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Abstract
We investigate the problem of extended dissipativity analysis for a class of neural
networks with time-varying delay. The extended dissipativity analysis generalizes a
few previous known results, which contain the H∞, passivity, dissipativity, and �2 – �∞
performance in a unified framework. By introducing a suitable augmented
Lyapunov-Krasovskii functional and considering the sufficient information of neuron
activation functions and together with a new bound inequality, we give some
sufficient conditions in terms of linear matrix inequalities (LMIs) to guarantee the
stability and extended dissipativity of delayed neural networks. Numerical examples
are given to illustrate the efficiency and less conservative of the proposed methods.

Keywords: dissipativity; neural networks; activation functions; time delay; stability

1 Introduction
In recent years, neural networks have received extensive attention due to their extensive
applications in variety of areas, such as signal processing, image processing, pattern recog-
nition, associative memory, and optimization problems [, ]. Since theoretical analysis is
usually a prerequisite for guaranteeing success in applications, numerous investigations
have been conducted on theoretical analysis of the dynamical behaviors of delayed neural
networks. It is well known that time delay is always encountered because the neural net-
works are frequently implemented by all kinds of hardware circuits-digital or integrated
circuits. In addition, the existence of time delay is often one of the main sources to cause
poor performance, chaos, and instability. As a result, numerous stability analysis criteria
of delayed neural networks have been reported in [–].

It is worth pointing out that the performance of a neural network, which is usually char-
acterized by an input-output relationship, plays an important role in various scenarios.
For example, H∞ control problem [–], passivity and passification problems [, ],
� – �∞ performance analysis [], and dissipativity analysis [–]. Up to now, dissi-
pativity has attracted many researchers’ attention because it does not only unifies the H∞
and passivity performance [–] but also provides a more flexible robust control design
in practical engineering, such as chemical process control [] and power converters [].
Recently, (Q,S ,R)-dissipativity is developed in [] and []; however, the � –�∞ perfor-
mance is not contained in the dissipativity. In order to overcome this drawback, Zhang et
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el. [] proposed a general performance called extended dissipativity, which unifies these
performances. Further, in [], the authors discussed the issue of the extended dissipa-
tivity analysis in continuous-time delay neural networks. In [], the authors addressed
the problem of the extended dissipativity for the discrete-time delay neural networks. In
addition, in [, ], the authors studied dissipativity analysis of neural networks with
time-varying delay and randomly occurring uncertainties. However, it should be men-
tioned that in [, ], the stability criteria of neural networks are conservative. There
still exists room for further improvement because some useful terms are ignored in the
Lyapunov-Krasovskii functional employed in [, ]. It is natural to look for an alterna-
tive view to reduce the conservatism of stability criteria. This has motivated our research
on this issue.

In this paper, we investigate extended dissipativity analysis for neural networks with
time-varying delay and general activation functions. The contribution of this paper is as
follows. First, constructing a suitable augmented Lyapunov-Krasovskii functional, the aim
is to utilize a new bound inequality to reduce the conservatism of the results. Second,
the extended dissipativity generalizes a few previous known results, which encompass the
H∞ performance, � – �∞, passivity, and dissipativity by adjusting weighting matrices in a
new performance index. Third, we pay more attention to activation functions. Differently
from some existing methods [, , ], and [, ], which divided the bound of neuron
activation functions into two subintervals directly, we introduce a parameter δ such that
λδ

i = λ–
i + δ(λ+

i – λ–
i ) and we employ cross terms among the states with the conditions

of λ–
i ≤ fi(a)–fi(b)

a–b ≤ λδ
i and λδ

i ≤ fi(a)–fi(b)
a–b ≤ λ+

i . In addition, for the particular case b = ,
the conditions of λ–

i ≤ fi(a)
a ≤ λδ

i and λδ
i ≤ fi(a)

a ≤ λ+
i are also taken into full consideration.

The derived conditions are formulated in terms of linear matrix inequalities (LMIs) to
guarantee the stability and extended dissipativity of delayed neural networks. Numerical
examples are presented to show the improvement and effectiveness of the results.

In this presentation, we use the following notation. We denote by Rn the n-dimensional
Euclidean space and by R

m×n the set of all m × n real matrix. The asterisk ∗ denotes the
symmetric part in a symmetric matrix, diag{· · · } denotes a diagonal matrix. The notation
P >  (P ≥ ) means that a matrix P is a symmetric positive-definite (positive-semidefinite)
matrix. By I and  we denote the identity and zero matrices of appropriate dimensions,
respectively. The superscript ′T ′ stands for matrix transposition, sym(A) is defined as A +
AT , and ‖ · ‖ refers to the Euclidean vector norm and its induced norm of a matrix. For a
real matrix N , N⊥ denotes its orthogonal complement with maximum row rank.

