fy and F, satisfy (A) and the

following conditions:
(1) thereexistf,g:7Z[1,T] - R* and o € [0,1) such that
|VF1(n,x)| <fm)\|x|* +g(n), forall(n,x)eZ[1,T] x RN;
(2) there exist constants v > 0 and y € [0,2) such that

(VEy (%) = VE(9),x —y) = —rlx—y|”, forallx,y € RY;

(3)

T

> ).

2
T n=1

hmmf || 72 ZF(n x) >

Then system (1.1) has at least one T-periodic solution.

Theorem 1.2 Suppose that F(n,x) = Fy(n,x) + F5(x), where Fy and F, satisfy (A), (1), (2),
and the following conditions:
(4) there exist § € [0,2) and C > 0 such that

(VEy(x) - VE(y),x-y) < Clx —91°, forallx,y e RN;
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T

T
3
limsup |x|~ 20‘ZF(M x)<—? E (n).
T n=1

|x|—+00 =1
Then system (1.1) has at least one T-periodic solution.

Theorem 1.3 Suppose that F(n,x) = Fi(n,x) + F,(x), where Fy and F, satisfy (A), (1), and
the following conditions:

(6) there exists a constant 0 <r < 73—, such that

T2

(VE (%) - VE(9),x —y) = —rlx—y|>,  forallx,y € RY;

7)

T T
. —2a
lim inf jx| D Fm)> (24— 4(T2 1)r) sin? 210

e
n=1 T n=1

Then system (1.1) has at least one T-periodic solution.

Theorem 1.4 Suppose that F = F + F,, where Fy and F, satisfy (A), (1), and the following
conditions:
(8) there exist h: Z[1, T — R* and (A, u)-subconvex potential G : RN — R with A >1/2
and 1/2 < pu < 202, such that

(VFz(n,x),y) > —h(n)G(x—y), forallx,yeRN andneZ[1,T];

)
T
lim sup ||~ ZFl n,x) < — Iz ZfZ
[x|—+00 =1 T n=1
T
limsup |x|~# ZFz(n x) < 8,umax G(s) Zh(n)
|%|—+00 n=1 n=1

where 8 =log,, (21).

Then system (1.1) has at least one T-periodic solution.

Remark 1.5 Theorems 1.1-1.3 extend some existing results. On the one hand, we decom-
posed the potential F into F; and F,. On the other hand, if F, = 0, the theorems in [11],
Theorems 1 and 2, are special cases of Theorem 1.1 and Theorem 1.2, respectively. Some
examples of F are given in Section 4, which are not covered in the references. Moreover,
our Theorem 1.4 is a new result.

2 Some important lemmas
Hr can be equipped with the inner product

T

= Z[(Au(n), Av(n)) + (u(n), v(n))], Yu,v e Hr,

n=1
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by which the norm || - | can be induced by

1
2

- 1
flell = (Z[|Au(ﬂ)|2 + |u(n)|2]> , VueHr.

n=1
Define

T T
D(u) = % S lau@)* - > F(tu)
t=1 t=1

and

T T
(@' (), v) =D (Aule), Av(®)) = > (VE(t u(®)), v(t)),
t=1 t=1

for u,v € Hy.
By (A), it is easy to see that ® is continuously differentiable, and the critical points of &

are the T-periodic solutions of system (1.1)
The following lemma is a discrete form of Wirtinger’s inequality and Sobolev’s inequality

(see [19]).
Lemma 2.1 [11] Ifu € Hy and Y., u(t) = 0, then
T , T
Z|M(t)’ S . 2 T Z|
t=1 T t=1
2 2 TP-1¢ 2
el (IIZl[a}xT]|u(t ) == > lauo)’

Lemma 2.2 [25] Let E =V @& X, where E is a real Banach space and V # {0} and is finite

dimensional. Suppose I € C*(E, R), it satisfies (PS), and
(i) there is a constant o and a bounded neighborhood D of 0 in V such that I |yp<1y,

and
(i) there is a constant B >y such that I |x> B
Then I possesses a critical value ¢ > . Moreover, ¢ can be characterized as

c= ;relﬁ r:lezg( I(h(s)),

where

={h e C(D,E)| h(s) =s,s € 0D}.

