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Abstract

In this paper, we determine a concrete interval of positive parameters A, for which we
prove the existence of infinitely many homoclinic solutions for a discrete problem

~Ady(Aulk— 1)) +ak, (UK) = Af(k ulk), keZ,

where the nonlinear term f : Z x R — R has an appropriate behavior at infinity,
without any symmetry assumptions. The approach is based on critical point theory.
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1 Introduction
In the present paper we deal with the following nonlinear second-order difference equa-

tion:

—A¢,(Au(k — 1)) + a(k)p,(u(k)) = Af (k, u(k)) forallk € Z, M
u(k) - 0 as |k| — oo.

Here p > 1 is a real number, A is a positive real parameter, ¢,(¢) = |¢[~*¢ for all ¢ € R,

a:Z — R is a positive weight function, while f : Z x R — R is a continuous function.

Moreover, the forward difference operator is defined as Au(k —1) = u(k) — u(k —1). We say
that a solution u = {1(k)} of (1) is homoclinic if limy|— o 2(k) = 0.

Difference equations represent the discrete counterpart of ordinary differential equa-

tions and are usually studies in connection with numerical analysis. We may regard (1) as

being a discrete analog of the following second-order differential equation:

(6 (¥ @) + alO)gp () =f(t.x()), teR.

However, the relations between discretization and its continuous counterpart are not as

direct as it may seem; see for example [1]. The case p = 2 in (1) has been motivated in part
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by searching standing waves for the nonlinear Schrodinger equation

i + A% — vt + f(k,Y) =0, keZ

(for details see [2, 3]).

Most of the classical methods used in the case of differential equations lead to exis-
tence results for the solutions of a difference equation. Variational methods for difference
equations consist in seeking solutions as critical points for a suitable associated energy
functional defined on a convenient Banach space. In the first approaches to the issue,
the variational methods are applied to boundary value problems on bounded discrete in-
tervals, which leads to the study of an energy functional defined on a finite-dimensional
Banach space (see [4—9]). In the case of difference equations on unbounded discrete in-
tervals (typically, on the whole set of integers Z) solutions are sought in a subspace of the
sequence space [ which is still infinite-dimensional but compactly embedded into  (see
[10-12]).

Our idea here is to investigate the existence of infinitely many solutions to problem (1)
by using a critical point theorem obtained in [13]; see Theorem 2. This theorem was used
in a continuous case in [14] and in discrete but finite-dimensional analog of problem (1) in
[15-17]. In analogy with the cited papers, in our approach we do not require any symmetry
hypothesis.

A special case of our contributions reads as follows. For a4 : Z — R and the continuous

mapping f : Z x R — R define the following conditions:

A) a(k)>a>0forall k € Z, alk) - +o0 as |k| — +00;

% = 0 uniformly for all k € Z;

Dkez Maxjg|<¢ F(kE) 0:
LkenMMe= D) _

F1) lim;_

. Fke) .
F3) Limsupg . (;00,+00) Cra(ge = 1O

F(k,t)

(
(
(Fp) liminf,,
(
(Fa) supez(imsup, ., . Gra@gyp) = +00

where F(k, t) is the primitive function of f(k, £), that is, F(k, ) = fot f(k,s)ds for every t e R

and k € Z. The solutions are found in the normed space (X, || - ||), where X = {#: Z — R:
1

ZkeZ a(k)|u(k)|P < oo} and ||u|| = [ZkeZ a(k)|u(k)|P]7.

Theorem 1 Assume that (A), (F1), and (Fy) are satisfied. Moreover, assume that either (F3)
or (Fy) is satisfied. Then for each ). > 0, the problem (1) admits a sequence of solutions in X

whose norms tend to infinity.

The plan of the paper is the following: Section 2 is devoted to our abstract framework,
while Section 3 is dedicated to the main results. Finally, we give two examples which illus-
trate the independence of conditions (F3) and (F4) and a third example which corresponds

to the general Theorem 6.