2 Preliminaries
Consider the class of neural networks with time-varying delay described by

⎧
⎪⎨

⎪⎩

ẋ(t) = –Cx(t) + Af (x(t)) + Bf (x(t – h(t))) + ω(t),
y(t) = Dx(t),
x(t) = φ(t), ∀t ∈ [–h, ],

()

where x(t) = [x(t), x(t), . . . , xn(t)]T ∈ R
n, and xi(t) denotes the state of ith neuron at time

t; f (x(t)) = [f(x(t)), f(x(t)), . . . , fn(xn(t))]T ∈ R
n, and fi(xi(t)) is the activation function of

the ith neuron at time t; y(t) is the output of the neural network; C = diag(c, c, . . . , cn)
describes the rate with which each neural neuron will rest its potential to the resting state
in isolation when disconnected from the networks and external inputs; A, B, and D denote
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constant matrices of appropriate dimensions; φ(t) is the initial condition; h(t) is the time-
varying delay satisfying  ≤ h(t) ≤ h, ḣ(t) ≤ μ < ; and ω(t) ∈ R

n is the disturbance input
belonging to �[,∞].

Assumption . As assumed in many references, such as [], the activation function fi(·)
of neural network () is continuous, bounded, and there exist constants λ–

i and λ+
i such

that

λ–
i ≤ fi(a) – fi(b)

a – b
≤ λ+

i , fi() = , a, b ∈R, a �= b, i = , , . . . , n. ()

The following lemmas, definition, and assumption play a key role in deriving the main
results of this paper.

Lemma . ([]) For a given matrix M > , the following inequality holds for all contin-
uous differentiable functions x : [a, b] →R

n:

∫ b

a
ẋT (s)Mẋ(s) ds ≥ 

b – a
ξT

 (t)Mξ(t) +


b – a
ξT

 (t)Mξ(t), ()

where ξ(t) = x(b) – x(a) and ξ(t) = x(b) + x(a) – 
b–a

∫ b
a x(s) ds.

Lemma . ([]) For any constant matrices N ∈ R
na×nb , X ∈ R

na×na , Y ∈ R
na×nb , and

R ∈R
nb×nb , with

[ X Y
∗ R

] ≥ , the following inequality holds for any a ∈R
na and b ∈R

nb :

–aT Nb ≤
[

a
b

]T [
X Y – N
∗ R

][
a
b

]

. ()

Applying this lemma yields the following new integral inequality.

Lemma . For any constant matrices R ∈R
n×n, X ∈R

n×n, and Y ∈R
n×n with

[ X Y
∗ R

] ≥
 and scalars b > a >  such that the following inequality is well defined, we have:

–
∫ b

a

∫ b

s
ẋT (u)Rẋ(u) du ds ≤ � T (t)

[

(b – a) sym
{

Y [I –I]
}

+
(b – a)



]

� (t), ()

where � (t) = [xT (b)
∫ b

a
xT (s)
b–a ds]T .

Proof It is easy to see that

(b – a)x(b) –
∫ b

a
x(s) ds –

∫ b

a

∫ b

s
ẋ(u) du ds = .

Therefore, the following equation holds for any N, N ∈R
n×n:

 = 
[

xT (b)NT
 +

∫ b

a

xT (s)
b – a

dsNT


][

x(b) –
∫ b

a

x(s)
b – a

ds –


b – a

∫ b

a

∫ b

s
ẋ(u) du ds

]

= � T (t)NT [I –I]� (t) –


b – a

∫ b

a

∫ b

s
� T (t)NT ẋ(u) du ds,
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where N = [N N]. Applying Lemma . yields

–


b – a

∫ b

a

∫ b

s
� T (t)NT ẋ(u) du ds

≤ b – a


� T (t)X� (t) + � T (t)
(
Y – NT)

[I –I]� (t)

+


b – a

∫ b

a

∫ b

s
ẋT (u)Rẋ(u) du ds.

To sum up, we have

–


b – a

∫ b

a

∫ b

s
ẋT (u)Rẋ(u) du ds ≤ b – a


� T (t)X� (t) + � T (t)Y [I –I]� (t).

After s simple rearrangement, we can obtain (). This completes the proof. �

Remark . Inequality () is called an integral inequality. In this paper, it plays a key role in
the derivation of a criterion for delay-dependent stabilization. If we let Y = 

b–a [–R R]T and
X = Y T R–Y , then () reduces to –

∫ b
a

∫ b
s ẋT (u)Rẋ(u) du ds ≤ – 

(b–a) (
∫ b

a
∫ b

s ẋ(u) du ds)T ×
R(

∫ b
a

∫ b
s ẋ(u) du ds), which means that () provides freedom in deriving stability criteria

and makes it possible to find a tight bound.

Lemma . ([]) For any vectors x, x, constant matrices Qi, i = , . . . , , and Si, i = , ,
and real scalars α ≥ , β ≥  satisfying α + β = , the following inequality holds:

–

α

xT
 Qx –


β

xT
 Qx –

β

α
xT

 Qx –
α

β
xT

 Qx ≤ –

[
x

x

]T [
Q S
∗ Q

][
x

x

]

subject to

 ≤
[

Q + Q S
∗ Q + Q

]

.

