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1 Introduction

Spectral methods are global methods. The main idea behind spectral methods is to ap-
proximate solutions of differential equations by means of truncated series of orthogonal
polynomials. The spectral methods play prominent roles in various applications such as
fluid dynamics. The three most used versions of spectral methods are: tau, collocation, and
Galerkin methods (see for example [1-8]). The choice of the suitable used spectral method
suggested for solving the given equation depends certainly on the type of the differential
equation and also on the type of the boundary conditions governed by it.

In the collocation approach, the test functions are the Dirac delta functions centered at
special collocation points. This approach requires the differential equation to be satisfied
exactly at the collocation points. The tau-method is a synonym for expanding the residual
function as a series of orthogonal polynomials and then applying the boundary conditions
as constraints. The tau approach has an advantage that it can be applied to problems with
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complicated boundary conditions. In the Galerkin method, the test functions are chosen
in a way such that each member of them satisfies the underlying boundary conditions of
the given differential equation.

There is extensive work in the literature on the numerical solutions of high-order bound-
ary value problems (BVPs). The great interest in such problems is due to their importance
in various fields of applied science. For example, a large number of problems in physics
and fluid dynamics are described by problems of this kind. In this respect, there is a huge
number of articles handling both high odd- and high even-order BVPs. For example, in
the sequence of papers, [5, 9-11], the authors have obtained numerical solutions for even-
order BVPs by applying the Galerkin method. The main idea for obtaining these solutions
is to construct suitable basis functions satisfying the underlying boundary conditions on
the given differential equation, then applying Galerkin method to convert each equation
to a system of algebraic equations. The suggested algorithms in these articles are suitable
for handling one and two dimensional linear even-order BVPs. The Galerkin and Petrov-
Galerkin methods have the advantage that their applications on linear problems enable
one to investigate carefully the resulting systems, especially their complexities and condi-
tion numbers.

There are many algorithms in the literature which are applied for handling fourth-order
boundary value problems. For example, Bernardi et al. in [12] suggested some spectral
approximations for handling two dimensional fourth-order problems. In the two lead-
ing articles of Shen [13, 14], the author developed direct solutions of fourth-order two
point boundary value problems. The suggested algorithms in these articles are based on
constructing compact combinations of Legendre and Chebyshev polynomials together
with the application of the Galerkin method. Many other techniques were used for solv-
ing fourth-order BVPs, for example, variational iteration method is applied in [15], non-
polynomial sextic spline method in [16], quintic non-polynomial spline method in [17],
and the Galerkin method (see [18, 19]). Theorems which list the conditions for the exis-
tence and uniqueness of solution of such problems are thoroughly discussed in the impor-
tant book of Agarwal [20].

The approach of employing operational matrices of differentiation and integration is
considered an important technique for solving various kinds of differential and integral
equations. The main advantage of this approach is its simplicity in application and its capa-
bility for handling linear differential equations as well as nonlinear differential equations.
There are a large number of articles in the literature in this direction. For example, the au-
thors in [6], employed the tau operational matrices of derivatives of Chebyshev polynomi-
als of the second kind for handling the singular Lane-Emden type equations. Some other
studies in [21, 22] employ tau operational matrices of derivatives for solving the same type
of equations. The operational matrices of shifted Chebyshev, shifted Jacobi, and general-
ized Laguerre polynomials and other kinds of polynomials are employed for solving some
fractional problems (see for example, [23—27]). In addition, recently in the two papers of
Abd-Elhameed [28, 29] one introduced and used two Galerkin operational matrices for
solving, respectively, the sixth-order two point BVPs and Lane-Emden equations.

In this paper, our main aim is fourfold:

« Establishing a novel Galerkin operational matrix of derivatives of some generalized

Jacobi polynomials.
« Investigating the convergence analysis of the suggested generalized Jacobi expansion.
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+ Employing the introduced operational matrix of derivatives to numerically solve

linear fourth-order BVPs based on the application of Galerkin method.

+ Employing the introduced operational matrix of derivatives for solving the nonlinear

fourth-order BVPs based on the application of collocation method.