2 Abstract framework

Our main tool is a general critical points theorem due to Bonanno and Molica Bisci (see
[18]), which is a generalization of result of Ricceri [13]. Here we state it in a smooth version
for the reader’s convenience.
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Theorem 2 Let (E, || - ||) be a reflexive real Banach space, let ®, V¥ : E — R be two contin-
uously differentiable functionals with ® coercive, i.e. lim,)_, oo ®(u) = +00, and a sequen-
tially weakly lower semicontinuous functional and \V a sequentially weakly upper semicon-
tinuous functional. For every r > infr @, let us put

Su _ W (v)) — W(y
oe i CUPeeeriicoon W) - W)
ue®~1((-o00,r)) r—®(u)

and
y :=liminf(r).
r—+00

Let ], := O(u) — AV (u) for all u € E. If y < +00 then, for each X € (0, %), the following alter-
native holds:
either
(a) Ji possesses a global minimum,
or
(b) there is a sequence {u,} of critical points (local minima) of ;. such that

lim,_, ;00 ®(u,) = +00.

We begin by defining some Banach spaces. For all 1 < p < +00, we denote ¢” the set of
all functions u : Z — R such that

lult =Y "Jutk)]” < +oo.

keZ

Moreover, we denote by £* the set of all functions u : Z — R such that

ll24]l oo = sup|u(k)| < +o0.
keZ
We set

X= {u:Z—> R: Y all)|uk)|” < oo}

keZ
and
Jul = [Za<k>\u(k) y”]p.
keZ

Clearly we have
lllloe < IIuIIpSa’I% lul| forall u e X. )

Asisshown in [11], Proposition 3, (X, | - ||) is a reflexive Banach space and the embedding
X < [P is compact.
Let

O(u) = l ZHAu(k— 1)|17 + a(k)|u(k)|p] forallue X
keZ
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and

W (y) = ZF(k, u(k)) forallu € I?,
keZ

where F(k,s) = fosf(k, t)dt fors € Rand k € Z. Let ], : X — R be the functional associated
to problem (1) defined by

Ji(u) = () — AW ().

Proposition 3 Assume that (A) and (F,) are satisfied. Then
(@) ®eC(X);
(b) W e CHIP) and ¥ € CH(X);
(c) Jn € CHX) and for all ) > 0 every critical point u € X of ], is a homoclinic solution of
problem (1).

For a proof see Propositions 5, 6, and 7 in [11].

Proposition 4 Assume that (A) and (Fy) are satisfied. Then ® is coercive and sequentially
weakly lower semicontinuous functional and ¥ is sequentially weakly upper semicontinu-

ous functional.

Proof We have
1
P() = —[ull” — +oo,
p

as |lu]| - +o0o, and so @ is coercive. Now, let u,, — u weakly in X. By the compactness
of the embedding X < /7, we may assume that u,, — u in I. The rest of the propo-
sition follows from the fact that the norm || - || in X is sequentially weakly lower semi-
continuous functional, the functional W is continuous on /7, and the functional /” > u >
1% > kez 1 Au(k —1)|P € R is continuous on #. O

Proposition 5 Let {u,,} be a sequence in X such that ®(u,,) — +00. Then || u,,| — +o0.

Proof By the classical Minkowski inequality

1 1 1
n » n P n P
(Z |xi+yi|P> < (Z mvy) + (Z |yt|P>
i=1 i=1 i=1

forallne N, x1,...,%,,91,...,¥» € R, we have

1 1 1
(Z|Au(k—1)|p>p < (Z|u(k—1)|p>p + <Z|u(k)|p)p
|k|<h |k|<h |k|<h
forall # € N and u € X. Letting & — +00 we obtain

(Z|Au(k— 1)\”)5 < 2/|ull.

keZ



Steglinski Advances in Difference Equations (2016) 2016:38 Page 5 of 11

From this and inequality (2) we conclude

®(u) = ! > [l Autk = 1) + alic)|uk)|’]

keZ
1 2+«
< —(lullf + ul?) < — llull?,
p po
which proves the proposition. d

3 Main theorem
Now we will formulate and prove a stronger form of Theorem 1. Let

A := liminf ZkeZ maxs < F(k,£)

t—+00 174

B i F(k,t)
++:= limsup ————,
(k,t)— (F00,%00) (2 + a(k))|t|P

and

By:=s (lim s Fk,) )
= su up——+— .
* keg t—>ioop (2 + a(k))|tp

Set B:=max{B4 +,B.}. For convenience we put 0% = +00 and ﬁ =0.

