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Abstract
In this paper, the problem of finite-time H∞ memory feedback control for singular T-S
fuzzy systems is addressed. Conditions are obtained to guarantee that the
closed-loop system is finite-time bounded with a prescribed H∞ performance γ . The
considered memory controller can be obtained by solving the LMIs. In addition, the
estimation of the largest domain of attraction of the closed-loop system can be
solved by solving an optimization problem. Finally, examples illustrate the feasibility
of the proposed method.
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1 Introduction
In recent years, there has been growing attention to singular systems, because of their
extensive applications in many practical systems, for example, electrical circuits, power
systems, networks, and other systems [, ]. Time delays are frequently encountered in
various engineering systems such as aircraft, chemical processes, economics, networks,
communication, and biological systems. It has been shown that the existence of time de-
lays is often one of the main causes of instability and poor performance in a system. There-
fore, the singular time-delay system has received considerable attention [–].

T-S fuzzy models have been widely studied because they can represent a wide class of
nonlinear systems, especially the singular T-S fuzzy model. Many valuable stability analy-
sis and control synthesis results for singular T-S fuzzy systems can be available, for exam-
ple, memory dissipative control, memory H∞ control, and H∞ filters were studied in [–],
respectively. In [], the problem of delay-dependent dissipative control was discussed for
a class of nonlinear system via a descriptor T-S fuzzy model.

In practice, actuator saturation is very ubiquitous, which is a main cause of poor perfor-
mance of the closed-loop systems and sometimes it may lead to the system being unstable
[–]. Robust H∞ static output feedback stabilization and robust stabilization for T-S
fuzzy system subject to actuator saturation were discussed in [] and [], respectively.
Yang and Tong [] put forward the problem of output feedback robust stabilization of
switched fuzzy systems with time delay and actuator saturation. For a singular T-S fuzzy
system subject to actuator saturation, the reader may refer to [, ]. Control of time-delay
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fuzzy descriptor systems with actuator saturation was demonstrated in []. Furthermore,
an external disturbance is often the source of instability and poor performance of systems.
The H∞ control technique is used to minimize the effects of the external disturbances, H∞
control for fuzzy systems is addressed in [, , , , ].

In addition, a memory state feedback controller with input constraints yields less con-
servative sufficient conditions in terms of LMIs and allows for a wider feasible region of
numerical optimization []. In [], a new stabilization condition for T-S fuzzy systems
with time delay was obtained by the memory state feedback controller. In [], mem-
ory state feedback control for singular systems with multiple internal incommensurate
constant point delays was demonstrated. In [], analysis and synthesis of memory-based
fuzzy sliding mode controllers were discussed.

In some practical engineering applications, the finite-time control is of practical signifi-
cance. If the system state does not exceed a prescribed region during a fixed time interval,
it is said to have finite-time stability (FTB). It is well recognized that finite-time stability
is different from Lyapunov asymptotical stability [–]. For a singular system, there are
few articles considering finite-time control. See [], Observer-based finite-time H∞ con-
trol for discrete singular stochastic systems was discussed. Ma et al. discussed the problem
of finite-time H∞ control for a class of discrete-time switched singular time-delay systems
subject to actuator saturation in []. For switched singular linear system, Wang et al. used
an average dwell time approach to study the problem of finite-time stabilization in [].
However, so far, for singular T-S fuzzy time-delay system subject to actuator saturation,
one has an open area for the study of finite-time control.

Motivated by the above discussion, in this paper, the problem of finite-time H∞ memory
feedback control for a singular T-S fuzzy system is demonstrated. The main contributions
of this paper can be listed as follows: () conditions are obtained to guarantee that the
closed-loop system is not only regular, impulse-free, finite-time bounded but also satis-
fying the presided H∞ performance γ ; () the considered memory controller can be ob-
tained by solving the LMIs; () the estimation of the largest domain of attraction of the
closed-loop system can be solved by an optimization problem; () examples illustrate the
feasibility of the proposed method; () the domain of attraction is simulated in Figure .

Notation Throughout this paper, Rn denotes the n-dimensional Euclidean space, and
Rn×m is the set of real matrices. For A ∈ Rn×m, A–and ATdenote the matrix inverse and
matrix transpose, respectively. λ(A) means the eigenvalue of A. For a real symmetric ma-
trix A ∈ Rn×n, A >  (A ≥ ) means that A is positive definite (positive semi-definite). The
symbol ∗ means the symmetric term in a symmetric matrix.