The contents of the paper is organized as follows. Section 2 is devoted to presenting an
overview on classical Jacobi and generalized Jacobi polynomials. Section 3 is concerned
with deriving the Galerkin operational matrix of derivatives of some generalized Jacobi
polynomials. In Section 4, we implement and present two numerical algorithms for the
sake of handling linear and nonlinear fourth-order BVPs based on the application of gen-
eralized Jacobi-Galerkin operational matrix method (GJGOMM) for linear problems and
generalized Jacobi collocation operational matrix method (GJCOMM) for nonlinear prob-
lems. Convergence analysis of the generalized Jacobi expansion is discussed in detail in
Section 5. Numerical examples including some discussions and comparisons are given in
Section 6 for the sake of testing the efficiency, accuracy, and applicability of the suggested
algorithms. Finally, conclusions are reported in Section 7.

2 Anoverview on classical Jacobi and generalized Jacobi polynomials

The classical Jacobi polynomials PE,“"B )(x) associated with the real parameters (o > -1,
B > -1) (see [30] and [31]) are a sequence of polynomials defined on [-1,1]. Define the
normalized orthogonal polynomials Rif"ﬁ )(x) (see [32])

PP )
PPy’

RP)(x) =

and define the shifted normalized Jacobi polynomials on [a, b] as

_ 2 —a-b
R (x) :Rff’ﬂ)(ix ; 2 ) 1)
—a

The polynomials RP)(x) are orthogonal on [a, b] with respect to the weight function
(b - x)*(x — a)?, in the sense that

b y i 0, |
[ o-wre-arRer R wan=1 "7 )
’ hz,ﬁ: m=mn,
where
- — Ve )
s L Gm@ O B DI DE ®)

Cn+MIr'(n+ Ml (n+a+1)

It should be noted here that the Legendre polynomials are particular polynomials of Jacobi
polynomials. In fact, RE,O’O)(x) = L,(x), where L, (x) is the standard Legendre polynomial of
degree n.

Let w*’ (x) = (b —x)*(x — a)”. We denote by L2, ,(a, b) the weighted L* space with inner
product:

b
(1 V) (3) = / UV (x) i,
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1
and the associated norm || || ,,e.s = (1, u)‘f/a,ﬁ. Now, the definition of the shifted Jacobi poly-
nomials will be extended to include the cases in which « and/or 8 < —1. Now assume that
£,m € Z, and define

b-x)"tx- u)‘”’R (¢ m(x), £,m < -1,

i+l+m
“(tm (b—x)" [RH (%), L<-1,m>-1,
) = o @
(x— a)_’”RHm (%), £>-1,m< -1,
Rie’m)(x), L,m>-1.

It is worthy to note here that in the case of [a, b] = [-1,1], the polynomials defined in (4)
are the so-called generalized Jacobi polynomials (]i(z’m)(x)), which are defined by Guo et al.
in [33]. Now, the symmetric generalized Jacobi polynomials ]l,(_"’_")(x) can be expressed
explicitly in terms of the Legendre polynomials, while the symmetric shifted generalized
Jacobi polynomials 71»(_%_”)(.76) can be expressed in terms of the shifted Legendre polyno-

mials. These results are given in the following two lemmas.
Lemma 1 For every nonnegative integer n, and for all i > 2n, one has

(1Y(N)-2n+2/+ DG -2n+j+ 1)

J7 () = ! Z - , —3 Liyaj-on(x), (5)
p Fii-n+j+3)
and in particular,
. 8 22i-3),
(-2,-2)
| = | L) - Li 6
10 = e 3)[ 46) = S Lia) + ] (6)
Proof For the proof of Lemma 1, see [9]. d

Now, Lemma 2 is a direct consequence of Lemma 1.
Lemma 2 For every nonnegative integer n, for all i > 2n, one has

Hen-ny, _ (b-a n (- 1)’()(L—2n+2]+1)1"(l_2n+]+ 1y
]i (x) - <T> I’IZ F(l—l’l +] + %) Lz+2/ Zn(x)r (7)

j=0

and in particular,

3(~2,-2) (b-a)* 2(21 ) -5
( _ _Aéi=9) <) | 8
0 = s s | ) L)+ 5 L) ®)
The following lemma is also of interest in the sequel.
Lemma 3 The following integral formula holds:
—2,— -L (x) 3Lj, (x) 3Lj, + (x)
/]1'(+42’ D (w)dx = -~ 11 11 - 5 .9 1'3 3 = 55 ©)
(I+5)3 (I+ )(]+ 3)2 (]+§)(/+§)2 (I+ )3
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Proof Lemma 3 follows if we integrate equation (8) (for the case [a,b] = [-1,1]) together
with the aid of the following integral formula:

_Lin() = Lja(x)

3 Generalized Jacobi Galerkin operational matrix of derivatives
In this section, a novel operational matrix of derivatives will be developed. For this pur-
pose, we choose the following set of basis functions:

$:x) =T 2P () = (x - a)*(b - 2)*R*P(x), i=0,1,2,.... (11)

It is easy to see that, the set of polynomials {¢;(x):i=0,1,2,...} is a linearly independent
set. Moreover, they are orthogonal on [4, b] with respect to the weight function w(x) =

m, in the sense that
" ¢@ewdx o, i7),
—a)2(b-x)? " 4(b-a)> .
o« 0—a)(b-x) ol Q=)

Let us denote H,(I) (r = 0,1,2,...), as the weighted Sobolev spaces, whose inner prod-
ucts and norms are denoted by (-,-)., and || - ||, respectively (see [4]). To account for
homogeneous boundary conditions, we define

H&W(I) = {v e HA(I) : v(a) = v(b) =V (a) =V (b) = 0},

where I = (a, b).
Define the following subspace of H ,(I):

Vn = Span{¢0(x)7 ¢1(9€), R ¢N(x)}

Any function f(x) € Hg}w(l ) can be expanded as

@)=Y cpilx), (12)

i=0
where

_2i+5)(i+1)4 Sx)¢i(%)

b
Ci = 4-(]9—61)5 ]4; (x_ﬂ)z(b—x)z dx. (13)

Assume that f(x) in equation (12) can be approximated as

N
@ =) =) cpilx) = C" @ (x), (14)

i=0

where

" =lcocrrenl, @) = [go@), $1(0),....on ()] (15)

Page 5 of 16
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Now, we are going to state and prove the main theorem, from which a novel Galerkin

operational matrix of derivatives will be introduced.

Theorem 1 Ifthe polynomials ¢;(x) are selected as in (11), then for all i > 1, one has

2

De;(x) = b2

i-1
Z (2] + 5)(,‘15/(96) +1;(x), (16)

=
(i+}) odd
where 1;(x) is given by

(b-x)(a+b-2x), ieven,
ni(x) = 2(x - a) ‘ 17)
(a—-Db)(b-wx), iodd.

Proof The key idea is to prove Theorem 1 on [-1,1], and hence the proof on the general

interval [a, b] can easily be transported. Now, we intend to prove the relation

i-1

Dyi@) = ) (2 +5)¥) +8,(), 18)

j=0
(i+j) odd
where
i@ =770 @),
and

X, ieven,

8i(x) = 4(x* -1)
1, iodd.

To prove (18), it is sufficient to prove that the following identity holds, up to a constant:

/ Q) dx = Y (x), 19)

where

i-1

Q) = Y (2 +5)¥;(x) + 8i().

j=0
(i+j) odd
Indeed
i-1
/ Qiwdx= Y (2j+5) / Jia P ) da + f 8:(x) dx. (20)
j=0

(i+) odd
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If we make use of Lemma 3, then the latter equation-after performing some manipulations-

is turned into the relation

j-1(x) 3Lj1(x) 3L;,3(x)
/Q‘(" Jdx=8 Z [(2;+1) 2+3) @+)2j+7)  (2j+3)2+9)

(z+}) odd
i ]+5(x) / wo dx + / 8,(96) dx, (21)
2/ +7)(2/ +9)
where
{1, i odd,
Mi= .
0, ieven.

After performing some rather lengthy manipulations on the right hand side of (21), equa-
tion (19) is obtained.

Now, if x in (18) is replaced by 242

, then after performing some manipulations, we get

-1
Déi(x) = Z (2 + 5)¢(x) + 1 (), (22)
(t+1)
where 7n;(x) is given by

(b-x)(a+b-2x), ieven,

(a—-Db)(b-wx), iodd,

ni(x) = 2(x — a)

and this completes the proof of Theorem 1. d

Now, with the aid of Theorem 1, the first derivative of the vector ®(x) defined in (15)
can be expressed in matrix form:

d®(x)
dx

= H®(x) + y(x), (23)

where n(x) = (no(®), m(x),...,nn )T, and H = (h;)o<ij<n is an (N + 1) x (N + 1) matrix
whose nonzero elements can be given explicitly from equation (16) by

72 (2j+5), i>j(i+}j)odd,

&
=

0, otherwise.