Theorem 6 Assume that (A) and (Fy) are satisfied and assume that the following inequal-
ity holds: A < « - B. Then, for each \ € (Bip
in X whose norms tend to infinity.

, Aip), problem (1) admits a sequence of solutions

Proof 1t is clear that A > 0. Put A € (Bip, X‘—p) and put @, W, J; as in the previous section.
Our aim is to apply Theorem 2 to the function J,. By Lemma 4, the functional & is the
locally Lipschitz, coercive and sequentially weakly lower semicontinuous functional and
W is the locally Lipschitz, sequentially weakly upper semicontinuous functional. We will

show that y < +00. Let {c,,} C (0, +00) be a sequence such that lim,,_, » ¢,, = +00 and

lim > kez MaXjg| <, F(K,§)

m—+00 cﬁ’l

=A.
Set
o
Py = —Ch,

for every m € N. Then, if v € X and ®(v) < r,, one has

=

< Cmr

-1 1
Voo <@ 7|Vl < a™? (p@(v))
which gives

®7((~00,7m)) C{veX: IVl < cm). (3)
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From this and ®(0) = ¥(0) = 0 we have

SUP @ (v)<ry ZkeZ F(k,v(k)) - ZkEZ maxjs <c,, F(k,t)

¢(rm) < <
T'm T'm
_ P > MaX <, F(k,?)
o o

for every m € N. This gives
. p 1
y < lim ¢(r,) <=-A<—<+00.
M— +00 o A

Now, our conclusion follows provided that J, does not possess a global minimum.

Case 1. First assume that B = max{B4 1 }. Without loss of generality we can assume that
B =B, ,. We begin with B = +00. Accordingly, let M be such that M > ﬁ. There exist a
sequence of positive integers {k,,} and a sequence of real numbers {b,,} with b,, > 1 and
lim,,,_, 400 b,y = +00 and such that

F(kyy b)) > M(2 + a(km))b’,’n

for all m € N. Thus, take in X a sequence {s,,} such that, for every m € N, s,,,(k;,) = b,,, and
sm(k) = 0 for every k € Z\{k,,}. Then one has

Ji(sm) = }) D (| Asulk =) +a(®)|su(®)]") = 2> " F(k,5,n(k))

keZ keZ

< %bﬁl + la(km)bfn - AM(Z + a(km))b’,’n
V4 p
= <l - AM) (2 + a(ky)) b,
V4

which gives lim,;,—, 100 /5. (S4) = —00.

Next, assume that B < +00. Since A > é, we can fix ¢ > 0 such that e < B— ﬁ. Therefore,
also taking {k,}, a sequence of positive integers, and {b,,}, a sequence of real numbers
with b,, > 1 such that lim,,,_, ., b,,, = +00 and

(B—¢)(2+ alkn)) b, < F(ky, bn) < (B +€)(2 + alkn)) B,

for all m € N, choosing {s,,} in X as above, one has

Ji(sm) < (; - MB- 8)> (2 + a(km))bfn.

So, also in this case, lim,,,_, .00 /3 (S,,) = —00.