3 Proof of theorems
For convenience, we denote

T 1/2 T T
Rl = (Zfz(l’l)> ’ R2 = Zf(n)’ and R3 = Zg(n)
n=1

n=1 n=1
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Proof of Theorem 1.1 According to (3), there exists a; > - 2 7 satisfying
T
—2a 2
}Clglrgm XI:F(n LX) > R
n

From (1) and Lemma 2.1, for any u € Hr, one has

T

> [E(mum) - Fi(n,0)]

n=1

1
(VFi(n, i + sia(n)), i(n)) ds

T 1 - .
< 21/0 Fm)|@ + si(m)|*|(n) | ds + Zlfo g(m)|iu(n)| ds

T T
<Y fon (il + |a(m)|)*|m)| + Y glm)|a(m)|
n=1 n=1
T

T T
<> fa®|aem| + Y fm)|ae)|* + > gln)|in)|
n=1 n=1

n=1
12 /1 1/2 T T
= luf* (Zf (")> (Zlﬁ(n)|2> FIEIZY f) + oo Y ()
n=1 n=1 n=1

1 ~oo V12 Al o0 ~ ol ~
52—1;|M(1’1)| +ER1|U| + Rollullsg” + Rl oo

5 o T2 _1 (o +1)/2 T ) (+1)/2
8a s1n2 7 Z’Au - _R g ( 6T ) Ry Z‘A”(Vl”
n=1
T2 _1\ 2 172
+< ) R; <Z|Au ) : (3.1)

From (2) and Lemma 2.1, for any u € Hr, we have

T

> [Ba(u(n) - Fy(@)]

n=1

T 1 1
= Z,/o E(VFQ (# + sii(n)) — VFy (i), sii(n)) ds
n=1

T m
- Z/ rsV‘1|12(n)|y ds
n=1 0

rT
> —— |l

y/2

rT(Tz—l)V/2< a 2)
>—-— Au(n) . (3:2)
o\ 67 21] |
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Combining (3.1) with (3.2), for all # € H}. one has
T

T
(=5 Yo’ + S [Finatn) - )

n=1

T T
+ Y [Fa(u(n)) - Fa(@)] + Y F(n, 1)
n=1 n=

1 (+1)/2 T ,
- (2 8aj sin’ )Z|Au(n)| - <—> R2<;|Au(n)| )
T

2 1\ 12 T 12 2 q\7/2 y/2
) <%> ko <Z|Au(")|2) ) %<T6Tl) (Z|Au(ﬂ)|2)
n=1 n=1

T
+ |ﬁ|20{ <|L—t|20l ZF(}/[, I:[) - %R%>'

n=1

(a+1)/2

Hence, (1) — o0 as ||u|| — oo. From this result, if {u;} C Hr is a minimizing sequence
for ¢, i.e., p(ux) — infp, k — oo, then {uy} is bounded. Since Hy is finite dimensional,
going if necessary to a subsequence, we can assume that {z;} converges to some uy € Hr.

Because of ¢ is continuously differentiable on Hr, one has

@(uo) =infe and  ¢'(uo).
Obviously, g € Hr is a T-periodic solution of system (1.1). O

Proof of Theorem 1.2 Step 1. To prove ¢ satisfies the (PS) condition. Suppose that u is a
(PS) sequence, that is, ¢’ (ux) — 0 as k — oo and ¢(ux) is bounded. According to (5), there

exists a; > 7 12 7 satisfying

T
1
lim sup |x| > ZF(n, x) < —(az + W)Rf
T

X—>+00
n=1

In the same way as (3.1), for any u € Hr, one has

r T
1
VF(n,ui(n)), i (n) - - Au (n + _R2 20
;( 1( k ) k ) 861281 %Z k |ty
T2 _ 1)(a+1)/2 ( T 2) (+1)/2
+ R, |Auk(n)‘
(o7 >

+<T2 )1 (Z\Auk )1/2 (3.3)

and

T 2 _a\v2/( T vi2
> (VE (), uk(n))>—g<T6T1> (ZIAuk(n)|2> :

n=1 n=1
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Hence, we have

ll2asc | > (¢ (oa), i)