Lemma . ([]) Let ζ ∈ R
n, � = �T ∈ R

n×n, and B ∈ R
m×n with rank(B) < n. Then, the

following two statements are equivalent:
(a) ζ T�ζ < , Bζ = , ζ �= ;
(b) (B⊥)T�B⊥ < , where B⊥ is a right orthogonal complement of B.

Definition . ([]) For given matrices , , , and  satisfying Assumption .,
system () is said to be extended dissipative if for any tf ≥  and all ω(t) ∈ �[,∞), under
the zero initial state, the following inequality holds:

∫ tf


J(t) dt ≥ sup

≤t≤tf

yT (t)y(t), ()

where J(t) = yT (t)y(t) + yT (t)ω(t) + ωT (t)ω(t).
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Assumption . For given real symmetric matrices , , , and  the following
conditions are satisfied:

()  ≤ ,  > , and  ≥ ;
() (‖‖ + ‖‖) · ‖‖ = .

Remark . The matrices , , , and  satisfy inequality (). This can lead to
the complexity of systems and increase the difficulty of solving the problem. The per-
formance index in () is an extended index, which gives a more general performance by
setting the weighting matrices i (i = , , , ). More specifically, () becomes the � – �∞
performance when  =  = ,  = γ I , and  = I ; () denotes the H∞ performance
when  = –I ,  =  = , and  = γ I ; () represents the passivity performance when
 =  = ,  = I , and  = γ I ; () reduces to the (Q,S ,R)-dissipativity performance
when  = Q,  = S ,  = R – αI , and  = .

3 Main results
In this section, new stability criteria for system () are derived by using the Lyapunov
method and LMI framework. For the sake of simplicity of matrix and vector represen-
tation, ei ∈ R

n×n are defined as block entry matrices, for example, eT
 = [   I     ].

The other notations are the following:

� = [–C   A B    –I],

�(t) =
[

xT (t – h(t))
∫ t–h(t)

t–h
xT (s)

h–h(t) ds
]T

, �(t) =
[

xT (t)
∫ t

t–h(t)
xT (s)
h(t) ds

]T
,

�(t) =
[

xT (t – h(t))
∫ t

t–h(t)
xT (s)
h(t) ds

]T
, �(t) =

[

xT (t – h)
∫ t–h(t)

t–h
xT (s)

h–h(t) ds
]T

,

ξT (t) =
[
xT (t), xT(

t – h(t)
)
, xT (t – h), f T(

x(t)
)
, f T(

x
(
t – h(t)

))
,

f T(
x(t – h)

)
,ηT

 (t),ηT
 (t), ẋT (t)

]
,

η(t) =
∫ t

t–h(t)

x(s)
h(t)

ds, η(t) =
∫ t–h(t)

t–h

x(s)
h – h(t)

ds,

λδ = diag
{
λδ

 , . . . ,λδ
n
}

= λm + δ(λM – λm),

λm = diag
{
λ–

 , . . . ,λ–
n
}

, λM = diag
{
λ+

 , . . . ,λ+
n
}

,

�[h(t)] = –h(t)eUeT
 –

(
h – h(t)

)
eUeT



+ [e e]
(
h – h(t)

)
sym

{
Y[I –I]

}
[e e]T

+ [e e]h(t) sym
{

Y[I –I]
}

[e e]T

+ [e e]h(t) sym
{

Y[–I I]
}

[e e]T

+ [e e]
(
h – h(t)

)
sym

{
Y[–I I]

}
[e e]T ,

�a = � + � + �,

�b = � + � + �∗
,

� = sym
(
ePeT


)

+ sym
(
(e – eλm)KeT


)

+ sym
(
(eλM – e)KeT


)

+ [e e](Q + Q)[e e]T – ( – μ)[e e]Q[e e]T



Wang et al. Advances in Difference Equations  (2016) 2016:79 Page 6 of 16

– [e e]Q[e e]T ,

� = e

(

hU +
h


(R + R)

)

eT
 + heUeT



– [e – e e – e]

[
U S

∗ U

]

[e – e e – e]T

– [e + e – e e + e – e]

[
U S

∗ U

]

[e + e – e e + e – e]T

+ sym
(
(eF + eF)�

)
,

� = –
[
e – e – (e – e)λm

]
H

[
e – e – (e – e)λδ

]T – 
[
e – e – (e – e)λm

]

× H
[
e – e – (e – e)λδ

]T – sym
(
e�

(
λmλδ

)
eT


)

+ sym
(
e�

(
λm + λδ

)
eT


)

– sym
(
e�eT


)

– sym
(
e�

(
λmλδ

)
eT


)

+ sym
(
e�

(
λm + λδ

)
eT


)

– sym
(
e�eT


)

– sym
(
e�

(
λmλδ

)
eT


)

+ sym
(
e�

(
λm + λδ

)
eT


)