2 Preliminaries
Consider the following singular TS fuzzy model:

Plant rule i: IF θ(t) is Mi and θ(t) is Mi · · · θp(t) is Mip, THEN

Eẋ(t) = Āix(t) + Ādix
(
t – d(t)

)
+ B̄i sat

(
u(t)

)
+ B̄ωiω(t),

z(t) = C̄ix(t) + C̄dix
(
t – d(t)

)
+ D̄i sat

(
u(t)

)
+ D̄ωiω(t),

x(t) = φ(t), t ∈ [–d, ],

()
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where θ (t) = [θ(t) θ(t) · · · θp(t)]T is premise variable, i ∈ � := {, , . . . , r}, r is the number
of IF-THEN rules, Mik (i = , , . . . , r, k = , , . . . , p) is the fuzzy set. x(t) ∈ Rn is the state
vector, ω(t) ∈ Rq is the disturbance input which belongs to L[,∞). z(t) ∈ Rp is the con-
trol output, φ(t) is the initial condition of the system. d(t) is a time-varying continuous
function that satisfies  ≤ d(t) ≤ d and ḋ(t) ≤ h, h < . E is a constant matrix satisfying
rank(E) ≤ n. u(t) ∈ Rl is the control input, and sat : Rl → Rl is the standard saturation
function defined as follows:

sat
(
u(t)

)
=

[
sat

(
u(t)

)
, . . . , sat

(
ul(t)

)]T,

without loss of generality, sat(ui(t)) = sign(ui(t)) min{, |ui(t)|}. Here the notation of sat(·)
is abused to denote the scalar values and the vector valued saturation functions. For a
positive scalar b and time scalar T ,

∫ T
 ωT(t)ω(t) ≤ b. Āi = Ai + �Ai, Ādi = Adi + �Adi, B̄i =

Bi +�Bi, B̄ωi = Bωi +�Bωi, C̄i = Ci +�Ci, C̄di = Cdi +�Cdi, D̄i = Di +�Di, D̄ωi = Dωi +�Dωi.
Ai, Adi, Bi, Bωi, Ci, Cdi, Di, Dωi are known real constant matrices with appropriate dimen-
sions; �Ai, �Adi, �Bi, �Bωi, �Ci, �Cdi, �Di, �Dωi are unknown matrices representing
norm-bounded parametric uncertainties and are assumed to be of the form

[
�Ai �Adi �Bi �Bωi

�Ci �Cdi �Di �Dωi

]

=

[
Hi

Hi

]

�[Ei Ei Ei Ei], ()

where Hi, Hi, Ei, Ei, Ei, Ei are known real constant matrices with appropriate dimen-
sions and � is for unknown real and possibly time-varying matrices satisfying �T� ≤ I .

Using a singleton fuzzifier, product inference, and a center-average defuzzifier, the global
dynamics of the TS system () is described by the convex sum form:

Eẋ(t) =
r∑

i=

hi
(
θ (t)

)[
Āix(t) + Ādix

(
t – d(t)

)
+ B̄i sat

(
u(t)

)
+ B̄ωiω(t)

]
,

z(t) =
r∑

i=

hi
(
θ (t)

)[
C̄ix(t) + C̄dix

(
t – d(t)

)
+ D̄i sat

(
u(t)

)
+ D̄ωiω(t)

]
,

x(t) = φ(t), t ∈ [–d, ],

()

where hi(θ (t)) = βi(θ (t))/
∑r

i= βi(θ (t)), βi(θ (t)) =
∏p

j= Mij(θj(t)), and Mij(θj(t)) is the grade
of membership of θj(t) in Mij. It is easy to see that βi(θ (t)) ≥  and

∑r
i= βi(θ (t)) ≥ . Hence,

we have hi(θ (t)) ≥  and
∑r

i= hi(θ (t)) = . In the sequel, for brevity we use hi to denote
hi(θ (t)).

Consider the memory state feedback fuzzy controller:

u(t) =
r∑

i=

hi
(
θ (t)

)[
Kix(t) + Kdix

(
t – d(t)

)]
, ()

where the memoryless state feedback gain Ki and the memory state feedback gain Kdi are
matrices to be determined with appropriate dimensions.

Define the following subsets of Rn.
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Let P ∈ Rn×n be a symmetric matrix, ρ be a scalar. Denote

ε
(
ETPE,ρ

)
=

{
x(t) ∈ Rn : xT(t)ETPEx(t) ≤ ρ

}
.

For matrices Hi, Hdi, hik , hdik are the kth row of the matrix Hi and Hdi, respectively, we
define

L(Hi, Hdi) =
{

x(t) ∈ Rn :
∣∣hikx(t) + hdikx

(
t – τ (t)

)∣∣ ≤ , k ∈ [, l]
}

.

Thus ε(ETPE,ρ) is an ellipsoid and L(Hi, Hdi) is a polyhedral consisting of states for which
the saturation does not occur.

Let D be the set of l × l diagonal matrices whose diagonal elements are either  or .
Suppose each element of D is labeled as Es, s = , , . . . ,η = l , and denote E–

s = I – Es.
Clearly, if Es ∈ D, then Es

– ∈ D.

Lemma  ([]) Let F , H ∈ Rp×n. Then for any x(t) ∈ L(H),

sat
(
Fx(t)

) ∈ co
{

EsFx(t) + Es
–Hx(t), s = , , . . . ,η

}
;

or, equivalently,

sat
(
Fx(t)

)
=

η∑

s=

αs
(
EsF + E–

s H
)
x(t),

where co stands for the convex hull, αs for s = , , . . . ,η are some scalars which satisfy  ≤
αs ≤  and

∑η
s= αs = .

