Wen et al. Advances in Difference Equations (2016) 2016:60 ® Advances in Difference Equations
DOI 10.1186/513662-016-0758-x a SpringerOpen Journal

RESEARCH Open Access

CrossMark

Global asymptotic stability of piecewise
homogeneous Markovian jump BAM neural
networks with discrete and distributed
time-varying delays

Wu Wen', Yuanhua Du?", Shouming Zhong?, Jia Xu® and Nan Zhou*

“Correspondence:
duyuanhuaa@126.com Abstract

2School of Mathematical Sciences, In thi he i f lobal . bili Ivsis is d | d f
University of Electronic Science and n this paper, the issue of a global asymptotic stability analysis Is aeveloped for

Technology of China, Chengdu, piecewise homogeneous Markovian jump BAM neural networks with mixed time
sichuan 611731, PR.China delays. By establishing the Lyapunov functional, using mode-dependent discrete
Full list of author information is . . .o . .
available at the end of the article delay and applying the linear matrix inequality (LMI) method, a novel sufficient
condition is obtained to guarantee the stability of the considered system. A numerical
example is provided to demonstrate the feasibility and effectiveness of the proposed

results.

Keywords: BAM neural networks; linear matrix inequality; piecewise homogeneous;
Markovian jump; distributed; time-varying delays; Lyapunov-Krasovskii functional

1 Introduction

Asis well known, the bidirectional associative memory (BAM) neural networks were orig-
inally introduced by Kosko [1-3], and they are a class of two-layer heteroassociative net-
works, which are composed of neurons arranged in two layers, the U-layer and the V-layer.
Generally speaking, the neurons in one layer are fully interconnected to the neurons in the
other layer. Moreover, there may be no interconnection among neurons in the same layer.
In addition, the addressable memories or patterns of BAM neural networks can be stored
with a two-way associative search. Owing to these reasons, the BAM neural network has
been widely studied both in theory and applications; see [4—13]. Therefore, it is meaning-
ful and important to study the BAM neural network.

Recently, a great deal of studies have been done to the stability analysis of the dynamical
systems [14—25]. It is worth noting that Markovian jump systems have received increasing
attention in the area of the mathematics and control research community. Therefore, the
study of Markovian jumps is of great significance and value both theoretically and practi-
cally. Much work has been done for Markovian processes or Markovian chains in the liter-
ature, and the issues of stability and control have been well investigated; see, for example,
[14—20] and references therein. The stability analysis problem has been investigated in [17]
for stochastic high-order Markovian jumping neural networks with mixed time delays. In
[18], the authors have made the first attempt to deal with the H, estimation for discrete-
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time piecewise homogeneous Markov jump linear systems, and the time-varying char-
acter of TPs has been considered to be finite piecewise homogeneous and the variations
have been considered to be of two types: arbitrary variations and stochastic variations.
The H filtering analysis of piecewise homogeneous Markovian jump nonlinear systems
has been studied in [19], where the mode-dependent filter is obtained. Very recently, the
stochastic stability analysis has been investigated for piecewise homogeneous Markovian
jump neural networks with mixed time delays in [20]. But the time-varying delays in [20]
are independent of the Markovian jump mode. To the best of our knowledge, no results
have been given for piecewise homogeneous Markovian jump BAM neural networks with
discrete and distributed time delays.

This constitutes the motivation for the present research. In this paper, we deal with
the stability problem for piecewise homogeneous Markovian jump BAM neural networks
with discrete and distributed time delays. By employing the Lyapunov method, using
mode-dependent discrete delay and some inequality techniques, sufficient conditions are
derived for the global asymptotic stability in the mean square of the piecewise homoge-
neous Markovian jump BAM neural networks with discrete and distributed time delays.
One illustrative example is also provided to show the effectiveness of the obtained results.

2 Model description and preliminaries
In this paper, we consider BAM neural networks with discrete and distributed time-
varying delays described by

B — —Cx(t) + A D) + Aof (4t = T1(O) + As [} 4, () s,
% = —Dy(t) + Big(x(t)) + Bog(x(t — 12(t))) + B3 j;t_dz(t)g(x(s)) ds,

with initial values

xi(s) = p1(s), se[-u,0],i=1,2,...,n,

¥i(s) = pals), se[-u,01,j=12,...,m,
where x(£) = [x1(£),x2(8),...,2,(6)]T and y(¢) = [y1(¢),y2(¢),...,y,(t)]T are the state vec-
tors, n is the number of units in the neural networks, C = diag(cy,cy,...,¢,) and D =
diag(dy, ds, ..., d,) are diagonal matrices with positive entries ¢; > 0 and d; > 0; A; =
(2)
ij
B, = (bgiz))nxn are the discretely delayed connection weight matrices, Az = (ag’))nxy,