For example, for N = 5, the operational matrix M is the following (6 x 6) matrix:

0O 0 0 0 0 O
5 0 0 0 0 O
2 o7 0 0 0 O
H-=
b-al5 0 9 0 0 O
0O 7 0 11 0 O
5 0 9 0 13 0

6x6
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Corollary 1 The second-, third- and fourth-order derivatives of the vector ®(x) are given,
respectively, by

2

T2 _ o) + Hn) + 1), ()
dx?
3

ddigx) = H*®(x) + H*n(x) + Hy" (%) + 1? (), (25)
4

d;:ix) = H*®(x) + H3(x) + H* 3V (x) + H® (x) + 1 (x). (26)

4 Two algorithms for fourth-order two point BVPs

In this section, we are interested in developing two numerical algorithms for solving both
of the linear and nonlinear fourth-order two point BVPs. The Galerkin operational matrix
of derivatives that introduced in Section 3 is employed for this purpose. The linear equa-
tions are handled by the application of the Galerkin method, while the nonlinear equations
are handled by the application of the typical collocation method.

4.1 Linear fourth-order BVPs
Consider the linear fourth-order boundary value problem

U (@) + f@)u® @) + @)U () + AUV ) + frwux) = g), x€(ab),  (27)
subject to the homogeneous boundary conditions
u(a) =ud) =u'(a) =u'(b) = 0. (28)

If u(x) is approximated as

N
(@) > un (%) = Y crr(x) = €7 D), (29)
k=0

then making use of equations (23)-(26), the following approximations for y“(x),1 < ¢ < 4,
are obtained:

u(x) ~ T (H®(x) + 1), u? (x) = T (H?®(x) + 0, (%)), (30)
uP @)~ T (H @) +03(x)),  u®(x) = C"(H*®(x) + 0a(x)), (31)
where

02(x) = Hy(x) + 1V (),
03(x) = H*n(x) + Hp® (x) + n® (),
0a(x) = H>n(x) + H*nW (x) + Hn® (%) + @ ().

If we substitute equations (29)-(31) into equation (27), then the residual, r(x), of this equa-

tion can be written
r(x) = €T (H*®(x) + 04(x)) + f3(x)C” (H> @(x) + 03(x))

+fo(x) (H*®(x) + 02(x)) + A(X)CT (HB(x) + n(x)) +fo(x)C" @(x) —gl(x).  (32)

Page 8 of 16
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The application of the Galerkin method (see [4]) yields the following (N + 1) linear equa-

tions in the unknown expansion coefficients, ¢;, namely

b b
f w(x)r(x)ei(x) dx = f rx)R*? (x)dx =0, i=0,1,...,N. (33)

a

Thus equation (33) generates a set of (N + 1) linear equations which can be solved for the
unknown components of the vector C, and hence the approximate spectral solution uy (x)

given in (29) can be obtained.

Remark 1 It should be noted that the problem (27), governed by the nonhomogeneous

boundary conditions
u(a) = y, u(b) = ya, u'(a) = ¢, u'(b) = o, (34)
can easily be transformed to a problem similar to (27)-(28) (see [10]).

4.2 Solution of nonlinear fourth-order two point BVPs

Consider the following nonlinear fourth-order boundary value problem:

u® (x) = F (2, u(x), u® (x), u® (), u® (x)), (35)
governed by the homogeneous boundary conditions

u(a) =ud) =u'(a) =u'(b) = 0. (36)

If 4 (x), 0 < £ < 4, are approximated as in (29)-(31), then the following nonlinear equa-

tions in the unknown vector C can be obtained:

CT(H4<I>(x) + 04(x)) %F(x, CT<I>(x),CT(H<I>(x) + n(x)),

CT(H2<I>(x) +02(x)),CT(M3<I>(x) +03(x))). (37)

An approximate solution uy(x) can be obtained by employing the typical collocation
method. For this purpose, equation (37) is collocated at (N + 1) points. These points may
be taken to be the zeros of the polynomial 1?;531) (), or by any other choice. Hence, a set of
(N + 1) nonlinear equations is generated in the expansion coefficients, ¢;. This nonlinear
system can be solved with the aid of a suitable solver, such as the well-known Newton iter-

ative method. Therefore, the corresponding approximate solution u#y(x) can be obtained.