Lemma  For any constant matrices N, N ∈ Rn×n, L ∈ Rn×p, positive-definite symmetric
matrix Z ∈ Rn×n, and time-varying delay d(t), we have

–
∫ t

t–d(t)
ẋT(s)ETZEẋ(s) ds ≤ ξT(t)

{
� + d(t)Y TZ–Y

}
ξ (t), ()

where

Y = [N N L], ξT(t) =
[
xT(t) xT(t – d(t)) ωT(t)

]
,

� =

⎡

⎢
⎣

NT
 E + ETN –NT

 E – ETN ETL
∗ –NT

 E – ETN –ETL
∗ ∗ 

⎤

⎥
⎦ .

Proof Let C =
[ Z/ Z/Y

 

]
, then CTC =

[ Z Y
Y T Y TZ–Y

] ≥ . It follows that

∫ t

t–d(t)

[
Eẋ(s)
ξ (t)

]T [
Z Y

Y T Y TZ–Y

][
Eẋ(s)
ξ (t)

]

ds ≥ . ()

Notice that 
∫ t

t–d(t) ξ
T(t)Y ẋ(s) ds = ξT(t)Y T[E –E ]ξ (t), rearranging () yield (). �
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Remark  Lemma  will play a key role in decreasing the conservatism, which can be seen
from Example .

Lemma  ([]) Let ϒ , �, and � be real matrices of appropriate dimensions with � sat-
isfying ��T ≤ I . Then the following inequality holds for any constant ε > :

ϒ�� + �T�TϒT ≤ εϒϒT + ε–�T�.

Lemma  ([]) For given matrices E, X > , Y , if (ETX + Y�T) is nonsingular, then there
exist matrices S > , I, such that ES + IKT = (ETX + Y�T)–, where X, S ∈ Rn×n, Y , I ∈
Rn×(n–r), and �, K ∈ Rn×(n–r) are any matrices with full column rank satisfying ET� = ,
EK = .

From Lemma , for any x(t) ∈ L(Hj, Hdj), denoting –λsj = EsKj + E–
s Hj, and –λdsj = EsKdj +

E–
s Hdj, then

sat
(
Kjx(t) + Kdjx

(
t – d(t)

))
=

η∑

s=

αs
(

–λsjx(t) + –λdsjx
(
t – d(t)

))
, ()

then the closed-loop system can be obtained

Eẋ(t) = Ãx(t) + Ãdx
(
t – d(t)

)
+ B̃ωω(t),

z(t) = C̃x(t) + C̃dx
(
t – d(t)

)
+ D̃ωω(t),

x(t) = φ(t), t ∈ [–d, ],

()

where

Ã =
r∑

i=

r∑

j=

η∑

s=

hihjhs(Āi + B̄i –λsj), Ãd =
r∑

i=

r∑

j=

η∑

s=

hihjhs(Ādi + B̄i –λdsj),

C̃ =
r∑

i=

r∑

j=

η∑

s=

hihjhs(C̄i + D̄i –λsj), C̃d =
r∑

i=

r∑

j=

η∑

s=

hihjhs(C̄di + D̄i –λdsj),

B̃ω =
r∑

i=

hiB̄ωi, D̃ω =
r∑

i=

hiD̄ωi.

Definition  ([]) For some positive constants, c, b, T and symmetric positive matrix
Rc, the closed-loop system () is finite-time bounded FTB subject to (c c b T Rc), if there
exists scalar c > c, such that

sup
–d≤θ≤

{
xT(θ )ETRcEx(θ ), ẋT(θ )ETRcEẋ(θ )

} ≤ c

⇒ xT(t)ETRcEx(t) ≤ c, ∀t ∈ [–d, ], t ∈ [, T].

Definition  ([]) For some positive constants, c, b, T and symmetric positive matrix
Rc, the closed-loop system () is finite-time bounded (FTH∞B) subject to (c c b T Rc), if
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() is FTB with respect to (c c b T Rc) and under the zero-initial condition such that

∫ T


zT(t)z(t) dt < γ 

∫ T


ωT(t)ω(t) dt. ()

Definition  ([])
(i) When ω(t) = , the continuous-time SMJS () is said to be regular in time interval

[, T], if the characteristic polynomial det(sE – Ã) is not identically zero for all
t ∈ [, T].

(ii) When ω(t) = , the continuous-time SMJS () is said to be impulse-free in time
interval [, T], if deg(det(sE – Ã)) = rank(E) for all t ∈ [, T].