– sym
(
e�eT


)
,

�∗
 = –

[
e – e – (e – e)λδ

]
H

[
e – e – (e – e)λM

]T – 
[
e – e – (e – e)λδ

]

× H
[
e – e – (e – e)λM

]T – sym
(
e�

(
λδλM

)
eT


)

+ sym
(
e�

(
λδ + λM

)
eT


)

– sym
(
e�eT


)

– sym
(
e�

(
λδλM

)
eT


)

+ sym
(
e�

(
λδ + λM

)
eT


)

– sym
(
e�eT


)

– sym
(
e�

(
λδλM

)
eT


)

+ sym
(
e�

(
λδ + λM

)
eT


)

– sym
(
e�eT


)
,

�a =
h


[e e]X[e e]T +

h


[e e]X[e e]T ,

�b =
h


[e e]X[e e]T +

h


[e e]X[e e]T .

3.1 Stability analysis
The following theorem is given for system () with ω(t) =  as the first result.

Theorem . For given scalars  < δ ≤ , h > , and μ and diagonal matrices λm =
diag{λ–

 , . . . ,λ–
n} and λM = diag{λ+

 , . . . ,λ+
n}, system () with ω(t) =  is asymptotically stable

if there exist positive definite matrices P, Qi, Ui, Ri (i = , ) and positive diagonal matrices
Ki = diag(ki, . . . , kin) (i = , ), Hi = diag(hi, . . . , hin) (i = , . . . , ), and �i = diag(πi, . . . ,πin)
(i = , . . . , ) for any matrices Yi (k = , . . . , ), Si (i = , ), Fi (i = , ), and Xi (i = , . . . , ) of
appropriate dimensions such that the following conditions hold:

(
�⊥)T (�[h(t)=] + �i + �j)

(
�⊥)

<  (∀i, j = a, b), ()
(
�⊥)T (�[h(t)=h] + �i + �j)

(
�⊥)

<  (∀i, j = a, b), ()
[

U + R S

∗ U + R

]

≥ ,

[
(U + R) S

∗ (U + R)

]

≥ . ()
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Proof Let us consider the Lyapunov-Krasovskii functional candidate

V (t, xt) =
∑

i=

Vi(t, xt), ()

where

V(t, xt) = xT (t)Px(t) + 
n∑

i=

∫ xi(t)



[
ki

(
fi(s) – λ–

i s
)

+ ki
(
λ+

i s – fi(s)
)]

ds,

V(t, xt) =
∫ t

t–h(t)
εT (s)Qε(s) ds +

∫ t

t–h
εT (s)Qε(s) ds,

V(t, xt) = h
∫ 

–h

∫ t

t+θ

ẋT (s)Uẋ(s) ds dθ +
∫ 

–h

∫ t

t+θ

xT (s)Ux(s) ds dθ ,

V(t, xt) =
∫ 

–h

∫ 

θ

∫ t

t+ϑ

ẋT (s)Rẋ(s) ds dϑ dθ ,

V(t, xt) =
∫ 

–h

∫ θ

–h

∫ t

t+ϑ

ẋT (s)Rẋ(s) ds dϑ dθ

and

ε(t) =
[

xT (t) f T (x(t))
]T

.

Then, calculating the time derivative of V (t, xt) along the trajectory of system () yields

V̇(t, xt) = xT (t)Pẋ(t) + 
n∑

i=

[
ki

(
fi
(
xi(t)

)
– λ–

i xi(t)
)

+ ki
(
λ+

i xi(t) – fi
(
xi(t)

))]
ẋi(t)

= xT (t)Pẋ(t) + 
[
f
(
x(t)

)
– λmx(t)

]T Kẋ(t) + 
[
λMx(t) – f

(
x(t)

)]T Kẋ(t)

= ξT (t)
(
sym

(
ePeT

 + (e – eλm)KeT
 + (eλM – e)KeT


))

ξ (t), ()

V̇(t, xt) ≤ εT (t)(Q + Q)ε(t) – ( – μ)εT(
t – h(t)

)
Qε

(
t – h(t)

)
– εT (t – h)Qε(t – h)

= ξT (t)
(
[e e](Q + Q)[e e]T – ( – μ)[e e]Q[e e]T

– [e e]Q[e e]T)
ξ (t), ()

V̇(t, xt) = hẋT (t)Uẋ(t) – h
∫ t

t–h
ẋT (s)Uẋ(s) ds + hxT (t)Ux(t)

–
∫ t

t–h
xT (s)Ux(s) ds. ()

By using Lemma . we can obtain

–h
∫ t

t–h
ẋT (s)Uẋ(s) ds

= –h
∫ t

t–h(t)
ẋT (s)Uẋ(s) ds – h

∫ t–h(t)

t–h
ẋT (s)Uẋ(s) ds

≤ –
h

h(t)
(
x(t) – x

(
t – h(t)

))T U
(
x(t) – x

(
t – h(t)

))
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–
h

h – h(t)
(
x
(
t – h(t)

)
– x(t – h)

)T

× U
(
x
(
t – h(t)

)
– x(t – h)

)
–

h
h(t)

(
x(t) + x

(
t – h(t)

)
– η(t)

)T

× U
(
x(t) + x

(
t – h(t)

)
– η(t)

)

–
h

h – h(t)
(
x
(
t – h(t)

)
+ x(t – h) – η(t)

)T

× U
(
x
(
t – h(t)

)
+ x(t – h) – η(t)

)
.

