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Abstract
In this paper, we consider a compound Poisson surplus model with constant dividend
barrier and liquid reserves under absolute ruin. When the surplus is negative, the
insurer is allowed to borrow money at a debit interest rate to continue the business;
when the surplus is below a fixed level �, the surplus is kept as liquid reserves, which
do not earn interest; when the surplus attains the level �, the excess of the surplus
over the level receives interest at a constant rate; when the surplus reaches a higher
level b, the excess of the surplus above b is all paid out as dividends to shareholders of
the insurer. We first derive the integro-differential equations satisfied by the
moment-generating function and moment of the discounted dividend payments
until absolute ruin. Then, applying these results, we get explicit expressions of them
for exponential claims and discuss the impact of the model parameters on the
expected dividend payments by numerical examples.
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1 Introduction
In the classical compound Poisson surplus model, U(t) is given by

U(t) = u + ct – S(t) = u + ct –
N(t)∑

i=

Xi, t ≥ ,

where U() = u is the initial surplus, c >  is the premium rate, {N(t), t ≥ } is a Poisson
process with intensity λ > , which denotes the claim numbers in the interval [, t], and
{Xi, i ≥ } (representing the sizes of claims and independent of {N(t), t ≥ }) is a se-
quence of independent and identically distributed nonnegative random variables with
common distribution function F(x) =  – F(x), which satisfies F() =  and has a mean
μ =

∫ ∞
 F(x) dx > .

In the recent study of risk theory, the classical compound Poisson surplus model has
been modified to adopt economic and financial factors such as interest and dividends.
The feature of debit interest assumes that the insurer is allowed to borrow money at a
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debit interest rate β >  to pay claims when the surplus turns negative. As the insurer pays
the debts from its premium income, the negative surplus may return to a positive level.
When the premium income is not enough to pay the debit interest (that is, the surplus falls
below – c

β
), the absolute ruin is said to occur. In recent years, the issue of absolute ruin has

received considerable attentions in the actuarial literature. See, for example, Embrechts
and Schmidli [], Cai [], Yuen et al. [], Wang et al. [], and Yin and Wang []. For exam-
ple, Yin and Wang [] study absolute ruin questions for the perturbed compound Poisson
risk process with investment and debit interests by the expected discounted penalty func-
tion at absolute ruin. On the other hand, even if an insurer invests all his positive surplus
into a risk-free asset, in certain condition, only the excess of the surplus over a certain
level can receive interest. To adopt a more flexible and tractable model, Embrechts and
Schmidli [] investigated the absolute ruin probability for a more complicated risk model.
They assumed that the company can borrow money when the surplus is negative and re-
ceive interest for capital above a certain level. Furthermore, Cai et al. [] considered the
following special model of Embrechts and Schmidli []:

{
dU(t) = c dt + r(U(t) – �) dt – dS(t), U(t) ≥ �,
dU(t) = a dt – dS(t),  < U(t) < �.

(.)

In (.), an insurer’s surplus is below a certain level � >  and is kept as liquid reserves.
As the surplus attains the level �, the excess of the surplus above � will earn interest at
a constant interest force r > . They studied the Gerber-Shiu function and discussed the
impact of interest and liquid reserves on the ruin probability.

On the other hand, the surplus of the insurer with a certain dividend strategy has
also been receiving more and more attention, including [, –]. For instance, de Finetti
[] studied the dividend strategy in a discrete process. Lin et al. [] investigated the
classical risk model with constant dividend barrier and analyzed the Gerber-Shiu dis-
counted penalty function at ruin. Albrecher et al. [] considered the distribution of
dividend payments in the Sparre Andersen model with constant dividend barrier. Cai
et al. [] considered a more general model that incorporates the notion of thresh-
old strategy. Based on the model (.), they assume that if the surplus continues to
surpass a higher level b ≥ �, then the excess of the surplus above b is paid out as
dividends to the insurer’s shareholders at a constant dividend rate, and no interest is
earned on the surplus over the threshold level b, and they discuss the interactions of
the liquid reserve level, the interest rate, and the threshold level in the proposed risk
model by studying the expected discounted penalty function and the expected present
value of dividends paid up to the time of ruin. More specifically, they assume that the
portion of the surplus is below a present level � is liquid, and the amount in excess
of this level is invested under a deterministic interest rate. Instead of implementing a
threshold in Cai et al. [], Sendova and Zhang [] consider a percentage of the cur-
rent surplus of the insurer and also study the expected discounted penalty function at
ruin.