3 Main results
Theorem  For positive constants c, b, T , δ and positive definite matrix Rc, the closed-
loop system () is FTB subject to (c c b T Rc) at the origin with ε(ETPE,ρ) contained in
the domain of attraction, if there exist a constant c > , positive definite matrices P, Q,
Q and any matrices N, N, L with appropriate dimensions, matrix S for i, j ∈ �, and
ε(ETPE,ρ) ⊂ L(Hi, Hdi) such that

⎡

⎢
⎣

� + � �T
 dY T

∗ –(dQ)– 
∗ ∗ –Q

⎤

⎥
⎦ < , ()

(
λ + λd + λ

d



)
c + λb < λce–δT , ()

where �, Y are defined in Lemma , and

� =

⎡

⎢
⎣

� PÃd PB̃ω

∗ –( – h)Q 
∗ ∗ –Q

⎤

⎥
⎦ ,

� = P̂TÃ + ÃTP̂ – δETP̂ + Q, � = [Ã Ãd B̃ω],

λ = λmin(P̄), λ = λmax(P̄), λ = λmax(Q̄), λ = λmax(Q̄),

λ = λmax(Q), P̂ =
(
ETP + SRT)T, ETP̂ = ETR/

c P̄R/
c E,

Q = R/
c Q̄R/

c , Q = R/
c Q̄R/

c ,

R ∈ Rn×(n–r) is any matrix with full column rank satisfying ETR = .

Proof Firstly, we proof the system () with w(t) =  is regular, impulse-free.
Since rank E = r < n, there must exist two invertible matrices G and H ∈ Rn×n, then R

can be rewritten as R = GT[ 
�

]
, where � ∈ R(n–r)×(n–r). Denote
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GEH =

[
Ir 
 

]

, GÃH =

[
A A

A A

]

, G–TPG– =

[
P P

P P

]

,

HTS =

[
S

S

]

, HiH = [Hi Hi], HdiH = [Hdi Hdi],

x(t) = H

[
x(t)
x(t)

]

.

()

Pre- and post-multiplying � <  by HT and H , respectively, we can get AT
 �ST

 +
S�

TA < , which implies A is nonsingular and thus the pair (E, Ã) is regular and
impulse-free. From Definition , system () is regular and impulse-free.

Choose the Lyapunov function as follows:

V
(
x(t)

)
= xT(t)ETPEx(t) +

∫ t

t–d(t)
eδ(t–s)xT(s)Qx(s) ds

+
∫ 

–d

∫ t

t+θ

eδ(t–s)ẋT(s)ETQEẋ(s) ds dθ . ()

Along the trajectories of system (), the corresponding time derivation of () is given by

V̇
(
x(t)

)
= xT(t)P̂

T
Eẋ(t) + xT(t)Qx(t)

–
(
 – ḋ(t)

)
eδd(t)xT(

t – d(t)
)
Qx

(
t – d(t)

)

+ dẋT(t)ETQEẋ(t) – d
∫ t

t–d
ẋT(s)ETQEẋ(s) ds

≤ δV
(
x(t)

)
+ xT(t)P̂

T
Eẋ(t) + xT(t)Qx(t)

– ( – h)xT(
t – d(t)

)
Qx

(
t – d(t)

)

+ dẋT(t)ETQEẋ(t) – d
∫ t

t–d
ẋT(s)ETQEẋ(s) ds – δxT(t)P̂

T
Ex(t).

Then, via Lemma ,

–d
∫ t

t–d
ẋT(s)ETQEẋ(s) ds ≤ ξT(t)

{
� + dY TQ–

 Y
}
ξ (t),

we have

V̇
(
x(t)

)
– δV

(
x(t)

)
– ωT(t)Qω(t) = ξT(t)

(
� + d�T

 Q� + � + dY TQ–
 Y

)
ξ (t).

Considering () and the Schur complement, it yields

V̇
(
x(t)

)
– δV

(
x(t)

)
– ωT(t)Qω(t) < , ()

pre- and post-multiplying () by e–δt , and integrating it from  to t (∀t ∈ [, T]), it follows
that

V
(
x(t)

)
< eδt

[
V

(
x()

)
+

∫ t


e–δsωT(s)Qω(s) ds

]
.
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From these,

V
(
x()

)
+

∫ t


e–δsωT(s)Qω(s) ds

≤
(

λ + λd + λ
d



)
sup

–d≤θ≤

{
xT(θ )ETRcEx(θ ), ẋT(θ )ETRcEẋ(θ )

}
+ λb

≤
(

λ + λd + λ
d



)
c + λb,

then

V (xt) ≤ eδT
[(

λ + λd + λ
d



)
c + λb

]
,

considering V (xt) ≥ λxT(t)ETRcEx(t), from condition (), we have

xT(t)ETRcEx(t) < c.

From Definition , the closed-loop system () is FTB. This completes the proof. �

Remark  In Theorem , sufficient conditions are obtained to guarantee that the closed-
loop is finite-time bounded. Then Theorem  will give finite-time dissipative conditions.

Theorem  For positive constants c, b, T , δ, positive definite matrix Rc, closed-loop system
() is FTH∞B with respect to (c c b TRc) at the origin with ε(ETPE,ρ) contained in the
domain of attraction, if there exist constant c > , and positive definite matrices P, Q,
Q and any matrices N, N, L with appropriate dimensions, matrix S, for i, j ∈ � and
ε(ETPE,ρ) ⊂ L(Hi, Hdi) such that the following conditions hold:

� =

⎡

⎢
⎢⎢
⎣

� + � �T
 dY T �T



∗ –(dQ)–  
∗ ∗ –Q 
∗ ∗ ∗ –I

⎤

⎥
⎥⎥
⎦

< , ()

(
λ + λd + λ

d



)
c + γ e–δT b < λce–δT , ()

where �, Y , �, and � are defined in Theorem , and

� =

⎡

⎢
⎣

� PÃd PB̃ω

∗ –( – h)Q 
∗ ∗ –γ e–δT

⎤

⎥
⎦ , � = [C̃ C̃d D̃ω].