(ug-l))nxn and B; = (bl(jl)),,xn are the synaptic connection matrices, Ay = (4;;")yxn and

and B; = (b? )),,X,, are the distributively delayed connection weight matrices, f(y) =
Ao L00), .. fu(a))T and g(x) = (g1(x1),g2(x2), ..., gu(x,))T are the activation functions,
7;(t) and d; (i = 1,2) are discrete and distributed time-varying delays, respectively, and
they satisfy 0 < d,;(t) <d;, 0 < di(t) < dy,, 0 <7(t) <7, 0 < (t) < 7 (i = 1, 2). The initial
value space generated function is ¢ = (¢],$5)T € Czro([—u,O], NR"*"), where C%O denotes
the family of all bounded F o-measurable, C%O([—u, 0], R"*")-valued random variables,
satisfying || ¢l = sup_, ;o E |¢(s)|? < oo, where E denotes the expectation of the stochastic
process, and p = max(d, t), where d £ max(dy, 7)), T £ max(ds, 7).

The activation functions g;(x;(t)) and fi(x;(t)) ({ =1,2,...,n) are assumed to be nonde-
creasing, bounded, and globally Lipschitz; we have

< w <1, g(0)=0, )

0
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0 HESE) )
§1-6
1,60 €eR &1 #E&y (j=1,2,...,n) where [; >0 and m; >0 (j = 1,2,...,n). Note L =
diag(h, b, ..., 1), M = diag(my, mo, ..., my,).
Now, based on BAM neural networks (1) and fixing a probability space (2, F,P), we
introduce the following Markovian jump BAM neural networks with mixed time delays:

B0 = —Clra(e) + A(r)f ((0) + As(r)f ((E - T8, )
+As(r) [y o f0(s)) ds,

DO = —D(r)y(t) + Bi(r)g(x(1)) + Ba(r)g(x(t — Ta(t, 7))
+B3(ry) [ g, €(s)) ds.

For convenience, each possible value of (¢) is denoted by i, i € S1, in the following. Then
we have

C; = C(r), Ay = Aq(ry), Agi = As(ry), Az = As(ry),
D; = D(ry), By; = Bi(ry), By = By(1y), Bs; = B3(r),

0<ntr)=tml) <t <t T < Tiws

0 <1t 1) = i) < T2; < T, Ty < Toy.

The process {r;,t > 0} is described by a Markov chain with finite state space $; =
{1,2,...,s}, and its transition probability matrix 101 & [nlgs”h)]sxs is given by
aPhtolh), 4,

5
1+ aPh+o(h), j=i, ®

Prirgp=jlr=i= [

where /> 0 and limy,_, o(h)/h = 0; 711548“’4) > 0 for j # i is the transition rate from mode i at
time ¢ to mode j at time ¢ + 4 and ni(f”h) == ni?‘*h). In this study, we assume that
8; varies in another finite Sy = {1,2,...,/} with transition probability matrix A £ [g,,,]1x/

given by

Gmnh + o(h), n#m,

Pr{pn=n|8; =m)= { (6)

1+ gunh + o(h), n=m,

where /1 > 0 and limy,_.¢ o(h)/h = 0; gy, > O for m # n, is the transition rate from mode m
at time ¢ to mode # at time ¢ + /1 and g, = — Zizl'n?,m G-
Now, we are ready to introduce the notion of homogeneousness.

Definition 2.1 A finite Markov process r;€S; is said to be homogeneous (respectively,
nonhomogeneous) if for all £ > 0, the transition probability satisfies Pr{r;., =j | r; = i} =
(respectively, Pr{ry., =j | ry = i} = m;(t)), where m;; (or 7;(t)) denotes a probability func-

tion.

Remark 1 In this paper, according to the definition of homogeneousness and nonhomo-
geneousness, we can find that the Markovian chain §, is homogeneous, while the Marko-
vian chain r; is nonhomogeneous.
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Next, we will introduce several lemmas which will be essential in proving our conclusion

in Section 3.

Lemma 2.1 [26] For any constant matrix M > 0, any scalars a and b with a < b, and
a vector function x(t) : [a,b] — R" such that the integrals concerned are well defined, the
following holds:

b b b
|:/ x(s) ds} TM|:/ x(s) ds] < —a)/ x(s)T Mx(s) ds.

Lemma 2.2 (Schur complement [27]) Let there be given constant matrices Zy, Zy, Zs,
where Zy = Z] and Zy = Z] > 0. Then Zy + Z3Z;'Z3 < 0 if and only if [2 fi] <0 or

7, 7
[ 2372 zf] <0.

3 Main results
In this section, a set of conditions are derived to guarantee the global asymptotic stability

in the mean square of the BAM neural networks (4).