5 Convergence analysis of the approximate expansion

In this section, the convergence analysis of the suggested generalized Jacobi approximate
solution will be investigated. We will state and prove a theorem in which the expansion
in (12) of a function f(x) = (x — a)*(b — x)*G(x) € H] ,(I), where G(x) is of bounded fourth

derivative, converges uniformly to f(x).
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Theorem 2 A function f(x) = (x — a)*(b — x)*G(x) € Hj,,(I), w(x) = m with

|GW(x)| < M, can be expanded as an infinite sum of the basis given in (12). This series
converges uniformly to f(x), and the coefficients in (12) satisfy the inequality

M(b-a)*2n
8ivi—4

Proof From equation (13), one has

’ (2i +5)(i +1)4 Vo (x)
“T T4 -ap / (- a)Z(b ke

and with the aid of equation (11), the coefficients ¢; may be written alternatively in the

lci| < Vi>6. (38)

form

]H4 (x G(x)dx. (39)

(2i + 5)(1 + 1)4 f
Making use of Lemma 2, the polynomials 7;_2,_2) (x) can be expanded in terms of the shifted
Legendre polynomials, and so the coefficients c; take the form

2(2i +5) 2i+3

(l + 1)4 b
Y *(x) — L* I dx.
¢ 8(b—-a)(2i+3) a ! (x) 2i+7 ix2 T 2% +7 i+4 (x) X

If the last relation is integrated by parts four times, then the repeated application of equa-
tion (10) yields

b-a)®(+1),

b
(4) (4) ;
820+ 3) /ﬂ I''(x)GY(x)dx, i>4, (40)

;=

where I¥ (x) is given by

P P =, = R
16(2i —5)(2i —3)(2i —1)(2i +1)  8(2i —5)(2i —1)(2i +1)(2i + 7)
5L (x) 5(2i + 5L, ()
¥ 16(2i —3)(2i - 1)(2i + 7)(2i +9)  4(2i — 1)(2i + 1)(2i + 7)(2i + 9)(2i + 11)
15L%, ,(x) 3L}, 6(%)

16(21 +1)(2i +7)(2i +11)(2i + 13) 8(2i +7)(2i +9)(2i + 11)(2i + 15)

(2i +3)L} g(x)

T 1620+ 7)(2i + 9)(2i + 11)(2 + 13)(2i + 15)’ (41)

which can be written as

6
W) =Y Bl s, 4(), say,

m=0

and then the coefficients c; take the form

b —
oo % / {ZB L, 4(x)} 9(x) dx. (42)
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Now, making use of the substitution % = cos § enables one to put the coefficients ¢; in

the form
b-a)+1)y (T[S
i = P — BW,LL'Jr — 0
% 1621 + 3) /0 % 2m-4(c059)
1
X G(4)(§(a+b+(b—a)c050)) sin6do, i> 4. (43)

Taking into consideration the assumption |G (x)| < M, then we have

M(b—a)*(i+1),
leil < ﬁ Z/ |Byul|Lisam-a(cos 0)|+/sin6 db. (44)

From a Bernstein type inequality (see [34]), it is easy to see that

2
’Li+2m_4(cos 9)]v sinf < [ — , YO<m<e6,
(i-4)m

and hence (44) together with the last inequality leads to the estimation

MbB-a)*(i+1),

i B,
leil < 16(2i + 3) Ji-4 Zl |
M -a)*(i+1)s V2r 4(2i +5) (45)
16(2i +3) i 4 (2i—5)(2i—1)(2i + 7)(2i + 11)(2i + 15)°
Finally it is easy show that for all i > 6,
M(b-a)*V2n
leil < ———F——.
8ivi—4
This completes the proof of the theorem. d

6 Numerical results and discussions
In this section, the two proposed algorithms in Section 4 are applied to solve linear and
nonlinear fourth-order two point boundary value problems. The numerical results ensure

that the two algorithms are very efficient and accurate.