Proof It is clear that �T
 � > , then via the Schur complement, we can get from () that

⎡

⎢
⎣

� + � d�T
 dY T

∗ –Q–
 

∗ ∗ –Q

⎤

⎥
⎦ < . ()
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Let Q = –γ e–δT I , by Theorem , combing () and (), the closed-loop system () is FTB
with respect to (c c b T Rc).

On the other hand, select the same Lyapunov function candidate as Theorem  and
define the following function:

J = V̇ (xt) – δV (xt) + zT(t)z(t) – γ e–δTωT(t)ω(t),

using the Schur complement, it can be seen from () that

J = ξT(t)
[
� + d�T

 Q� + � + dY TQ–
 Y + �T

 �
]
ξ (t) < ,

similar to the handling method in Theorem  and considering the zero initial condition, it
is clear that

 < V (xt)e–δT <
∫ T


e–δt[γ e–δTωT(t)ω(t) – zT(t)z(t)

]
dt,

then we have

∫ T


zT(t)z(t) dt < γ e–δT

∫ T


ωT(t)ω(t) dt,

from Definition , the closed-loop system () is FTH∞B, and the H∞ performance index
is γ̄ = γ e–δT . This completes the proof. �

Remark  Theorem  gives the sufficient conditions for the FTH∞B of the closed-loop
system. However, the conditions () and () are nonlinear matrix inequalities, which will
be transformed into LMIs in Theorem .

Theorem  For positive constants c, c, b, T , α, positive definite matrix Rc, if there exist
positive definite matrices X, Q̃, Q̃, � , any matrices Ñ, Ñ, L̃, with appropriate dimen-
sions, constants and μ,η > , η > , η > , εij > , χij >  for i, j ∈ �, such that

�iis < , ()

�ijs + �jis < , ()

ηIn < R/
c G–

⎡

⎢
⎣

(

[Ir ]GEXGT

[
Ir



])



 �

⎤

⎥
⎦G–TR/

c < In, ()

M > η–
 R–

c , ()

M > η–
 R–

c , ()
[

(ηd + ηd

 )c + (rb – c)e–δT √c

∗ –η

]

< , ()

⎡

⎢
⎣

–ρ– wi wdi

∗ –ETXE 
∗ ∗ –ETXE

⎤

⎥
⎦ ≤ , ()



Guan and Liu Advances in Difference Equations  (2016) 2016:52 Page 10 of 19

where

�ijs =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎣

ψ ψ ψ ψ dÑT
 ψ Hi ψ XT  

∗ ψ –L̃ ψ dÑT
 ψ  ψ  XT 

∗ ∗ ψ BT
ωi dL̃T

 DT
ωi  ET

i   
∗ ∗ ∗ ψ   Hi    XT

∗ ∗ ∗ ∗ ψ      
∗ ∗ ∗ ∗ ∗ –I Hi    
∗ ∗ ∗ ∗ ∗ ∗ –χij    
∗ ∗ ∗ ∗ ∗ ∗ ∗ –εij   
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –M  
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –M

(h–) 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –M

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥
⎦

,

ψ = AiX + Bi�sj + (AiX + Bi�sj)T – δX + ÑT
 + Ñ ,

ψ = AdiX + Bi�dsj – ÑT
 – Ñ, ψ = Bωi + L̃,

ψ = �
T
sjB

T
i + XAT

i , ψ = XCT
i + �

T
sjD

T
i , ψ = XET

i + �
T
sjE

T
i,

ψ = –ÑT
 – Ñ, ψ = XAT

di + �
T
dsjB

T
i , ψ = XCT

di + �
T
dsjD

T
i ,

ψ = XET
i + �

T
dsjE

T
i, ψ = –γ e–δT I, ψ = –M/d,

ψ = –X – XT + M, �sj = EsYj + E–
s Wj, �dsj = EsYdj + E–

s Wdj,

G, H are nonsingular matrices that make GEH =
[ Ir 

 

]
, then closed-loop system () is

FTH∞B with H∞ performance index γ̄ = γ e–δT , and the controller feedback gains are
given by

Kj = YjX–, Kdj = YdjX–.