Theorem 3.1 For any given scalars d1, da, 11, T2, and 1y, To, the BAM neural networks

in (4) are globally asymptotic stable in the mean square, if there exist P, > 0, Qjim =

Qli,m ta,m R1i,m R'zi,m wl w? Ql Qz .

[ /* Qj%'m] >0;Rji,m :[ ]* R%i,m] >O, VV/‘: [ *1 ‘Vll3] >O, Q/: [ *1 Q/é] >0 (]:1’2),)(1.1»,”1 >0,
Yiim >0, Ejim > 0, Fjiyn >0, Sji 7=1,2), X;>0,Y;>0,E; >0, F; >0 (i = 3,4), and any
matrices K; (i =1,2,3,4,5,6) with appropriate dimensions such that the following LMIs

hold:

(2

x« -In 0 |[<0, (7)
L * % —Fz

Xiiym Sli,m:| >0, |:Y1i,m SZi,mi| S0, ®)
L % Xli,m * Yli,m

l s l s
Z GrnRip + angm)le,m =W, Z TmnRain + Z ni§M)R2j,m < W, )
n=1 j=1 n=1 j=1

I s

(m)
E GnX1in + Z”t’/’ Xijm < Xoim + X4,
n=1 j=1

(10)
I s
T2 |:Z GrmnX2in + Z ni(jm)XZj,m:| <X,
n=1 j=1
! s
Z GmnYin + Z ﬂi(,»m) Yijm < Yoim + Yas
n=1 j=1
(11)

l s
7 [Z G Yoin + Y _7)" YZj,m:| <Y,

n=1 j=1

Page 4 of 16
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S
Z GmnErin + Z ni(I'M)Elj,m < Eyim + Ey,

(12)

! s
(m)
E AmnEain + Zﬂij Eyjm | < Es,
n=1 j=1

<

! s
(m)
D nmFuin+ ) 0" Fijm
n=1 j=1

l

FZlm +F4:

(13)

S
dy qunFZi,n"'ZjT,;m)FZj,m <F;,

n=1 j=1

I
”i(iM) Quim + Z GmnQuipn < 0,

n=1

N
Z n;g'm)Qlj,m +Q1 =0,

j=Lji
where

Plthz CP11m+R

(=) —~
E12 = Xiim — Stimo B3 =

EL‘L = Rll m

=
E112 = PiymAai,

]

= =S1im + Xtim» 825

2,3

[I]

1
_Xlzm Rll"mr u36

E44 =R}

1li,m

=) T
Cig8 = Bll‘PZi,m’

j=

li,m

l s
(m)
£ GmiPin+ )7}
n=1 j=1

+ LK + lem + rzW + erl,

-
E114 = PiimAsi,

d
+ WP+ Q- 2K + Q) + d3Fijpm + =

— 3
S55 = _(1 - fZM)Qli,m -

!
”i(iM) Qaipm + qunQ%,n <0,

n=1

(14)

S
Z ﬂ,g-m)sz,m +Q =0,

Lj#i

(15)

1 1 1
= Xiim + W) + 12Qr + Qyy
Plj,Wn

Sli,m;
811 = PumAis

=2X1im + Stim + S -(1- TZ)QL‘,m;

lim

~(1 - 12,)Q},,, + LK,

=LKz - R?

li,m?

3 3 B
2Fy+ 2F,

2 Foim + 5 3

2

® T
21(2, D5,8 = B2LrP2,‘ym,

.
Eg6 = —2K3 — Rlzm’ 877 = —Flim» 87,8 = B3;Poim;
1 1, Al
Bg8 = —PojmDi — DiPoj + Rzlm Yiim+ Wy +11Qy + Qy,
1 s
m
+ E GrinPoin + E 735 Poj s
n=1 j=1
- - - 2 2
889 = Yiim — S2iym» 8810 = S2im» Bgn = Rglm + MKy + Qzlm +T Wy + 1103,
1
E = _2Y11 m t SZz m T Szl m (1 - TZu)Qzl‘,m, E9,10 = _SZi,m + Yli,m;
- 2 - -
Eon2 = —(1 — 124)Qy;,, + MKs5, E10,00 = —Y1im — R2, - E1013 = MKeg — R2l -
a3 a3 a3
- 3 3. 3 ) 1 1 1
E11,11 = R2i,m + 7 W2 + QZi,m — 2[(4 + 'L'1Q2 + dlEli,m + ?EZi,m + E4 + Eg,
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- 3 -
Eppp=-01- Tlu)inm —-2Ks, S1313 = 2K — R3; ., E14,14 = —E1im
3 3 3
Iy = 12X X+ DX s BX Ty = 2Yy, + LY, Ys+ Ly,
1=Ty 1i,m+2 2zm+3‘ 3-'-2 4 257 1z’,m+7 2i,m+3‘ 3+2 4,