Using Jensen’ inequality to estimate the U-dependent integral term in () yields

–
∫ t

t–h
xT (s)Ux(s) ds = –

∫ t

t–h(t)
xT (s)Ux(s) ds –

∫ t–h(t)

t–h
xT (s)Ux(s) ds

≤ –


h(t)

(∫ t

t–h(t)
x(s) ds

)T

U

(∫ t

t–h(t)
x(s) ds

)

–


h – h(t)

(∫ t–h(t)

t–h
x(s) ds

)T

U

(∫ t–h(t)

t–h
x(s) ds

)

= –h(t)ηT
 (t)Uη(t) –

(
h – h(t)

)
ηT

 (t)Uη(t),

V̇(t, xt) =
h


ẋT (t)Rẋ(t) –

∫ 

–h

∫ t

t+θ

ẋT (s)Rẋ(s) ds dθ

=
h


ẋT (t)Rẋ(t) –

(
h – h(t)

)
∫ t

t–h(t)
ẋT (s)Rẋ(s) ds dθ

–
∫ –h(t)

–h

∫ t–h(t)

t+θ

ẋT (s)Rẋ(s) ds dθ –
∫ 

–h(t)

∫ t

t+θ

ẋT (s)Rẋ(s) ds dθ

≤ h


ẋT (t)Rẋ(t) –

(
h – h(t)

h(t)

)
[(

x(t) – x
(
t – h(t)

))T R
(
x(t) – x

(
t – h(t)

))

+ 
(
x(t) + x

(
t – h(t)

)
– η(t)

)T R
(
x(t) + x

(
t – h(t)

)
– η(t)

)]

–
∫ –h(t)

–h

∫ t–h(t)

t+θ

ẋT (s)Rẋ(s) ds dθ –
∫ 

–h(t)

∫ t

t+θ

ẋT (s)Rẋ(s) ds dθ , ()

V̇(t, xt) =
h


ẋT (t)Rẋ(t) –

∫ 

–h

∫ t+θ

t–h
ẋT (s)Rẋ(s) ds dθ

=
h


ẋT (t)Rẋ(t) – h(t)

∫ t–h(t)

t–h
ẋT (s)Rẋ(s) ds dθ

–
∫ 

–h(t)

∫ t+θ

t–h(t)
ẋT (s)Rẋ(s) ds dθ –

∫ –h(t)

–h

∫ t+θ

t–h
ẋT (s)Rẋ(s) ds dθ

≤ h


ẋT (t)Rẋ(t) –

(
h(t)

h – h(t)

)
[(

x
(
t – h(t)

)
– x(t – h)

)T

× R
(
x
(
t – h(t)

)
– x(t – h)

)
+ 

(
x
(
t – h(t)

)
+ x(t – h) – η(t)

)T

× R
(
x
(
t – h(t)

)
+ x(t – h) – η(t)

)]

–
∫ 

–h(t)

∫ t+θ

t–h(t)
ẋT (s)Rẋ(s) ds dθ –

∫ –h(t)

–h

∫ t+θ

t–h
ẋT (s)Rẋ(s) ds dθ . ()
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On one hand, from Lemma . it is clear that if there exist matrices S and S satisfying
(), then the estimation of the U-dependent integral term in (), the R-dependent inte-
gral term in (), and the R-dependent integral term in () can be obtained as follows:

–ξT (t)
{


α

(e – e)U(e – e)T +

β

(e – e)U(e – e)T

+
β

α
(e – e)R(e – e)T +

α

β
(e – e)R(e – e)T

}

ξ (t)

≤ –ξT (t)

[
eT

 – eT


eT
 – eT



]T [
U S

∗ U

][
eT

 – eT


eT
 – eT



]

ξ (t), ()

–ξT (t)
{


α

(e + e – e)U(e + e – e)T +

β

(e + e – e)U(e + e – e)T

+
β

α
(e + e – e)R(e + e – e)T +

α

β
(e + e – e)R(e + e – e)T

}

ξ (t)

≤ –ξT (t)

[
eT

 + eT
 – eT



eT
 + eT

 – eT


]T [
U S

∗ U

][
eT

 + eT
 – eT



eT
 + eT

 – eT


]

ξ (t), ()

where α = h(t)
h and β = h–h(t)

h .
On the other hand, according to Lemma ., we obtain

–
(∫ –h(t)