Example 1 Consider the fourth-order linear boundary value problem (see [35]):

@(x) - y@ (%) - y(x) = (x —4)e", 0<x<2,

y0)=2,  Y(0)=1,  y2)=0, y(2)=-¢

(46)

The exact solution of (46) is

yx) = 2 - 2)e



Abd-Elhameed et al. Advances in Difference Equations (2016) 2016:22 Page 12 of 16

Table 1 Maximum absolute error of |y - yn| for Example 1

N E

4 1283929 x 107

6 228788 x 1078

8 345852 x 107"
10 417094 x 1071
12 203407 x 107°
14 196477 x 107°

Table 2 Comparison between the relative errors for Example 1

X 10M [35] 20M:s [35] GJGOMM (N=8) GJGOMM (N =12)
025 539791 x 1073 811851 x 107 109077 x 10710 275173 x 1071°
050 157835x 1072  209205x 1072  1.14685 x 1071° 133747 x 1071°
075 254797 x 1072 293281 x 1072 824739 x 107" 450799 x 10716
100  3.14713x 1072 309264 x 102 33689 x 1072 537406 x 10710
125 322814x 1072 265317 x 1072 775226 x 107" 227451 x 1071°
150  273173x 1072 182938 x 1072  9.08649 x 107" 2.54606 x 107!

175 164910x 102 868533 x 107 753861 x 107" 9.75198 x 1076

Table 3 Maximum absolute error of |y - yy| for Example 2 for N=2,4,6,8,10,12

N E E> E3 E4
2 136037 x 107 211456 x 10 870645 x 107 846647 x 1078
4 123719x10® 269013 x 108 515533 x107° 583994 x 10710
6 434874 x 107" 119637 x 10710 193656 x 107" 4.17821 x 10712
8 265565 % 107! 48217 x 10713 157874 x 1073 344169 x 1074
10 910383 x 107" 976996 x 107> 1.19904 x 10714 888178 x 1071°
12 865974 x 107 865974 x 107> 1.06581 x 10714 843769 x 107>

Table 1 lists the maximum absolute errors E, which resulted from the application of GJ-
GOMM, for various values of N, while in Table 2 we display a comparison between the rel-
ative errors obtained by the application of the two methods namely, the first-order method
(10M) and the second-order methods (20Ms) developed in [35] with the relative errors
resulting from the application of GGGOMM.

Example 2 Consider the following fourth-order nonlinear boundary value problem (see
[36, 37]):

V) =—6eMY 0<x<d—e
1 1 (47)

The exact solution of the above problem is
y(x) =In(e + x).

In Table 3, we list the maximum absolute errors using GJCOMM for various values of N.
Let E, Ey, E3, and E4 denote the maximum absolute errors if the selected collocation points
are respectively, the zeros of the shifted Legendre polynomial L}, (x), the shifted Cheby-
shev polynomials of the first and second kinds T, (%), Uy ,; (%), and the shifted symmetric

Jacobi polynomial Rﬁ 31) (), while Figures 1 and 2 display a comparison between the maxi-
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Figure 1 Comparison between the errors obtained by the application of GJCOMM for N = 4, for
different choices to the selected collocation points.

1.2x107'0¢
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1.x107"%}
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8.x10 Es,
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£ 6.x10 E,

4.x107"}

2_)(10—11 I

O,
0.0 0.2 0.4 0.6 0.8 1.0 1.2

X

Figure 2 Comparison between the errors obtained by the application of GJCOMM for N = 6, for
different choices to the selected collocation points.

mum absolute errors resulting from the application of GJCOMM for N = 4 and 6, respec-
tively. Table 3 and Figures 1 and 2 show that the best choice among the previous choices
for the collocation points are obtained if the selected collocation points are the zeros of
the polynomial i?l(\z,fl) (). Table 4 displays a comparison between the errors obtained by the
application of GJCOMM for N = 4, with the errors resulting from the application of the
three methods developed in [36, 37]. This comparison ascertains that our results are more

accurate than those obtained in [36, 37].