Ti=[-C; 0 0 0 0 0000 0 A, AL 0o ALl

T,=[0 0 0 B}, B, 0 B, -D;, 0 0 0 0 0 0]

Proof Consider the following Lyapunov-Krasovskii functional:

5
V(t¢ xn)’n rtxfst) = Z ‘/i(trxt)yt:rt:St)7 (16)

i=1

where

‘/l(t’ Xt Vt:1ts (St) = xT(t)Plrz,th(t) + yT (t)PZi"p,Bty(t)r

t

t
Vz(t) Xt Yt Tty at) / m (S)er[ St 771(5) dS + / nZ(S)RZVt,Bz 12 (S) dS

t-11

t
/ / m(s)Wini(s) ds + / n2(s) Wana(s) ds,
-7 Jt+p -7 Jt+p

t
Vst 0y 70 82) = / 1(5) Qs ($) s + / 12(5)Qarys, 1as) dis
t=1o (L) t-t1(tre)

0 t 0 t
. f f 11 (6)Qun(s) dsde + / / n1(5)Qana(s) ds o,
—19 Jt+60 -1 Jt+0

0 t
Vet 00720 82) = / f 3T(5) X1y, 2(5) ds
—79 Jt+0

0 p0 pt
th / / / x7(8) Xy, 5,%(s) ds d  db
~T3 JO t+B
0 0 p0 pt
+ / / / / ®T(s)X3x(s) dsdp db ds
-1 J§ JO Ji+pB
0 0 pt
L) / / / xT(s)Xyx(s)dsdp do
-19 JO t+B
0 pt
0 f / T (8) Y, 5,9(s) ds dO
-1 Jt+60
0 0 pt
+ fl/ / / YT (s) Yy, 5,5(s) dsdB db
-1 J0 Jt+B
0 0 0 pt
+ / / f f V() Yay(s)dsdB do ds
_
+'C1/ / / (8)Y4y(s)dsdpB do,
o

Vit 50,300 100 80) = o / / 7 (5(5)) Funp g (x(6)) ds 6
dy Jt+6

0 0 pt
" /_dz /g /H 8 T (%(5)) Far, 5,8 (x(s)) ds dp do
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0 0 0 ¢
' /—d2 ./s /9 ‘/HﬂgT (x(s)) Fag(x(s)) dsdp do ds
0 0 ¢
.
" /dz /e l+ﬁg (%(5)) Fag (x(s)) dsdp do

0 t

+d /d 9fT (¥(5)) Evry,s.f (¥(s)) ds d
0 0 t

+d; /dl /9 /;me (y(S))Ezr,,aj(y(S)) dsdp do

0 0 0 ¢

' /d1 /s /e /t+ﬁf T(y(s))Esf (v(s)) dsdB do ds
0 0 P

" /:dl /9 _/HﬁfT (5(s))Eaf (y(s)) dsdp db.

Denote n1(¢) = [x7(2), g7 (x(£))]T and n2(2) = [yT(@).f T (y())]T.
Define an infinitesimal generator (denoted by L) of the Markovian process acting on
V(t, %4, Y1, 1, 8¢) (ry = i, 8, = m) defined as follows:
.1 .
Ev(xhyt; i, Wl) = hll)r{)k E{E{V(t + h’xt+h’yt+hr Tt+hs 8t+h) | Xty Ve, 1t = 1, (St = Wl}
_v(t:xt;yt’rt:i;(st:m)}' (17)

Then, for each i € S, m € S,, the stochastic differential of V along the trajectory of system
(4) is given by

E‘/l(xtryt; i) m)

1 s
= 25T () Priymx(t) + 29T (€)P2iymy(2) + X7 (2) |:Z GrmnPrin + ZTF&”PU,m:|x(t)

n=1 j=1

i s
+ J’T(t) |:Z qmnPZi,n + Z ﬂi;nPZj,m:|y(t): (18)
n=1 j=1

'CVZ(xt;yh i; m)

t l
=01 OR1imm () — 0] (¢ = ©)Ruymmi (t — T2) + / n (s) |:Z GmnRiin

-7 n=1

S t
> W,S‘M)le,m:| m(s)ds + Tan] () Wim(t) - /t n1 () Wimi(s) ds
j=1 “n

t l
+ 13 (ORaimn2 () = 03 (¢ = TRz (£ = 1) + / 13 (s) |:Z GmnRain
- n=1

s t
£y n,;'">R2,,m] na(s)ds + Tin] (£) Wana(£) - f 03 (s) Wana(s) ds, (19)
j=1 t-11

ﬁVS(‘xt;yh i; m)