Motivated by these works, based on the model (.), we consider a more general model
that incorporates the dividend strategy and debit interest. We assume that if the surplus is
negative, then the insurer can borrow money at a debit interest β > r. If the surplus surpass
a higher level b ≥ �, then the excess of the surplus above b is paid out as dividends to the
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shareholders at a constant dividend rate c + r(b – �). The resulting surplus process Ub(t)
can be described by

dUb(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–dS(t), Ub(t) > b,
(c + r(Ub(t) – �)) dt – dS(t), � ≤ Ub(t) ≤ b,
c dt – dS(t),  ≤ Ub(t) < �,
(c + βUb(t)) dt – dS(t), – c

β
< Ub(t) < ,

(.)

where Ub() = u is the initial surplus, b is the constant level of dividend barrier, β is the
debit interest rate, r is the credit interest, c is the premium rate, and S(t) =

∑N(t)
i= Xi is the

aggregate Poisson claim-amount process.
Define Tb

u = inf{t : Ub(t) ≤ – c
β
} as the time of absolute ruin (Tb

u = ∞ if Ub(t) > – c
β

for all
t > ). Let D(t) be the cumulative amount of dividends up to time t, and α >  be the force
of interest. Then

Du,b =
∫ Tb

u


e–αt dD(t)

is the present value of all dividends until Tb
u .

In the sequel, we consider the moment-generating function

M(u, y, b) = E
[
eyDu,b

]
, –

c
β

< u ≤ b,

where y is such that M(u, y, b) exists. We denote the nth moment of the discounted divi-
dends by

Vn(u, b) = E
[
Dn

u,b
]
, –

c
β

< u ≤ b, n ∈ N .

Note that V(u, b) ≡  and, when n = , V(u, b) = V (u, b) is the expectation of Du,b. We
will always assume that M(u, y, b) and Vn(u, b) are sufficiently smooth functions in u and
y, respectively.

The rest of the paper is organized as follows. In Section , we get the integro-differential
equations for the moment-generating function and the nth moment of the discounted
dividends. In Section , we find their explicit expressions for exponential claims and dis-
cuss the impact of the model parameters on the expected dividend payments by numerical
examples.

2 Integro-differential equations
In this section, we study the moment-generating function M(u, y, b), which has been dis-
cussed in various surplus processes; for example, see Albrecher et al. [], Cheung ()
etc. Similarly, we can analyze the moments of D(u, b) through M(u, y, b); since M(u, y, b)
has different paths for – c

β
< u ≤ b, we define

M(u, y, b) =

⎧
⎪⎨

⎪⎩

M(u, y, b), – c
β

< u < ,
M(u, y, b),  ≤ u < �,
M(u, y, b), � ≤ u ≤ b.
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Theorem . M(u, y, b), M(u, y, b), and M(u, y, b) satisfy the following system of integro-
differential equations:

(βu + c)
∂M

∂u
(u, y, b) – αy

∂M

∂y
(u, y, b) – λM(u, y, b) + λF

(
u +

c
β

)

+ λ

∫ u+ c
β


M(u – x, y, b) dF(x) = , –

c
β

< u < , (.)

c
∂M

∂u
(u, y, b) – αy

∂M

∂y
(u, y, b) – λM(u, y, b) + λ

∫ u


M(u – x, y, b) dF(x)

+ λ

∫ u+ c
β

u
M(u – x, y, b) dF(x) + λF

(
u +

c
β

)
= ,  ≤ u < �, (.)

[
r(u – �) + c

]∂M

∂u
(u, y, b) – αy

∂M

∂y
(u, y, b) – λM(u, y, b)

+ λ

∫ u–�


M(u – x, y, b) dF(x) + λ

∫ u

u–�
M(u – x, y, b) dF(x)

+ λ

∫ u+ c
β

u
M(u – x, y, b) dF(x) + λF

(
u +

c
β

)
= , � ≤ u ≤ b, (.)

with boundary conditions:

M

(
–

c
β

, y, b
)

= , (.)

∂M(u, y, b)
∂u

∣∣∣∣
u=b

= yM(b, y, b), (.)

M(–, y, b) = M(, y, b), M(�–, y, b) = M(�, y, b), (.)
(

c
∂M(u, y, b)

∂u
– αy

∂M(u, y, b)
∂y

)∣∣∣∣
u=–

=
(

c
∂M(u, y, b)

∂u
– αy

∂M(u, y, b)
∂y

)∣∣∣∣
u=

,

(
c
∂M(u, y, b)

∂u
– αy

∂M(u, y, b)
∂y

)∣∣∣∣
u=�–

=
(

c
∂M(u, y, b)

∂u
– αy

∂M(u, y, b)
∂y

)∣∣∣∣
u=�

.