Case 2. Now assume that B = max{B.}. Without loss of generality we can assume that
B = B,. We begin with B = +00. Accordingly, let M be such that M > ﬁ. There exists an
index ko € Z such that

lim su _ Flko,t)
t—>+oop (2 + ﬂ(ko))|t|p
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Then there exists a sequence of real numbers {b,,} with b,, > 1 such that lim,,,_, ;o b,,, =
+00 and

F(ko,by) > M (2 + a(ko)) P,

for all m € N. Thus, take in X a sequence {s,,} such that, for every m € N, s,,(ko) = b,,, and
sm(k) = 0 for every k € Z\{ko}. Then one has

To(sm) = }9 D (|Asmlk =D +a(®)|sm()[") = 1Y F (K, sm(k))

keZ keZ

2 1
< 2B, + Zalko)bt, — AM(2 + alko)) b2,
p p

= (1 - AM) (2 +alko)) ¥,
p

which gives lim,;,;—, 100 /5. (S1) = —00.
Next, assume that B < +00. Since A > é, we can fix ¢ > 0 such that e < B— i. Therefore,
there exists an index kg € Z such that
F(kO’ t)

limsup ———— >B—g¢,
o @+ alko)) P

and taking {b,,}, a sequence of real numbers with b,, > 1 such that lim,_, ;o b,, = +00 and
Elko,b) > (B—)(2 + alko)) %,

for all m € N, choosing {s,,} in X as above, one has

J(sm) < (}j - AB- £)> (2 +alko)) b,

So, also in this case, lim,,_, ;0 /3.(s4) = —00. Finally, the above facts mean that J, does not
possesses a global minimum. Hence, by Theorem 2, we obtain a sequence {u,,} of critical
points (local minima) of J; such that lim,,, ;o ®(u,,) = +00. Proposition 5 now implies
limy— 400 || Uml| = +00. The proof is complete. O

Remark 1 Theorem 1 follows from Theorem 6 since the condition (F3) means that B, , =
+00 and the condition (F4) means that B, = +00, so B = +00. Moreover, (F,) implies A = 0.
Hence, we obtain the interval of all positive parameters, for which the treated problem
admits infinitely many solutions whose norms tend to infinity.

Remark 2 If we replace the condition (F;) by

pALS))

(F7) limy_ o+ 71 =0 uniformly for all k € Z

in Theorem 1, then we can obtain the sequence of positive solutions of the problem (1). It
can be proved by using Lemmas 5 and 6 in [10].

4 Examples
Now, we will show the example of a function for which we can apply Theorem 1. First we
give an example of a function f for which (F3) arises, but (F4) is not satisfied.
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Example 1 Let {a(k)} be a sequence of positive numbers. Put b; = 1. Let {b,,}, {c;n}, {h}
be sequences defined recursively by

Bner = lm(m + )2 + alm))cy + 20515 form =1,

¢n=1+b, form > 1, (4)
hm:ﬁbfml—%bfn form > 1.

It is easy to see that b,, < ¢;; < by for every m € N and limy,—, 100 by = limyy—s 100 €y =
+00. For every nonpositive integer k let f(k, -) : R — R be identically the zero function. For
every positive integer k let f(k,-) : R — R be any nonnegative continuous function such
that f(k,£) = 0 for ¢t € R\ (b, cx) and fbclff(k, t) dt = hy. The condition (F;) is now obviously
satisfied.

Set F(k,t): fo f(k,s)ds for every t € R and k € Z. Then

> kez Maxe < F(k, §) - >_kez MaXg|<p,, F(k,§)

limipt SR < lim S
m-1
. - Fk,cx)
_ k=1
=, hm w7,
m-1
= hy
= lim =kl
m—+00 b{?ﬂ
i -1
. mom _
= T =0
and
F(k,t) . F(m, cy,)
hmsup — > lim —F
(o) (+00,00) (2 + a(k))|E|P — m—+00 (2 + a(m))ch,
. -
= lim ——
m—+00 (2 + a(m))ciy
m(2 + a(m))ch,
= lim —————— =
m—+00 (2 + a(m))ch,
Moreover,

(im0 vt )
sup( limsup —————

kez \ t—>+00 (2 +a(k))|t]P

Now we give an example of a function f for which (F,) arises, but (F3) is not satisfied.