Proof From Theorem , considering (), we can get the following relation according to
matrix inequality ():

� =
η∑

s=

r∑

i=

r∑

j=

hihjαs(�ijs + ��ijs) < , ()

where

�ijs =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

ϕ ϕ ϕ ϕ NT
 ϕ

∗ ϕ –ETL ϕ NT
 ϕ

∗ ∗ ϕ BT
ωi LT DT

ωi

∗ ∗ ∗ ϕ  
∗ ∗ ∗ ∗ –Q 
∗ ∗ ∗ ∗ ∗ –I

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

,
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��ijs =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

�ϕ �ϕ �ϕ �ϕ  �ϕ

∗   �ϕ  �ϕ

∗ ∗  �BT
ωi  �DT

ωi

∗ ∗ ∗   
∗ ∗ ∗ ∗  
∗ ∗ ∗ ∗ ∗ –I

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

,

ϕ = P̂
T

(Ai + Bi –λsj) + (Ai + Bi –λsj)TP̂ + Q – δP̂
T

E + ETN + NT
 E,

ϕ = P̂
T

(Adi + Bi –λdsj) – ETN – NT
 E, ϕ = P̂

T
Bωi + ETL,

ϕ = (Ai + Bi –λsj)T, ϕ = –( – h)Q – NT
 E – ETN,

ϕ = –γ e–δT I, ϕ = –(dQ)–, ϕ = (Adi + Bi –λdsj)T,

ϕ = (Ci + Di –λsj)T, ϕ = (Cdi + Di –λdsj)T,

�ϕ = P̂
T

(�Ai + �Bi –λsj) + (�Ai + �Bi –λsj)TP̂,

�ϕ = P̂
T

(�Adi + �Bi –λdsj), �ϕ = P̂
T
�Bωi,

�ϕ = (�Ai + �Bi –λsj)T, �ϕ = (�Ci + �Di –λsj)T,

�ϕ = (�Adi + �Bi –λdsj)T, �ϕ = (�Cdi + �Di –λdsj)T.

Noticing () and Lemma , there exists a constant χij > , such that

��ijs = ϒ�ϒ + ϒT
 �TϒT

 ≤ χijϒϒ
T
 + –χ–

ij ϒT
 ϒ,

where

ϒ =
[(

P̂
T

Hi
)T   HT

i  HT
i
]
,

ϒ = [Ei + Ei –λsj Ei + Ei –λdsj Ei   ].

Then via the Schur complement, () is equivalent to

η∑

s=

r∑

i=

hiαs�iis +
η∑

s=

r∑

i=

r∑

j=

hihjαs(�ijs + �jis) < , ()

where

�ijs =

⎡

⎢
⎣

�ijs ϒ ϒT


∗ –χij 
∗ ∗ –χT

ij

⎤

⎥
⎦ .

From Theorem , � < , we can get P̂ = (ET P + SRT)T is nonsingular. Using Lemma , as
the deal method in [] there exists X = P̂– = (EP̃ + S̃R̃T)T, where P̃ >  and R̃ ∈ Rn×(n–r)

is any matrix with full column rank and satisfies ER̃ = . It is easy to see that

EX = XTET = EP̃ET ≥ . ()
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Denoting H–XGT =
[ X X

X X

]
, from (), it is easy to obtain X = , and X is symmet-

ric, then we have H–XGT =
[ X 

X X

]
, so X and X are nonsingular. There, it can be

concluded that G–TX–H =
[ X–

 
–X–

 XX–
 X–



]
and [Ir ]GEXGT[ Ir



]
= X are nonsingular.

Then we have

H–T

[
Ir



](

[Ir ]GEXGT

[
Ir



])–

[Ir ]H–

= H–T

[
Ir



]

X–
 [Ir ]H– = H–T

[
X–

 
 

]

H–

= H–T(
HTETGT)(

G–TX–H
)
H–

= ETX– = ETP̂,

pre- and post-multiply () and () diag{P̂T
, P̂

T
, I, I, P̂

T
, I, I, I, I, I, I}, and denote P̂TÑP̂ =

N, P̂TÑP̂ = N, P̂TL̃ = L, YjP̂ = Xj, YdjP̂ = Kdj, WjP̂ = Hj, WdjP̂ = Hdj, εij = χ–
ij , M = Q–

 ,
M = Q–

 , using the Schur complement, () and () are the sufficient conditions for ()
to hold.

Let

P̄ = R/
c GT

⎡

⎢
⎣

(

[Ir ]GEXGT

[
Ir



])–



 �

⎤

⎥
⎦GR/

c ,

then we have

ETR/
c P̄R/

c E = H–THR/
c GT

⎡

⎢
⎣

(

[Ir ]GEXGT

[
Ir



])–



 �–

⎤

⎥
⎦GR/

c HH–

= H–T

[
X 
 

]

H– = ETX.

From (), we have In < P̄ < 
η

In, and then λ > , λ < /η. It can be seen from () that
Q̄ = R–/

c QR–/
c < ηI , which means that λ < η. Similarly, we can obtained λ < η from

(). Then using the Schur complement, we can get () from ().
Then

xT(t)ETPEx(t) = xT
 (t)Px(t),

Hix(t) = Hix(t), Hdix(t) = Hdix(t),
()

xT(t)ETPEx(t) ≤ ρ, xT(
t – d(t)

)
ETPEx

(
t – d(t)

) ≤ ρ. ()

So, condition ε(ETPE,ρ) ⊂ L(Hi, Hdi) can be guaranteed by

[hik hτ ik]

[
P 
 P

]–

[hik hτ ik]T ≤ 
ρ

, k = , , . . . , l.
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Via the Schur complement, it can be transformed to

⎡

⎢
⎣

– 
ρ

[hik hdik]

[hik hdik]T –

[
P 
 P

]
⎤

⎥
⎦ ≤ , k = , , . . . , l,

or
⎡

⎢
⎣

– 
ρ

[hik ] [hdik ]
∗ –IP̃I 
∗ ∗ –IP̃I

⎤

⎥
⎦ ≤ , k = , , . . . , l, ()

where IP̃I =
[ Ir 

 

][ P P
P P

][ Ir 
 

]
, hik , hdik , is the kth row of Hi and Hdi, respectively.