) 1 t+h t
 lim —E[ / 0T Quy s, ma(s) s — / 1) Qa5 ds]
t

h=>07 1 | Jevhcy(ehr ) t-oi(0)
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) 1 t+h t
+ lim —E[ / 15 (8)Qar,, 8,5 12(8) ds — / ()n{ (8)Qaiymn2(s) dS]
t t—11;(¢

07 +h=ty(t+hrs,p)

+T2771T(t)Q1771(t)—/ YhT(S)le(S)dS+Tlﬂg(t)szm(t)—/ 13 (5)Qana(s) ds

t+h t
- lim LE / 1 (5)Quimn(s) s — / 1 (5)Quip(s) ds
h4)0+ h t+h—19;(t) t=12;(t)
t+h
+Z (m)h+0(h) 11 ($)Qumm (s) ds

t+h-to;(t+h)

!
+ Z(qm,,h +o(h)) /
n=1

t+h—1o;(t+h)

t+h

11 ($)Qujum(s) ds:|

) 1 t+h t
+ tim —E[ f 11(5) Quis () ds — f (s
t t-11;(¢

h—0* h Fhey(t+h)

t+h

+ Z o) o(h)) 11 (9)Qajmm (s) ds

t+h—zlj(t+h)

l
+ 3 (qunht + o(h)) /
n=1

t+h

t+h-11;(¢+h)

11 (8)Qajum(s) dsi|
+ o (OQum () - / [ (6)Qum(s)ds + Tan3 (£)Qana(t) - / 5 (5)Qana(s) ds

< 0] () Quimm () = (1 = Tau)n] (£ = 12:(8)) Quimm (£ — T2:(2))

t
+ " / 0T (5)Quiyi (5) dis
t—19;(2)

t
P / 1(5)Qumi s)ds+2qmn / O ds
t—19;(t

j=1j#i

+ 103 (£)Qaimm2(t) = (1 = t1)n] (¢ = 11:(8)) Qaigmm (£ — T0i(0))

ol / Qi@ ds+ 3 7 / 16)Qujn(s) ds

j=1j#i

+qun/

() Quina ) ds + Ton] (Y Qumi(6) = f nT(6)Qun(s) ds
t-11;( t) -1
] (O Qumad) - / n1(5)Qaals) ds, (20)
t—-11

£V4 (xt; Yt i; m)

3 3 3

T g . .
=xT(t) 7722X1i,m + X2Lm + 2 =Xz + _2X4 X(t) — T / xT(S)Xli,mx(S) ds
2 3! 2 -1

t
B, / / X7 (8) X2 mx(s) dsdO — 1, / x7(8)X4x(s) ds do
—19 Jt+60 —19 Jt+0

_ / r fa /Hﬂa'cT(s)Xga'c(s)dsdﬂdG
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0 t ! s
T2 / / x7(s) |:Z GmnX1ip + Z ﬂl;m)le,mi|fC(S) dsdb
—19 Jt+6

n=1 j=1

+T2/ / / xT(S)|:ZanX2m+ZnU ijm]x(s)dsdﬁde

. TB ‘E T . t . )
+}1T(t)(‘t'12 YVipm + EIYZi,m + 3—1‘Y3 + %Y4>y(t) - 7;1/ T (8)Y1i mi(s) ds
' t-11

0t 0t
_rl/ / J'/T(S)Y%mj/(s)dsde—rl/ / T (s)Yaj(s) dsdo
-1 Jt+0 1 Jes0
0 0 pt
- f f / yT(s)Y3y(s)dsdp do
-11J0 Jit+p

0 t
+t1f / .)‘]T(S {qunyltn"'znl] Yl/”’l:| dsd@
-1 Jt+60

n=1

+t1/_ / / T (s) [qunY21n+Zﬂll Yz,m}y(s)dsdﬁde (21)

j=1
‘CV5 (xtryt; i: m)
d a3 a3
—fT(3(2)) <d Epipm + 21152”” + 21154 + 3—1'153) £ (v(2))

—d ./‘701 ST ()’(S))Eli,mf(y(s)) ds

0 pt
-d / ST((8)) Eainf ((5)) ds do

—dy Jt+6

0
_d f T Ef (o1s)) st - /dl / / 1) Ef (s) dsdp ds

d Jt+6

+ dl /d ng y(S) [qunElzn + Zﬂl] El] m:|,/(y(s)) ds do
+d1/d1/ / fT s) [Zq’””EQ’"+an/ Eg,m:|j )dsdﬁde

3 3
+gT(x(t))(d Fijm + dZFZlm+ d2F4+ ﬂl-%)g( (t ))

—d /t g (%(5)) Frimg (%(s)) ds — dy /_d2 /Hg &7 (+(5)) Fayymg (x(s)) ds do

—dy

0 t 0 0 pt
dy /:dz /Heg (%(s)) Fag(x(s)) ds db /_d2/ / g7 (x(s)) Fsg(x(s)) dsdp do
0 t
+d> /:d2 /HH gT (x(s) |:Z GmnFrin + Zz‘rl] Fljmj| x(s)) dsdb

n=1

0 0 pt
+ds /—d2/9 /HﬂgT(x(S) |:ZanF2m+ZnU Fg,m:| (x(s)) dsdpde.  (22)
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Denote

t t—19;(2)
o1(6) = / Ws)ds,  oxlt) = / i(s)ds,
t—19;(t) t—-19

¢ t—71;(6) (23)
o3(t) = / y(s) ds, o4(t) = / ¥(s) ds.