Example 3 Consider the following fourth-order nonlinear boundary value problem (see
(37]):

y(4)(x) =9y*(x) +g(x), O0<x<1,

¥(0) =0, ¥'(0)=0, y(1) =1, ¥y (1) =1,

Page 13 of 16
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Table 4 Comparison between the absolute errors for Example 2

x Method in [36] Methodin [37] (|¢2-y|) Methodin[37] (|[¥2-y|]) GJCOMM (N= 4)

00 00 0.0 00 255351 x 107

02 179%10* 41883 x 1074 41012 x 107 6.94449 x 1078
04 325x10™* 12786 x 1073 1.2574 x 107 630457 x 1078
06 408x10™* 19971 x 1073 19762 x 107 448952 x 1078
08 402x10™* 20753 x 1073 20714 x 107 649632 x 1078
10 294x10™* 13038 x 1073 13163 x 107 147025 x 1078
12 - 18581 x 1074 1.9026 x 107° 210697 x 1078
4e  2x107° 24400 x 1071° 0 7.77156 x 10710

Table 5 Maximum absolute error of |y - yy| for Example 3 for N=2,4,6

E

N

2 5489 x 107

4 2265x 107"

6 210662 x 1077

Table 6 Comparison between the absolute errors for Example 3

X Methodin[37](|y2-y]) Methodin[37](|¢2-y]) GJCOMM (N =2)

00 00 00 00

02 81093 x 10710 3.5906 x 10~ 203045 x 1078
04 20542 x107° 10188 x 1074 904773 x 10718
06 22272 x107° 13579 x 1074 2.10718 x 10717
08 1.0115%x 107 8.5908 x 107 3.74696 x 1077
10 00 55799 x 107! 5489 x 1077

where g(x) = —x'0 + 4x” — 4x® — 4x7 + 8x° — 4x* + 120x — 48. The exact solution of the above
problem is

y(x) = 2% — 22 + 247

In Table 5, we list the maximum absolute errors using GJCOMM for various values of N.
Let E denote the maximum pointwise errors if the selected collocation points are the zeros
of the polynomial i%ﬁfl) (x). Moreover, Table 6 displays a comparison between the errors
obtained by the application of GJCOMM with the method developed in [37] for the case
N = 2. The comparison ascertains that our results are more accurate than those obtained
by [37].

Example 4 Consider the following nonlinear fourth-order boundary value problem (see
(38]):
@ (x) — &y (x) + y(x) + sin(y(x)) =1 - (-2 + €) sinh(x) + sin(sinh(x) + 1),
0<x<l, (49)
y(0)=5'(0) =1, ¥(1) =1 + sinh(1), y(1) = cosh(1),
with the exact solution y(x) = sinh(x) + 1.
In Table 7, the absolute errors are listed for various values of N. In order to compare the

absolute errors obtained by applying GJCOMM with those obtained by applying RHKSM
in [38], we list the absolute errors obtained by the application of RHKSM in the last column
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Table 7 Comparison between the absolute errors for Example 4

x GJCOMM (N=4) GJCOMM (N=6) GJCOMM (N=8) RKHSM (u]°")[38]
00 00 0.0 0.0 00

0.1 174774 x 107" 242005 x 10714 934812 x 107/ 278 x 1078
02 87269 % 107" 15889 x 10714 829415 x 107'8 8.09 x 1078
03 227345 x 107" 3.59562 x 10714 217857 x 10718 120 x 1077
04 1213x 10710 6.36858 x 10714 6.03901 x 107/ 125 % 1077
05 632272 x 10712 187133 x 1071° 2.06595 x 10710 9.56 x 1078
06 127768 x 10710 644606 x 10714 1.21431 x 107V 482 x 1078
07 144017 x 107" 409586 x 10714 1.10589 x 10716 738 x 107°
08 992086 x 107" 156333 x 1074 874301 x 1071° 1.07 x 1078
09 237061 x 107" 257225 x 10714 338271 x 107/ 7.08 x 107°
10 444089 x 10710 270617 x 10710 227249 x 10710 00
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of this table. This table shows that the approximate solution of problem (49) obtained by
using GJCOMM is of high efficiency and more accurate than the approximate solution
obtained by RHKSM [38].

7 Concluding remarks

In this article, a novel operational matrix of derivatives of certain generalized Jacobi poly-
nomials is derived and used for introducing spectral solutions of linear and nonlinear
fourth-order two point boundary value problems. The two spectral methods, namely the
Galerkin and collocation methods are employed for this purpose. The main advantages of
the introduced algorithms are their simplicity in application, and also their high accuracy;,
since highly accurate approximate solutions can be achieved by using a small number of
terms of the suggested expansion. The numerical results are convincing and the resulting

approximate solutions are very close to the exact ones.
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