Pre- and post-multiplying () by diag{, XT, XT} and its transpose, considering HiX =
Wi, HdiX = Wdi, wik is the kth row of Wi, wdik is the kth row of Wdi. Considering (), then
we can obtain (). This completes the proof. �

Remark  Theorem  gives a LMI condition for the region ε(ETPE,ρ) to be inside the
domain of attraction for the closed-loop system () under the memory state feedback con-
troller.

Remark  With all the ellipsoids satisfying the set invariance condition of Theorem ,
we may choose the largest one to obtain the least conservative estimate of the domain of
attraction.

Let XR ∈ Rn be a prescribed bounded convex set containing the origin, which can be
represented as XR = co{x

, x
, . . . , xl

}, where x
, x

, . . . , xl
 are a priori given initial states

in Rn. With Theorem , an exact invariant set with least degree of conservativeness can
be formulated as

maxα

s.t.

{
(a) αXR ⊂ ε(ETPE,ρ),
(b) inequality ()-().

()

Using the Schur complement, constraint (a) is equivalent to

xT
 ETPEx ≤ ρ

α ⇔
[

–β xT
 ET

Ex –X

]

≤ , ()

where β = ρ/α.
From the above discussion, () can be transformed to the following LMI optimization

problem:

minβ

s.t. inequality ()-() and ().
()

Remark  Theorem  gives the sufficient conditions for designing the finite-time mem-
ory controller for TS fuzzy system with time-varying delay. It can be observed that the
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conditions () and () are not strict LMIs, once we fix the parameter δ, the conditions
can be turned into LMIs-based feasibility problem. Then the conditions in Theorem  can
be turned into the following LMIs-based feasibility problem with a fixed parameter δ:

min c + γ 

X, Q̃, Q̃, Ñ , Ñ, L̃, b, d,μ, δ
s.t. ()-().

4 Numerical value examples
Example  Consider the nonlinear system with time delay []:

ẋ(t) = –a
vt̄

(L + �L(t))t
x(t) – ( – a)

vt̄
(L + �L(t))t

x
(
t – τ (t)

)

+
vt̄

(l + �l(t))t
sat

(
u(t)

)
,

ẋ(t) = a
vt̄

(L + �L(t))t
x(t) + ( – a)

vt̄
(L + �L(t))t

x
(
t – τ (t)

)
,

ẋ(t) =
vt̄
t

sin

[
x(t) + a

vt̄
(L + �L(t))t

x(t)

+ ( – a)
vt̄

(L + �L(t))t
x

(
t – τ (t)

)
]

,

where x(t) is the angle difference between truck and trailer, x(t) is the angle of trailer,
x(t) is the vertical position of rear end of trailer. The model parameters are given as l =
., L = ., v = –., t̄ = ., t̄ = ., t = ., d = t/π and a = .. Then the model is
expressed by the following T-S fuzzy system:

ẋ(t) =
∑

i=

hi(t)
[
(Ai + �Ai)x(t) + (Ai + �Ai)x

(
t – τ (t)

)
+ (Bi + �Bi) sat

(
u(t)

)]
,

where

A =

⎡

⎢
⎣

–avt̄/(Lt)  
avt̄/(Lt)  

av t̄/(Lt) vt̄/t 

⎤

⎥
⎦ , A =

⎡

⎢
⎣

–( – a)vt̄/(Lt)  
( – a)vt̄/(Lt)  

( – a)v t̄/(Lt) vt̄/t 

⎤

⎥
⎦ ,

B =

⎡

⎢
⎣

vt̄/(lt)



⎤

⎥
⎦ , A =

⎡

⎢
⎣

–avt̄/(Lt)  
avt̄/(Lt)  

adv t̄/(Lt) dvt̄/t 

⎤

⎥
⎦ ,

A =

⎡

⎢
⎣

–( – a)vt̄/(Lt)  
( – a)vt̄/(Lt)  

( – a)dv t̄/(Lt) vt̄/t 

⎤

⎥
⎦ , B =

⎡

⎢
⎣

vt̄/(lt)



⎤

⎥
⎦ ,

�A = .δ(t)

⎡

⎢
⎣

.  
–.  
.  

⎤

⎥
⎦ , �A = .δ(t)

⎡

⎢
⎣

.  
–.  
.  

⎤

⎥
⎦ ,
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Figure 1 State response of the closed-loop system (Example 1).

�B = .δ(t)

⎡

⎢
⎣

–.



⎤

⎥
⎦ , �A = .δ(t)

⎡

⎢
⎣

.  
–.  
.  