-71i(f) -7

Next, by using a similar method to [19] in (21), when 0 < 73;(t) < 71 and 0 < 79;(¢) < 1o,

according to Jensen’s inequality, we have

t t t-12(t)
T2 / XT(8) X1 mx(s)ds = 1o / X7 (8) X1, mx(s) ds + 1o / X7 (8) X1 mx(s) ds
t-1y t—19;(t) t-19
T2
> ——0] () Xm0 (t) +

Z @ 05 (£)X1im02(£)

Ty — Toi(t)

Ty — Toi(t)
T2;(2)

T9i(t)

Ty — Toi(t)

= oy () X1imo1(£) + o (£)X1im01(2)

+ 05 () X1,m02(t) + o5 (£)X1i,m02(2). (24)

By areciprocally convex approach, if the inequality (8) holds, then the following inequality
holds:

T9-19;(t) T 2-Till)
%Ul(t) Xiim Sli,m \/ﬁal(t) >0 (25)
— 205 () * X | | - r;—ziii)(t) o) |

T2-T2;(t)
which implies

TZTZ)()UJU)Xu,mUl(t) +

> 0] (£)S1im02(8) + 05 (£)S]; ,,01(8). (26)

1li,m

T2i(t)

() X1, o (t
T2—T2i(t)02() 1im02(t)

Then we can get from equations (24) and (26)

t
Ty f X7 (8) X1 mx(s) ds
t—19

> o7 () X1im01(t) + 07 () X15m02(2) + 07 (£)S1im02(t) + 0 (£)S]; ,,01(2)
[ @] [Xim Suw | [er0] o)
o (2) * Xy | | 02(8)

It should be noted that when 75;(¢) = 0 or 79;(¢) = T2, we have 01(¢) = 0 or 05(£) = 0, respec-
tively. Thus equation (27) still holds. It is clear that equation (27) implies

) / [ xT()X1imx(s) ds < X ()L X (2), (28)
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where X(¢) = [xT(£) x7 (£ — 79:(£)) x7(t — T2)]7,

—X1im Xiim — Stiym Stiym
I, = * ~2X1im + Stim + SJ. =Stim + X1im | -

1i,m
ES3 *k _Xli,m

Similarly, we also have
t
“o [ FOYuni)ds < VO, (29)
t-11

where Y(2) = [yT () yT (¢ - 7:(2)) y7 (£ - ©)]T,

—Yiim Yiim — Soim Soiym
I, = * —2Y1im + SZi,m +ST —SZi,m + Yiim | -

2i,m
& o —Yiim
Using (2) and (3), for any positive diagonal matrices Kj (j = 1,2,3,4,5,6), we have
2xT (LK g (x(2)) — 2¢7 (x(£)) Kig (x(2)) > 0, (30)
2x7 (t — r2i(t))L1(2g(x(t - Tzi(t))) - ZgT (x(t — ‘L’zi(t)))1<2g(x(t — ‘Ezl'(t))) > 0, (31)
2xT(t — 1) LK3g (%(t — 12)) — 287 (%(t — 7)) K3g (x(t - 12)) > 0, (32)
2T (OMEKLf (y(8)) = 2T (y(8)) Kaf ((2)) = 0, (33)
2y (t — 1)) MKsf (y(¢ — 7i(0))) — 21 T (y(¢ — 7:(8)) ) Ksf ((¢ — 7i(8))) = 0, (34)
297 (t - n)MKef (y(t — 1)) = 2f T (y(t — 7)) Kef (y(t — 11)) > 0. (35)

Here, by the use of Lemma 2.1, the integral term —d; fi 4 TO$)Erinf (¥(s)) ds and
—d, ftt_ i g7 (x(s))F1img(x(s)) ds can be estimated as, respectively,

~dy /t _tdlf T (9(5)) Erigmf (¥(5)) ds < —[ /t ;1 f((9) dS} TEu,m [ /t _tdlmf ((s)) ds:|, (36)

®

t t T t
_d2/ ) &7 (%()) Fripmg (x(s)) ds < —[/ g(x(s)) ds:| Flim |:/ g(x(s)) ds]. (37)