–h

∫ t–h(t)

t+θ

ẋT (s)Rẋ(s) ds dθ +
∫ 

–h(t)

∫ t

t+θ

ẋT (s)Rẋ(s) ds dθ

+
∫ 

–h(t)

∫ t+θ

t–h(t)
ẋT (s)Rẋ(s) ds dθ +

∫ –h(t)

–h

∫ t+θ

t–h
ẋT (s)Rẋ(s) ds dθ

)

≤ ξT (t)[e e]
(
h – h(t)

)
sym

{
Y[I –I]

}
[e e]Tξ (t)T (t)

+ ξ [e e]h(t) sym
{

Y[I –I]
}

[e e]Tξ (t)

+ ξT (t)[e e]h(t) sym
{

Y[–I I]
}

[e e]Tξ (t)

+ ξT (t)[e e]
(
h – h(t)

)
sym

{
Y[–I I]

}
[e e]Tξ (t)

+
(h – h(t))


� T

 (t)X�(t) +
h(t)


� T

 (t)X�(t)

+
h(t)


� T

 (t)X�(t) +
(h – h(t))


� T

 (t)X�(t). ()

Now, letting M = � T
 (t)X�(t) + � T

 (t)X�(t) and Z = � T
 (t)X�(t) + � T

 (t)X�(t),
define the vector-valued function

g
(
h(t)

)
=

(h – h(t))


� T

 (t)X�(t) +
h(t)


� T

 (t)X�(t)

+
h(t)


� T

 (t)X�(t) +
(h – h(t))


� T

 (t)X�(t)

=
(h – h(t))


M +

h(t)


Z. ()
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When h(t) = h
M+Z , we have ġ(h(t)) = , and in this case, we can obtain a minimum value.

So, it is clear that we can get a maximum value at the endpoints.
Case I: when M ≥ Z,

g
(
h(t)

)
=

(h – h(t))


M +

h(t)


Z ≤ g() =

h


M. ()

Case II: when M < Z,

g
(
h(t)

)
=

(h – h(t))


M +

h(t)


Z ≤ g(h) =

h


Z. ()

In addition, for any matrices F and F with appropriate dimension, the following zero
equation holds:


[
xT (t)F + ẋT (t)F

][
–ẋ(t) – Cx(t) + Af

(
x(t)

)
+ Bf

(
x
(
t – h(t)

))]
= . ()

Furthermore, by introducing a parameter δ for the bound of the activation function we
will consider two subintervals, λ–

i ≤ (fi(a) – fi(b))/(a – b) ≤ λδ
i and λδ

i ≤ (fi(a) – fi(b))/(a –
b) ≤ λ+

i , where λδ
i = λ–

i + δ(λ+
i – λ–

i ).
Case I: λ–

i ≤ fi(a)–fi(b)
a–b ≤ λδ

i .
For Case I, the following conditions hold:

λ–
i ≤ fi(xi(t)) – fi(xi(t – h(t)))

xi(t) – xi(t – h(t))
≤ λδ

i , i = , , . . . , n

and

λ–
i ≤ fi(xi(t – h(t))) – fi(xi(t – h))

xi(t – h(t)) – xi(t – h)
≤ λδ

i , i = , , . . . , n.

Then, for any appropriate diagonal matrices Hi = diag{hi, . . . , hin} > , i = , , we have:

 ≤ –
∑n

i=
hi

[
fi
(
xi(t)

)
– fi

(
xi

(
t – h(t)

))
– λ–

i
(
xi(t) – xi

(
t – h(t)

))]

× [
fi
(
xi(t)

)
– fi

(
xi

(
t – h(t)

))
– λδ

i
(
xi(t) – xi

(
t – h(t)

))]

= –ξT (t)
[
e – e – (e – e)λm

]
H

[
e – e – (e – e)λδ

]T
ξ (t), ()

 ≤ –
∑n

i=
hi

[
fi
(
xi

(
t – h(t)

))
– fi

(
xi(t – h)

)
– λ–

i
(
xi

(
t – h(t)

)
– xi(t – h)

)]

× [
fi
(
xi

(
t – h(t)

))
– fi

(
xi(t – h)

)
– λδ

i
(
xi

(
t – h(t)

)
– xi(t – h)

)]

= –ξT (t)
[
e – e – (e – e)λm

]
H

[
e – e – (e – e)λδ

]T
ξ (t). ()

When b = , we have λ–
i ≤ fi(a)

a ≤ λδ
i and, for any scalars πi > , i = , , . . . , n,


n∑

i=

πi
(
fi
(
xi(t)

)
– λ–

i xi(t)
)(

fi
(
xi(t)

)
– λδ

i xi(t)
) ≤ ,
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which is equivalent to

εT (t)

[
�λmλδ – �

 (λm + λδ)
∗ �

]

ε(t)

= ξT (t)
(
sym

(
e�

(
λmλδ

)
eT


)

– sym
(
e�

(
λm + λδ

)
eT


)

+ sym
(
e�eT


))