⎤

⎥
⎦ ,

�A = .δ(t)

⎡

⎢
⎣

.  
–.  
.  

⎤

⎥
⎦ , �B = .δ(t)

⎡

⎢
⎣

–.



⎤

⎥
⎦ ,

where |δ(t)| < .
On the basis of [], the saturating constraint is ignored, and we give μ = , d = .,

c = , c = , T = , δ = ., Rc = I. Solving the LMIs ()-(), we can get the memory
state feedback controller gain is

K = [. –. –.], K = [. –. –.],

K = [. –. .], K = [. –. –.].

For simulation, we choose the fuzzy weighting function to be

h(t) = / + exp
(
.x(t + )

)
, h(t) =  – h(t),

and the initial condition φT(t) = [.π .π –]T, t ∈ [–., ]. Figure  shows the re-
sponse of states of the closed-loop systems.

Example  Consider the TS fuzzy system subject to actuator saturation () with two fuzzy
rules and the following parameters:

E =

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦ , A =

⎡

⎢
⎣

–  
 – 
  

⎤

⎥
⎦ , Ad =

⎡

⎢
⎣

.  
 . 
  

⎤

⎥
⎦ ,



Guan and Liu Advances in Difference Equations  (2016) 2016:52 Page 16 of 19

B =

⎡

⎢
⎣


.
.

⎤

⎥
⎦ , C =

⎡

⎢
⎣

  
  
  .

⎤

⎥
⎦ , Cd =

⎡

⎢
⎣

  
  
 . 

⎤

⎥
⎦ , D =

⎡

⎢
⎣





⎤

⎥
⎦ ,

Bω =

⎡

⎢
⎣

.  
  .
  

⎤

⎥
⎦ , Dω =

⎡

⎢
⎣

.  
  
  

⎤

⎥
⎦ , A =

⎡

⎢
⎣

  
. . 
  

⎤

⎥
⎦ ,

Ad =

⎡

⎢
⎣

  
. –. 
  

⎤

⎥
⎦ , B =

⎡

⎢
⎣


–.



⎤

⎥
⎦ , C =

⎡

⎢
⎣

.  
 . 
 . 

⎤

⎥
⎦ ,

Cd =

⎡

⎢
⎣

.  
 . 
  

⎤

⎥
⎦ , D =

⎡

⎢
⎣


.


⎤

⎥
⎦ , Bω = Dω =

⎡

⎢
⎣

  
 . 
  

⎤

⎥
⎦ ,

Hij =

⎡

⎢
⎣

–.
.
.

⎤

⎥
⎦ , Ei = [. ], Ei = [–. –.],

Ei = –., Ei = [–. –.] (i, j = , ).

For given c = , c = , T = , b = ., δ = ., d = ., μ = ., r = ., Rc = I,
the disturbance input is ω(t) = e–t sin(–t), and the membership functions are h(t) =
/[ + exp(.x(t + ))], h(t) =  – h(t), using the Matlab toolbox, we can get

P =

⎡

⎢
⎣

. . .
. . –.
. –. .

⎤

⎥
⎦ ,

the controller gain can be obtained:

K = [–. –. – .], Kd = [. . .],

K = [–. –. – .], Kd = [–. –. – .].

For given the initial condition xT() = [–  ]T , by solving the optimization problem
(), we can get βmin = ..

Then, using the above controller gain, Figure  plots the estimation of the domain of
attraction and the response of the closed-loop system can be seen from Figure . It can be
seen from Figure  that the closed-loop system is FTB subject to the memory controller.
Figure  plots the evolution of xT(t)ETRcEx(t). It can be seen from Figure  that the TS
fuzzy system () is finite-time bounded with respect to (, , I, ) via the finite-time fuzzy
memory controller.

For demonstration of the superiority of the memory state feedback controller presented
in this paper, we give the memoryless controller as follows for comparison:

u(t) =
r∑

i=

hi
(
θ (t)

)
Kix(t). ()
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Figure 2 The estimation of the domain of attraction (Example 2).

Figure 3 State response of the closed-loop system (Example 2).

We can obtain the maximum allowable d for different h in Table .
From the comparison in Table , it is obvious that the memory state feedback controller

presented in this paper is less conservative.
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Figure 4 The evolution of xT(t)ETRcEx(t) (Example 2).

Table 1 Comparison of maximum d for different h (Example 2)

h 0.01 0.02 0.05 0.07 0.09

(34) 0.00264 0.00239 0.00164 0.00111 0.00053
(4) 0.00275 0.00245 0.00167 0.00113 0.00053

5 Conclusion
In this paper, the problem of finite-time H∞ memory feedback of the singular T-S fuzzy
system has been studied. Based on the finite-time stability theory, conditions were ob-
tained, which can guarantee that the closed-loop system is finite-time H∞ bounded with
a presided H∞ performance. The memory feedback controller problem can be solved by
solving the LMIs. An optimization problem was given to deal with the largest domain of
attraction of the closed-loop system. In the end, the examples were given to illustrate the
feasibility of the method.
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