() ~da ()
Then it follows from (18)-(37) that
a@]’ &1(6)
LV (%4, 916y m) < L;(t)] EERSN TR Iy L;(t)] : (38)

Here

a(t) = [xT(t)xT (t = 72(0))xT (£ — 72)g™ (x(2)) g7 ((£ — 72:(2)) )" ((£ — 72))

t T
T
) /t-dz(t)g (x(5) ds} ’

Page 11 of 16



Wen et al. Advances in Difference Equations (2016) 2016:60 Page 12 of 16

6(t) = [yT(t)yT (= 1)y (¢ = m)f TN T (2 - 7@®))fT (vt - 7))

¢ T
X fT (y(s)) ds:| ,

t—dy (£)

[2+ YT+ YT Y5] <0. (39)

Applying the Schur complement shows that (39) is equivalent to (7). We have

E M Ty
k —Fl 0 < O,
* * -I'y

which implies V(x;, Y1, m) < 0. Thus, the system (4) is asymptotically stable. This com-
pletes the proof. d

Remark 2 In [19], the authors have achieved some excellent work of piecewise homoge-
neous Markovian jump neural networks. The main contribution is devoted to the study
of the stochastic stability analysis problem for a type of continuous-time neural networks
with time-varying transition probabilities and mixed time delay. However, there are no
results on piecewise homogeneous Markovian jump BAM neural network systems. In the
application, the study of the piecewise homogeneous Markovian jump BAM neural net-
works is essential.

Specifically, when there is no distributed delay, the system (4) reduces to

= ~C(0) + A 0(0) + Aa(r)f (¢ = 1a(t,r)) o)
DY = —D(r)y(£) + Bulr)g((£)) + Ba(r)g(x(t — 7a(t, 1)),
Consider the following Lyapunov functional for the above BAM neural networks:
V(t; Xts Yt 1ts 8t) = Vl(t, Xt Y5 1'ts 8[) + VZ(t) Xt Yt Tts 8t) + V3(tr Xt Yt Tts 8t)
+ V4(t’xt’yt7 It 5t)1 (4‘1)

where Vi(t, %, Y0, 74,8:), Valt, %, ¥, 71:8:), Va(t, %, Y61, 8:), and Vi(E, x4, 94,14, 8;) have the
same definitions as those in equation (16), and we can get the following corollary along
similar lines to the proof of Theorem 3.1.

Corollary 3.1 For any given scalars 11, T, and 1y, To, the BAM neural network (4) is glob-
[le'i,m Q/zz,m] S0

ally asymptotic stable in the mean square, if there exist P, > 0, Qjim = @
~ji,m

RL RZ wl w2 Q! @? )
Rjjm = [ /:m Rlslm] >0, W, = [ */ W’;] >0,Q;= [ *1 ng] >0 (=12), Xjin>0, Yjiu >0, Sjim
jLm ] ]

(j=12),X;>0,Y;>0 (i =3,4), and any matrices K; (i = 1,2,3,4,5,6) with appropriate
dimensions such that the following LMIs hold.:

(1]

YT
_Fl 0 < Ov (4‘2)

* —Fz

* %
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Xiim  Stim =0, Yiim  S2im S0, (43)
*  Xim *  Yim
l s l s
Z qmani,n + angm)le,m S er Z qmnRZi,n + Z ﬂig‘rn)R2j,m S W2¢ (44')
n=1 j=1 n=1 j=1
1 s
Z GmnX1in + Z ﬂ,S-m)le,m < Xoim + Xy,
n=1 j=1
(45)
! s
7 Z GrnXoin + Z ﬂi(,»m)Xz;‘,m < X3,
n=1 j=1
1 s
Zan Yiju + Zﬂ,’;m) Yijm < Yaim + Ya,
n=1 j=1
(46)
l s
T Z GrnYoin + Z ﬂiﬁm) Yoim | < Y3,
n=1 j=1
! !
ni(im) le’,m + ZanQli,n < 0, ﬁi(im) QZi,m + qunQZi,n =< 0) (47)
n=1 n=1
S S
Z ﬂé’")Qy,m +Q1 <0, Z nl;m) Qum + Q2 <0, (48)

j=Lii
where

— 1
Bl = —PrimCi — CiPym + R

li,m

jLj

1 1 1
Xiim + oW + 12Q) + Qli,m

I s
(m)
+ qunpli,n + an'j Plj,mr
n=1 j=1

E12 = X1im — Stims
E110 = PrimAti

Ein = PrimAai,

823 = =Stim + Xiim»
E36=LK; - R},

55 =—(1-12,)Q};,, — 25,

o]

o]

813 = Stiyms

Ey5 = (1 - 12,)Q7;,, + LK>,

L} 3
Esa =Ry,

— 2 2 2 2
B4 =Ry, + LK + Qli,m + Wi + Q7

— T 1
E22 = =2X1im + Stim + Sy, — L= 12)Qy;