(.)

Proof When – c
β

< u < , we consider the infinitesimal time from  to t, and three distinct
events can happen: no claim in (, t), a claim in (, t) without occurring ruin, a claim in
(, t) with occurring ruin. Conditioning on the time and amount of the first claim, we
obtain that

M(u, y, b) = ( – λt)M

(
ueβt + c

eβt – 
β

, ye–αt , b
)

+ λt
∫ ∞

ueβt+c eβt –
β

+ c
β

dF(x)

+ λt
∫ ueβt+c eβt –

β
+ c

β


M

(
ueβt + c

eβt – 
β

– x, ye–αt , b
)

dF(x) + o(t). (.)
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Letting hβ (t, u) = ueβt + c eβt–
β

– u = (c + βu) eβt–
β

, we observe that hβ (t, u) →  as t → .
By Taylor expansion we have

M

(
ueβt + c

eβt – 
β

, ye–αt , b
)

= M(u, y, b) + (βu + c)t
∂M(u, y, b)

∂u
– αyt

∂M(u, y, b)
∂y

+ o(t).

Substituting this expression into (.), dividing both sides of (.) by t, and letting t → ,
we get (.). Similarly, we obtain (.) and (.).

When u = – c
β

, absolute ruin is immediate, namely, no dividend is paid, and we obtain
(.).

When u = b,

M(b, y, b) = ( – λt)ey[c+r(b–�)]tM
(
b, ye–αt , b

)

+ λt
∫ b–�


M

(
b – x, ye–αt , b

)
dF(x)

+ λt
∫ b

b–�
M

(
b – x, ye–αt , b

)
dF(x)

+ λt
∫ b+ c

β

b
M

(
b – x, ye–αt , b

)
dF(x)

+ λt
∫ ∞

b+ c
β

dF(x) + o(t). (.)

By similar methods we obtain the following equation from (.):

αy
∂M(u, y, b)

∂y
=

[
y
(
r(b – �) + c

)
– λ

]
M(b, y, b) + λF

(
b +

c
β

)

+ λ

∫ b–�


M(b – x, y, b) dF(x) + λ

∫ b

b–�
M(b – x, y, b) dF(x)

+ λ

∫ b+ c
β

b
M(b – x, y, b) dF(x). (.)

Letting u ↑ b in (.) and comparing it with (.), we obtain (.).
Next, we prove condition (.). Here we only prove M(�–, y, b) = M(�, y, b). For  ≤

u < �, let τ� be the time that the surplus reaches � for the first time from  ≤ u < �.
As before, we know that t is the time that the surplus reaches � for the first time from
 ≤ u < � with no claims. Then, by the Markov property of Ub(t),

M(u, y, b) = E
[
I
(
τ� < Tb

u
)
eyDu,b

]
+ E

[
I
(
τ� ≥ Tb

u
)
eyDu,b

]

= E
[
I
(
τ� < Tb

u
)
M

(�, ye–ατ� , b
)]

+ P
(
τ� ≥ Tb

u
)

= M(�, y, b)E
[
e–ατ� I

(
τ� < Tb

u
)]

+ P
(
τ� ≥ Tb

u
)

≤ M(�, y, b) + P
(
τ� ≥ Tb

u
)
. (.)
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On the other hand, we have

M(u, y, b) ≥ E
[
I
(
τ� < Tb

u , τ� = t
)
eyDu,b

]
+ E

[
I
(
τ� < Tb

u
)
eyDu,b

]

= E
[
I
(
τ� < Tb

u , τ� = t
)
M

(�, ye–αt , b
)]

+ P
(
τ� ≥ Tb

u
)

= M(�, y, b)e–αt P(T > t) + P
(
τ� ≥ Tb

u
)

≥ e–(λ+α)t M(�, y, b) + P
(
τ� ≥ Tb

u
)
, (.)

where T is the first claim time. As u ↑ �, τ� and t both tend to zero, and limu↑� P(τ� ≥
Tb

u ) = ; letting u ↑ � in (.) and (.), we get M(�–, y, b) = M(�, y, b).
Further, letting u ↑  in (.), u ↓  in (.), and using (.), and then letting u ↑ � in

(.), u ↓ � in (.), and using (.), we get (.). �

Remark . When � = , the conclusions are consistent with Wang et al. []. Write

Vn(u, y, b) =

⎧
⎪⎨

⎪⎩

Vn(u, y, b), – c
β

< u < ,
Vn(u, y, b),  ≤ u < �,
Vn(u, y, b), � ≤ u ≤ b.