ξ (t)

≤ , ()

where � = diag{π, . . . ,πn}.
Similarly, for any appropriately diagonal matrices �i = diag{πi, . . . ,πin} > , i = , , we

have:

εT(
t – h(t)

)
[
�λmλδ – �

 (λm + λδ)
∗ �

]

ε
(
t – h(t)

)

= ξT (t)
(
sym

(
e�

(
λmλδ

)
eT


)

– sym
(
e�

(
λm + λδ

)
eT


)

+ sym
(
e�eT


))

ξ (t)

≤ , ()

εT (t – h)

[
�λmλδ – �

 (λm + λδ)
∗ �

]

ε(t – h)

= ξT (t)
(
sym

(
e�

(
λmλδ

)
eT


)

– sym
(
e�

(
λm + λδ

)
eT


)

+ sym
(
e�eT


))

ξ (t)

≤ . ()

Combining the inequalities from () to () together gives the upper bound of V̇ (t, xt):

V̇ (t, xt) ≤ ξT (t)(�[h(t)] + �a + �j)ξ (t) (∀j = a, b). ()

Case II: λδ
i ≤ fi(a)–fi(b)

a–b ≤ λ+
i .

Case II can be discussed similarly as the procedure in Case I. Then we obtain:

 ≤ ξT (t)�∗
ξ (t), ()

where H, H, and �i (i = , . . . , ) are defined in Theorem ..
Combining the inequalities from () to (), together with (), gives the upper bound

of V̇ (t, xt):

V̇ (t, xt) ≤ ξT (t)(�[h(t)] + �b + �j)ξ (t) (∀j = a, b). ()

Using the fact that �[h(t)] is dependent on h(t) and applying Lemma . with �ξ (t) = ,
it follows that if LMIs (), () hold, then system () with ω(t) =  is asymptotically stable.
This ends the proof. �

3.2 Extended dissipative analysis
In this section, by assuming zero initial conditions we establish the extended dissipativity
condition for all nonzero ω(t) ∈ �[,∞].
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Theorem . For given scalars  < δ ≤ , h > , and μ, diagonal matrices λm = diag{λ–
 , . . . ,

λ–
n} and λM = diag{λ+

 , . . . ,λ+
n}, and matrices i (i = , . . . , ) satisfying Assumption ., sys-

tem () is asymptotically stable and extended dissipative if there exist positive definite ma-
trices P, Qi, Ui, Ri (i = , ) and positive diagonal matrices Ki = diag(ki, . . . , kin) (i = , ),
Hi = diag(hi, . . . , hin) (i = , . . . , ), and �i = diag(πi, . . . ,πin) (i = , . . . , ) for any matrices
Yi (k = , . . . , ), Si (i = , ), Fi (i = , ), and Xi (i = , . . . , ) of appropriate dimensions such
that LMIs () and the following conditions hold:

(
�̄⊥)T (�̄[h(t)=] + �̄i + �̄j)

(
�̄⊥)

<  (∀i, j = a, b), ()
(
�̄⊥)T (�̄[h(t)=h] + �̄i + �̄j)

(
�̄⊥)

<  (∀i, j = a, b), ()

P – DTD ≥ , ()

where

�̄ = [� I], �̄[h(t)] =

[
�[h(t)] 

∗ 

]

,

�̄i =

[
�̄ �̄

∗ –

]

, �̄j =

[
�j 
∗ 

]

,

�̄ = �i – eDTDeT
 , �̄ =

[
–T

 D        
]T .

Proof From () and () we have V̇ (t, xt) ≤ ξT (t)(�[h(t)] + �i + �j)ξ (t) (∀i, j = a, b), and it
is clear that

ξ̄T (t)(�̄[h(t)] + �̄i + �̄j)ξ̄ (t) = ξT (t)(�[h(t)] + �i + �j)ξ (t) – J(t),

where ξ̄T (t) = [ξT (t) ωT (t)]T and J(t) are defined in Definition .. By Lemma ., () and
() are equivalent to ξ̄T (t)(�̄[h(t)] + �̄i + �̄j)ξ̄ (t) <  (∀i, j = a, b). Therefore, we can obtain

V̇ (t) ≤ ξ̄T (t)(�̄[h(t)] + �̄i + �̄j)ξ̄ (t) + J(t) ≤ J(t).

By integrating both sides of this inequality from  to t ≥  we can obtain

∫ t


J(s) ds ≥ V (t) – V () ≥ xT (t)Px(t). ()

Considering the two cases of  =  and  > , due to the extended dissipativity condi-
tion, we can represent the strictly (Q,S ,R)-dissipativity condition, the H∞ performance,
and the passivity when  =  or the � – �∞ performance criterion when  > .