T T
= N | Aum[* + Y (VE(n, (), ()
n=1

n=1

_1 (a+1)/2 T 5 (@+1)/2
>(1- Auy( - — R Auy(n
> (1- smzﬂ)g - (L) (Zl o >|)
1/2
T2-1\"? [ 2 ay o
+( T > R3 ;|Auk(n)| —7R1|uk|"‘
/2
7T (T2 -1\ (<& 2\
-— A 3.4
y( o ) Zl| ()| (3.4)
for all large k.
By Lemma 2.1, one has
1/2
_ (4sin® % +1)12 T 9
<— A . 3.5
Il = = 5s > | Aw(n)| (3.5)
n=1
By (3.4) and (3.5), for all # € HY. one has
1 T
LR > (1- ———— Auw(n)|?
2 it < Sazsin2%>z_:‘ wl )’
n=1
(a+1)/2
T2 _1 (a+1)/ T )
- (7) Rz (Z{Auk(nﬂ
n=1
1/2
(4sin® Z + 1)V /72 _1\'"? L )
- R A
[ 2sinZ  \ 6T 3 ;' i ()|
/2
rT T2—1>V/2 a 2\
-— Auy(n)
 (Fe) (Sl
1
2
ZE;‘AW((”)’ + Gy, (3.6)
where
4aysin® T -1 T2 — 1)\ @2 T (T?2-1\""
Ci = min 2 2T § - st‘“l—r— s’
sel0,+00) | 8apsin® % 6T y 6T

(4 Sill2 % + 1)1/2 Tz -1 I/ZR
- 2sin % \Ter 1%
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. 1
By the choice of a; > T

—, —00 < C; < 0. Hence
T

T
> | Awm)|* < ar R -2,

n=1

and then

T 12
<Z|Auk(ﬂ)|2> < VarRi|ur|* + Cy,
n=1

where 0 < C, < +00.

From Theorem 1.1, one has

T T

Z[Fl(n, uk(n)) —Fl(n,ﬁk)] T Z Auk(n)| + —R2|u |2

n=1 T n=1

(+1)/2 (a+1)/2
< ) R2<Z|Auk(”)| )
172
< ) < |Auk(n)| ) .
By (4), we obtain

XT: [Fa(ux(n)) — Fa(it) ]

n=1

T a1
1 ) L
= Z/ ;(VFz(ﬁk + siig(n)) — VF (i), siix(n)) ds
o Y0
T 1
=3 [ el as < Sl
n=1 0
Cr (T2 -1\"* [ "
ET( 6T) (Z’A“k(’“w :

=1

Combining the boundedness of {¢(u)} and (3.7)-(3.9), one has
C3 < o(ug)

=— Z|Auk n)| Z[Fl (n, ux(n)) = Fy(n, itg) |

n=1

T
Z F> (ux(n)) - Fa (i) ] ZF(ﬂ Ur)
e

1 1)\ @2 T ,
= (2 84, sin’ )Z|Auk(ﬂ)| ( ) RZ(;iAuk(”” )

(+1)/2
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3.7)

(3.8)

(3.9)
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T

T2_1 12 ) 1/2 0
21~ 20
(] 5
8/2 T
cT s T _
+ — 3 ( ) Z’Auk +ZF(n7uk)
n=1
< (e L YRt -2) 2R 3 Foni)
2 8a, smz’; 2 Yl n=1 ’

Tz 1 (a+1)/2 il
+ < ) Rz(«/ﬂ—2R1|ﬁk|a + Cz)

6T

CT (T*-1\"? ) s
+T( 6T) (VarRy || + Cy)

T2—1 1/2
+< eT ) R3(VaxRy|ir|* + Cy)

T
_ o ) 1
< Iuk|2“[|uk| 2N " F(n,itg) + (az + W)Rﬂ
el sin T

|a(u+1)

+ Cality + Cslig|* + Coling|*® + C;

for large k. By the choice of a,, {ux} is bounded. From (3.7), {ux} is bounded. In view of
Hyr is finite dimensional Hilbert space, ¢ satisfies the (PS) condition.
Step 2. Let Hr = {u € Hy : u = 0}. We show that, for u € Hr,

@(u) = +00, |lul| = oo. (3.10)

From (1) and Lemma 2.1, one has

T T
Z[Fl(n,u(n) - F(n,0)] Z/ VF(n,su(n)), u(n)) ds
n=1 n=1

T

< D SO|utn) + Zg<n>|u<n>y

n=1 n=1

Ryl + R ]| oo

T2_1>(ot+1)/2 ( T 2>(a+1)/2

= R |Au(n)|
( 6T 2 21:

T2 1 1/2 T ) 1/2
+ (—) R (Z|Au(n)| )
6T —
for all u € Hy. It follows from (2) that

T

> [Ba(u(n) - F5(0)]

n=1

T
= Z/O (VEy(su(n)) — VF5(0), u(n)) ds
n=1
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r rT
Z—Z/ rsy’1|u(n)|yd52——||u||go
n=1 0 14
rT (T -1\ [ < 2 &
2_—( T ) <;|Au(n)| .