— 1
&33 = _Xli,m - Rli,m’

3 3 3 — T
+ W+ Qp, — 2K + 12Q5, E47 = B;Paim;

- T - 3
85,7 = By;Poim; Ee6 = —2K3 - Ry, ,,»

1 1 1 1
7,7 = =PoiyuD; — DiPy;y + Rz,‘,m -Yim+T Wz +T Qz + Qz,‘,m

! s
+ Poin+ Y T/'Py;
Gmnt2in ij +°2j,m>
n=1 j=1

878 = Yiim — S2ims

= T 1
Egg = —2Y1im + Saim + Sy;,, — (1= 12) Q10

Bgu=—-(1- Tzu)Q%i,m + MKs,

L] 3
Ei0,10 = Ry, ,,

87,9 = S2ims

3, 3
+T Wy + Qs —2K4 + 11Q;,

— 2 2 2 2
E710 = R2i,m + M1<4 + Q2i,m + 7 W2 + T1Q2,

88,9 = —S2im + Yiim»

Eo12 = MKg — R

- 1
99 =—Y1m—R 2im’

2i,m’

Enu=-(1- rlu)Qii,m - 2Ks,
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B = —2K — RS

2i,m’
Py 22X+ 2ot 2ot BXe, Tym 1Yt Syt vyt Dy,
1=Ty 1i,m+7 2i,m+§ 3+7 45 2=T7 1z’,m+7 2i,m+§ 3+7 4,

Ti=[-C; 0 0 0 000 00 0 A, A}, 0],
T,=[0 0 0 B}, B, 0 -D;, 0 0 0 0 0 O]
4 Examples

In this section, we will give a numerical example showing the effectiveness of the condi-
tions given here. Consider BAM neural networks (4) with the following parameters:

(22 o 22 0 15 05
C1: ’ D1: ’ A1: ’
0 25 0 25 03 -1.2
[02 04 1.2 02 -15 18
A2: ) A3: ) Blz 3
03 15 ~08 05 05 -0.9
[03 -03 17 08 14 0
B, , B; = , Cy = ,
12 -05 03 -26 0 28
(14 o0 05 18 08 04
Dy = , Ay = , Aoy = ’
1o 2.8:| ! [—0.2 —0.3} 2 {—0.7 —0.6:|
[02 01 09 05 1.6 -0.2
Ay = . By = . By= ,
»" oz 0.8:| o [—0.3 0.6i| > [1.1 0.5}
(09 13 10
By3 = ) L=M-= ,
1.6 -02 0 1

and the activation functions are taken as follows:

f(y(t)) = tanh(—y(t)), g(x(t)) =0.25 x (‘x(t) + 1’ + ’x(t) - 1’)

In this example, we assume 7; = 1.7531, 15 = 1.2551, 13, = 0.5060, 75, = 0.6991, and d; =
dy = 0.8. The discrete delay 71 (£) = 1.2+ 0.5 cos(£), 72(¢) = 0.6 + 0.6 sin(¢) and the distributed
delay d;(t) = dy(t) = 0.8 cos?(t).

The transition probability matrices are

- -15 15 - -1.7 17 e - -09 09
12 -12] 05 -05]| 16 -16|
and the transition probability matrix is

-07 03 04
A=|04 -13 09
07 09 -16

Figure 1 is the state response of model (1) (r(t) = 1, §(¢) = 1) with the initial condi-
tion [x1(2), %2(2),91(2),y2(8)]T = [-0.7,1.5,-0.4,1.2]7, and Figure 2 is the state response
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Figure 1 The state response of the model (1) in 1.5
the example.

State response

1 L L L L L

0 5 10 15 20 25 30
Time[t]
Figure 2 The state response of the model (2) in 08 n
(¢
the example. lt)
06 wn() ||
(t)
04r T
021 1
2
2
8
2 —
2
8
2]
\ |/
\ /
-06r vV g
08 . . . . .
0 5 10 15 20 25 30

of model (2) (r(£) = 2, §(t) = 2) with the initial condition [x1(£),x2(£), y1(£),y2(£)]T =
[0.8,0.1,-0.3,-0.5]T. Through this example, we find that our results demonstrate the ef-
fectiveness of the proposed result.

5 Conclusions

In this paper, based on Lyapunov-Krasovskii functionals and some inequality techniques,
we have investigated the problem of global asymptotic stability for piecewise homoge-
neous Markovian jump BAM neural networks with discrete and distributed time-varying
delays. A linear matrix inequalities method has been developed to solve this problem. The
sufficient condition has been established in terms of LMIs. A numerical example is given

to demonstrate the usefulness of the derived LMI-based stability conditions.
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