On one hand, we consider  =  and from () we can get that

∫ tf


J(s) ds ≥ . ()

This implies Assumption . with  = .
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On the other hand, when  > , as mentioned in Assumption ., we have the matrices
 = ,  = , and  >  in this case. Then, for any  ≤ t ≤ tf , () leads to

∫ tf
 J(s) ds ≥

∫ t
 J(s) ds ≥ xT (t)Px(t). Therefore, according to (), we have

yT (t)y(t) = xT (t)DT�Dx(t) ≤ xT (t)Px(t) ≤
∫ tf


J(s) ds. ()

From () and () we get that system () is extended dissipative. This completes the
proof. �

4 Illustrative examples
In this section, we introduce two examples to illustrate the merits of the derived results.

Example  Consider the neural networks () with the following parameters:

C =

[
 
 

]

, A =

[
 

– –

]

, B =

[
. 

 

]

,

λm = diag{, }, λM = diag{., .},
f(s) = .

(|s + | – |s – |), f(s) = .
(|s + | – |s – |).

In this example, for stability analysis, D is chosen to be zero. Our purpose is to esti-
mate the allowable upper bounds delay h under different μ such that system () is globally
asymptotically stable. When δ = ., according to Table , this example shows that the
stability criterion in this paper gives much less conservative results than those in [–,
]. In addition, for the case of μ = ., h = ., and the initial state (–., .)T , the
stability results can be further verified by Figure .

Table 1 Allowable upper bounds of h for different μ in Example 1

μ μ = 0.8 μ = 0.9

[9] 2.8854 1.9631
[10] 3.0604 1.9956
[11] 3.0640 2.0797
[12] 7.5173 5.3993
[41] 7.9008 5.6440
Theorem 3.1 8.2046 5.8347

Figure 1 The dynamical behavior of system (1) in Example 1.
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Example  In this example, the generality of the extended dissipativity is demonstrated,
which unifies the popular and important performance, such as H∞ performance, passivity,
dissipativity, and � –�∞ performance. Consider the neural networks () with the following
parameters:

C =

[
. 
 .

]

, A =

[
. 

 .

]

,

B =

[
–. .
–. –.

]

, D =

[
 
 

]

and

λm = diag{, }, λM = diag{., .}.

Case I: H∞ performance. Let  = –I ,  = ,  = γ I , and  = . The extended dis-
sipativity reduces to standard H∞ performance. By Theorem ., the allowable H∞ per-
formance γ can be obtained for the case μ = . and different δ and h. The relationship
among γ , δ, and h is demonstrated in Table . For μ = . and fixed h, we can see from
Table  that the minimum value of γ becomes smaller when the value of δ increases.

Case II: � – �∞ performance. When we let  = ,  = ,  = γ I , and  = I , the
extended dissipativity becomes the � – �∞ performance. For μ = ., the different values
of γ are listed in Table  by solving the LMIs in Theorem . with various values of δ and
h. It is easy to see that the best value of δ is ..

Case III: passivity performance. When we let  = ,  = I ,  = γ I and  = , the
passivity performance is obtained. For given μ = . and δ = ., the maximum values of
h with various γ are obtained in Table  by solving the LMIs in Theorem ..

Case IV: dissipativity. When we let  = –.I ,  = I ,  = I , and  = , the dissi-
pativity performance is obtained. For given μ = . and δ = ., the maximum values of h
with various γ are obtained in Table  by solving the LMIs in Theorem ..

Finally, through Example , we conclude that our results have improvements at the
amount of .% and .% for μ = . and ., respectively, compared with the recent
work [].

Table 2 Different minimums γ for various h and δ in Example 2

δ 0.1 0.3 0.5 0.7 0.9

h = 6 1.9823 1.9813 1.9549 1.9505 1.9443
h = 7 2.1247 2.0968 2.0906 2.0810 2.0676

Table 3 Different minimums γ for various h and δ in Example 2

δ 0.1 0.3 0.5 0.7 0.9

h = 5 0.8731 0.8547 0.8203 0.7950 0.8173
h = 6 0.9324 0.9113 0.8922 0.8613 0.9130

Table 4 Allowable maximums h for various γ and fixed δ, μ in Example 2

γ 1.2 1.4 1.6 1.8 2.0

h 4.8634 5.0230 5.2863 5.4601 5.8147
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Table 5 Allowable maximums h for various γ and fixed δ, μ in Example 2

γ 1.2 1.4 1.6 1.8 2.0

h 6.7421 6.9237 7.2102 7.5443 7.8126

5 Conclusions
In this paper, we investigated the problem of extended dissipativity analysis for a class
of neural network with time-varying delay. The extended dissipativity generalizes a few
previous known results, which contain the H∞, passivity, dissipativity, and � – �∞ perfor-
mance in a unified framework. By introducing a suitable augmented Lyapunov-Krasovskii
functional and considering the sufficient information of neuron activation functions to-
gether with a new bound inequality, some sufficient conditions are given in terms of linear
matrix inequalities (LMIs) to guarantee the stability and extended dissipativity of delayed
neural networks. At present, we only give the theoretical results in our paper, and we will
try to extend these theoretical results to real-life applications in the future.
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