14

Hence, we have

T T
%Z|AM(V1)| Z[F(n,u(n) F(n,O) ZF(n,
n=1 n=1
1 T T 1 (a+1)/ T (a+1)/2
72\ T , 2
_< — ) R3<Z|Au(n)|) + 3 F(n,0)
n=1 n=1

rT<T2—1)y/2( ! 2>w2
-— Au(n) .
o\ e ;ﬂ] |

In view of Lemma 2.1, ||| — +00 in Hy if and only if (ZL1 | Au(n)|?)* - 0o. Hence

(3.10) is satisfied.
Step 3. By (5), for all u € (Hy)* =R, one has

T
o(u) = —ZF(n, u(n)) - —o0, |lul — oo.

n=1

Above all, all conditions of Lemma 2.2 are satisfied. So, by Lemma 2.2, system (1.1) has

at least one T-periodic solution. 0

. 3 . .
Proof of Theorem 1.3 By (7), there exists ag > PRI satisfying

T
hmmf |og| 72 ZF(VI x) >
n=1

Similar to (3.1), we have
T
Z[Fl (n,u(n)) = Fy(n, )]
n=1

T T2_1 (@+1)/2 T ) (a+1)/2
=) | Autm)|’ - —R2| > - (7> Rz<Z|Au(n)| )
7 =1 n=1

8a3 sin

(55) (o)

1/2
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By (6) and Lemma 2.1, one has

T

T
> [Ba(un) - Fa@)] =) / = (VEy (it + sit(n)) — VFy (i), sii(n)) ds
n=1

n=1

:nr—l

T T
(T* -1)r 2
rs|iu(n)| ds > ————— Au(n)|”.
] e TR MV

So, for any u € Hr, we have

T
Z|Au(n)| +Z nmu(n)) - F(n,it)]| + Y F(n, i)
n=1

1 1 (T2 = 1)r\ < )
Z(E_S -2 12 )Z|AM(K)‘
azsin” % —
(+1)/2 T 12
T2 _ 1\ @D/2 T ) T2 1\ 2 )
_( = ) Ry( D | Au(n)| —( o ) R[> |Aum)|
n=1 n=1
T a
+ |12|20t <|ﬁ|—20{ ZF(;/I, l:{) — ;R%)
n=1
Therefore, (i) — +00 as ||| — +0o due to the choice of a3 and r < 7. The rest is
similar to the proof of Theorem 1.1. d

Proof of Theorem 1.4 First, we prove that ¢ satisfies the (PS) condition. Suppose that
{ur} C Hr is a (PS) sequence of ¢, that is, ¢'(ur) — 0 as k — oo and {@(uy)} is bounded.

By (9), there exists a4 > ﬁ satisfying

4si

T
1
lim sup || ZF(n, x) < —(a4 + W)Rf (3.11)
T

|x|—+00

By the (A, u)-subconvexity of G(x), we have
G(x) < (2ulxl’ +1)G, (312)

for all x € RN, where Gy = maxs<1 G(s), B = logy, (211) < 2.
Then

T

Z (VFQ (n, ur(n) uk(n Z h(n)G

n=1

T
> = h(m) (2l +1)Go

n=1

= —2Ry it |P — Ry, (3.13)
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where Ry = G Zil h(n). For large k, according to (3.3) and (3.13) we have

|l = (o' (o), i)
T

T
= Z\Auk(n)|2 + Z(VF(H, ui(n)), i (n))

n=1 n=1

= Y] 2a
= (1 8ay sin? )Z‘Auk ‘ - R wd

T2 _1 (@+1)/2 T (a+1)/2
- 2
_( - ) Rz(;muk(m;)
T2 _1\ 2 T 1/2
_ ) o
_< = ) R3<;|Auk(n)|> — 2uRs|iik|P - Ra. (3.14)
By (3.5) and (3.14), one has
a = o _
o R+ 20Ra )
1 T
2
>(1-——— Aup(n
_< 8a4sin2%);| K )|
T2 a+1)/2 T (+1)/2
2
< ) (Z|Auk(n)| ) -Ry
n=1
1/2
4sm +1)1/2 T2_1 1/2 T )
R A
[ 2sm— +< 6T ) 31| n2:1:| uk(n)|
1 L
> ;|Auk(n)|2 +Cs, (3.15)
where
1 1 Tz_l (a+1)/2
Cg = min {(— - 7.2>s2 - ( ) Rys**!
selo,+00) [\ 2 8agsin® T 6T