Example 2 Let {a(k)} be a sequence of positive numbers. Put by = 1. Let {b,,}, {c¢n}, {Hm}

be sequences defined recursively by

by = (m Y1 11/1,(}9 for m > 2,
¢n=1+b, for m > 1, (5)
By = m(2 +a(0)), — %b‘fn form > 1.
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It is easy to see that by, < ¢;; < b1 for every m € N and limy,—, 100 by = limyys 100 €y =
+00. Let g: R — R be the continuous nonnegative function given by

$) = ZZh,,,(l—z

meN

1
S—Cpm + E D “Libemls

where 1y is the indicator of the interval [, c]. We check at once that, for every m € N,

fb :"f(s) ds = Iy,

Set £(0,s) :=f( ) for s € R and f(k,s) = 0 for k € Z\{0} and s € R. Set F(k, ) fo fk,s)
for every ¢t € R and k € Z. Then F(0,c,,) = Y -, hx. The condition (F;) is satlsﬁed and

lim nf 2=kez MWXe= FEE) e maXie <n, F(O,€)

t—+00 174 m—+00 bﬁq

m-1
hi
- lim Zk 1 =
m—+00 mZk 1 hk

and
S (1 ms Fk.2) ) lims F(0.2)

u 1 up ——— = up —mMm8m—
ter\ et @+ a(o)E? ) ~ i 2+ al0))le
m=+00 (2 + a(0))ch,

ka 1 By

= lim
m—>+oo%(1bp+h)
h
= lim ROYEU/N = +00

1
m—+00 Z;" 1 hk + h
Moreover,

imsup Lt
(ot rmohoc) (2 + a(k)) | EP

Now, let {a(k)} be a sequence of positive numbers such that a(k) — +00 as |k| — +00.
Let o, B be any two strictly positive real numbers. We show that there is a continuous
function f : Z x R — R, such that the numbers A and B, as defined above Theorem 6, are
equal to « and B, respectively. We can follow one of two strategies given by Example 1 and
Example 2. We choose the first one.

Example 3 Let m, € N be such that o < (2 + a(m)) - 8 for every m > my. Put b, = 1. Let
{bm}, {cm}> {hm) be sequences defined recursively by

D1 = [ (2 + a(m))c, + VY, ]11_’ for m > my,
Cm=1+b, for m > my, (6)
By = (B, = B,) for m > my.
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It is easy to see that b, < ¢, < by,41 for every m > mg and limy,—, 00 by, = limy, s 400 €1y =
+00. For every integer k < mq let f(k,-) : R — R be identically the zero function. For ev-
ery integer k > my let f(k,-) : R — R be any nonnegative continuous function such that
f(k,t) = 0 for t € R\(bx, cx) and fbclff(k, t) dt = hy. The condition (F;) is now obviously sat-
isfied.

Set F(k,t) := fotf(k, s)ds for every t € R and k € Z. Since

B > kez MaxXg|<p,, F(K, &) _ D kez MaX g <,y F(k, &)

o v, 7
< inf 2 kez Maxjg < F(k,§)

- te(cm-1,cm) tr

_ Lker Mg 1<, F(k §)
B Bin

is satisfied for all 71 > m1, we have

ZkeZmax\SIStF(k’g) - lim ZkezmaXmS[,m F(k,&)

liminf li
t—+00 74 M—>+00 b‘fn
and since

F(k,cx) < sup F(k,t) - hy _ F(k,cy) ﬁ
2 +alk)dy, ~ er +alk)|tlr ~ 2 +ak)b; (2 +a(k), b

is satisfied for all k > mg, we have

lim sup _FkD im _Fhed
(k,t)— (+00,+00) (2 + ﬂ(k))|t|p k—+00 (2 + (l(k))ci ’

In the same way as has been done in Example 1, we conclude that

Y ez maxg < F(KE) _

liminf
t—+00 174
and
F(k,t)
limsup —————=8.
(k,t)— (+00,+00) (2 + ﬂ(k))|t|p
Moreover,

s (l'm s 713(](' D ) 0
u 1 u =
U v a) e

From this we obtain A =« and B = 8.
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