(4sin® Z +1)12 T2 - 1\"?
—R4 - + Rg S¢.
251n F 6T
By the choice of a4, —00 < Cg < 0. By (3.15), we have
2 2= 20 - B
D | Awmn)|” < @R | + 4Ryl - 2Cs, (3.16)

and then

T 1/2
(DAuk(n)F) < VaaRi|u|* + 2y uRal i + Co, (317)

n=1
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where Cy > 0. By (8) and (3.12), for any u € Hr, we get
T

> [Ea(n u(m) - Fa(m, )]

n=1
S
=— Zf (VEy(n, i + siir(n)), it (n)) ds
n=1 0
T M
<> / h(n)G (i + (s + Vite(n)) ds
n=1 0
T m
< Z/ h(n)(Z;L’z'tk +(s+ 1)£tk(n)|ﬁ + 1)G0 ds
n=1 0

T
<ap Y h(m)(jixl? + 27 |i(m)|”) Go + Ry

n=1

<22 uRy it |, + 4uRal ity |P + Ry

6T

n=1

Page 13 of 17

T2 - 1\F" d 2\
5( ) 262 R, <Z|Auk(n)| ) +4pRy i |P + Ry. (3.18)

Combining the boundedness of {¢(u)} and (3.16)-(3.18), one has

Cio < ¢(ux)
1< I ) T )
= 3 2l + 3 [F(n ) - Fon )] + 3 Fom )
1 1 T s as
= <§ * W) ;M”k(”” + ERflel2

(T2 _ 1>(o¢+1)/2 ( T ) (a+1)/2
+ R, Z|Auk(n)| )
6T —

1/2
T2 _1>1/2 ( T )
+ ( R3 |Auk(n)|
6T —

T2 —1\*"? a o a
- 2 - -
+( ) 2ﬁ+2uR4<§ |Auk(n)\> +duRy|ig|’ + Ry + ) F(m, i)

6T

n=1 n=1

1 1 _ _ ag _
< || =+ ———— V(@R | + 4pRa|iir)? — 2Cg) + — R? |11z |
_(2 8a4sin2%>( aRY |tk | URy | tg| 5) 5 112k

T2 _1 (a+1)/2 y
+ ( 6T ) Ro(v/aaRyliig|” + 24/ uRqlitg|P? + Co)

T2_1 1/2 i )
+( 6T > RB(\/61_4R1|uk|a+2\/,u—R4|uk|ﬁ/2+C9)

T2 -1\"" N i} _
+( 6T) 22 Ry (@R k| + 29/ iRkl + Co)” + 4Ry iy |
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T
+ Ry + ZF(n, i)

n=1
1 1
< <1 + 7,2>u4Rf|ﬁk|2°‘ + (6 o
8ay sin” 7 2a, sin” 7
1
daysin” %

T2_1 (sD/2 o a_Zﬂ o+l =~ a(a+l) 3a+l, %l O(TH - Blat) 20 ~a+l
+< T > R2(2 a,” Ry |ukl +27 TR || 7 +279Cy )

)MR4|ﬁk|ﬁ

T2_1 1/2 ) ]
+( 6T > RB(\/51_4R1|141<|0¢+2\/M—R4|uk|ﬁ/2+cg)

T2 -1\"? a8 g o 8 B 8 _
+( o > 222 Ry (2P el RY | | + 2°P 2T R k| T + 22V )

T
+ Ry + ZF(H, i)

n=1
d 1 T2 -1\
= 12a = 12« = 2 ~ |-
=|u 17} F(mug)+ | as+ —— R + asRiRs|u
|24k | |:|k| ;1( k)<4 Ssinz%)1(6T)\/413|k|
T2_1 (a+1)/2 asl T2_1 B2 8
+( T > 2a,’ Ri‘“lﬁk|°‘(“-”+<—6T ) 27 g RY Ralia |
u 1
- ﬁ - _ﬂ -
+|u u E(mup)+ |6+ ——— uR
A P il Z 2, ) ( 2a4sin21)M 4
n=1 T
2 1\ A2
N it R R L
6T
T2—1 (a+1)/2 2 al ) T2—1 1/2 B
+< o ) BT R | T +(6—T> 2R3/ Ry ity | P
1 T2—1 (a+1)/2 T2—1 1/2
|1+ ——55 )Cs+ 22 R, CE + R3C,
day sin” T 6T 6T
T2 -1\""
+< T ) 23/3,1LR4C5+R4.

Combining (3.11) and the above inequality, we see that {|«|} is bounded. By (3.16), {u}
is bounded. Since H7 is a finite dimensional Hilbert space, ¢ satisfies the (PS) condition.
Similar to the proof of Theorem 1.2, all conditions of Lemma 2.2 are satisfied. So, the

proof of Theorem 1.4 is completed. g

4 Examples

In this section, we give some examples to illustrate our results.

Example 4.1 Let F = F} + F,, with

Fi(n,x) = (% - n> lx|"* + 2T — n)|x > + (k(n), %),
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3
Fy(x) = Clx) - Z’|x|‘“3,

where k:Z[1,T] — R and k(n + T) = k(n), forall n € Z, r > 0, C(x) = (1] *> + |x5|*> +
oo+ lxn|¥3). Tt is easy to see that

3
|VE ()| < | T +1-2n||x*"* + 5 12T — nl|x|"> + | k(n)]

®|I3 |3

sa 9T
< (1T +1-2n]+&) x> + — + k().
&
For all (n,x) € Z[1, T] x RN, where ¢ > 0,
(VEx(x¥) = VE (), x —y) = —rla — y|*>.
Thus, (1), (2) hold with « = 3/4, y = 4/3, and

T2
f(}’l)=§(|T+l—2l’l|+8), g(n)=98—2+‘k(n)|.

So, we have

T
|67 Y " F(n,%)
n=1

et

n=1

_ 31,43 T
) T(T-1) N T(Cx) — 3 x[*%) . (Zk(”)’ |x|—3/2x)'
n=1

T+1 3
2+ - n) w7 4 2T = m)x*’? + Cx) — Z’|x|‘“3 ; (k(n),x)}

2 |x|3/2
On the other hand, one has

T 2 2 2
1 2 1 7 49[T(T* -1+ 6eT + 2¢7)]
n) = —(IT+1-2n|+¢ < .
B B L e

: 2
8 sin - 8 sin T o

If T €{2,3,4,5,6,7}, we can choose ¢ > 0 such that

T T
TBT -1) 1
liminf |x]™% Y  F(n,x) = > 2(n).
|x|—>+oo| | n2=1: ( ) 2 8sin2% nzzl‘ff ( )

So, (3) holds. By Theorem 1.1, system (1.1) has at least one T-periodic solution.

Example 4.2 Let F = F; + F,, with

Fy(n,x) = (% - n> lx[7"* — T - n)|x*"* + (k(n), x),

4r
F>(x) = -z |4,

where k:Z[1,T] — RN and k(n + T) = k(n) foralln € Z, r > 0.
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In a way similar to Example 4.1, it is easy to see that condition (1) and (4) are satisfied
with a = 3/4. So,

T
|x|_2°‘ ZF(rz,x)
n=1
T T+1 4r

_ y|-302 _ 74 _ (9T _ 312 _ 200514 4 (k(n),
x| ZE[( 5 n)|x| QT =l = x> + (k(), )

TGBT-1) 4r T B
:_T | | 1/4 (Zk(”): |x| 3/296).

n=1

If T € {2,3,4,5}, we can choose ¢ > 0 small enough such that

T

11msup|x|‘2°‘ZF( x)——T(gT ) HZ *(n),

|| —> +00 el 2 851 T ‘nel

which implies that (5) holds. By Theorem 1.2, system (1.1) has at least one T-periodic

solution.

Example 4.3 Let F = F| + F,, with

Fi(n,x) = (T; L n) 7/ — (?) % + (k(n), ),

Fy(x) = C(x) - §|x|2,

where k: Z[1, T] — R and k(n + T) = k(n) for all n € Z, r > 0, C(x) = 5(|x1|* + [x2]* +

2 6
|xN| ),0<r<m.

In a way similar to Example 4.1, it is easy to see that conditions (1) and (6) are satisfied
with o = 3/4. So

T
|x|_2a ZF(”I;x)
n=1
= Z[( r+1 n) 7% — (?) 1x>2 + C(x) - %lez + (k(n),x)]

_ Ixl2 r
T(T +3) N T(C(x) - 51%I%) s <Z k(n), |x|_3/2x>
n=1

4 |x|3/2
T
T(T +3) rT(x|f - |x|?) Z 372
- 4 ’ 2|x[372 ' n=1 Kol )

If T € {2,3}, we choose ¢ > 0, such that

T T
.. T(T +3) 3
liminf |x|~2% F(n,x) = > 2(n),
|x|—>+oo| | HX:; (%) 4 (24 —4(T2-1)r) sinz% nzl:f )
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which implies that (7) holds. By Theorem 1.3, system (1.1) has at least one T-periodic

solution.
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