Theorem . The moment of the discounted dividend payments until absolute ruin sat-
isfies the following integro-differential equations:

(βu + c)V ′
n(u, b) – (λ + nα)Vn(u, b)

+ λ

∫ u+ c
β


Vn(u – x, b) dF(x) = , –

c
β

< u < , (.)

cV ′
n(u, b) – (λ + nα)Vn(u, b) + λ

∫ u


Vn(u – x, b) dF(x)

+ λ

∫ u+ c
β

u
Vn(u – x, b) dF(x) =  (.)

for  ≤ u < �, and, for � ≤ u ≤ b,

[
r(u – �) + c

]
V ′

n(u, b) – (λ + nα)Vn(u, b) + λ

∫ u–�


Vn(u – x, b) dF(x)

+ λ

∫ u

u–�
Vn(u – x, b) dF(x) + λ

∫ u+ c
β

u
Vn(u – x, b) dF(x) = , (.)

with the following conditions:

Vn

(
–

c
β

, b
)

= , (.)

V ′
n(u, b)|u=b = nV(n–)(b, b), (.)

Vn(–, b) = Vn(, b), Vn(�–, b) = Vn(�, b), (.)

V ′
n(–, b) = V ′

n(, b), V ′
n(�–, b) = V ′

n(�, b). (.)
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Proof The proof is obvious and we omit it here. �

Corollary . For n = , we retain the risk process, and indeed (.), (.), and (.) can
be simplified to

(βu + c)V ′
(u, b) – (λ + α)V(u, b)

+ λ

∫ u+ c
β


V(u – x, b) dF(x) = , –

c
β

< u < , (.)

cV ′
(u, b) – (λ + α)V(u, b) + λ

∫ u


V(u – x, b) dF(x)

+ λ

∫ u+ c
β

u
V(u – x, b) dF(x) =  (.)

for  ≤ u < �, and for � ≤ u ≤ b,

[
r(u – �) + c

]
V ′

(u, b) – (λ + α)V(u, b) + λ

∫ u–�


V(u – x, b) dF(x)

+ λ

∫ u

u–�
V(u – x, b) dF(x) + λ

∫ u+ c
β

u
V(u – x, b) dF(x) = . (.)

Correspondingly, the boundary condition can be simplified to

V

(
–

c
β

, b
)

= , (.)

V ′
(u, b)|u=b = , (.)

V(–, b) = V(, b), V(�–, b) = V(�, b), (.)

V ′
(–, b) = V ′

(, b), V ′
(�–, b) = V ′

(�, b). (.)

Remark . When � = , (.) and (.) are reduced to (.) and (.) of Yuen et al.
[], and (.)-(.) are reduced to (A)-(A) of Yuen et al. [], respectively.

3 Explicit expressions for exponential claims
In this section, we assume that F(x) =  – e– x

μ , x > , μ > , namely, the claim size distri-
bution F(x) is the exponential distribution with mean μ. We obtain explicit expressions of
the moment-generating function and higher moments of the discounted dividends.

Substituting F(x) =  – e– x
μ into (.), (.), and (.), we obtain:

(βu + c)V ′
n(u, b) = (λ + nα)Vn(u, b)

–
λ

μ
e– u

μ

∫ u

– c
β

Vn(x, b)e
x
μ dx, –

c
β

< u < , (.)

cV ′
n(u, b) = (λ + nα)Vn(u, b)

–
λ

μ
e– u

μ

(∫ 

– c
β

Vn(x, b)e
x
μ dx +

∫ u


Vn(x, b)e

x
μ dx

)
(.)
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for  ≤ u < � and, for � ≤ u ≤ b,

[
r(u – �) + c

]
V ′

n(u, b) = (λ + nα)Vn(u, b) –
λ

μ
e– u

μ

(∫ u

�
Vn(x, b)e

x
μ dx

+
∫ �


Vn(x, b)e

x
μ dx +

∫ 

– c
β

Vn(x, b)e
x
μ dx

)
. (.)

Applying the operator d
du + 

μ
on (.), (.), and (.), respectively, we obtain:

(βu + c)V ′′
n(u, b) +

(
βu + c

μ
+ β – (λ + nα)

)
V ′

n(u, b) –
nα

μ
Vn(u, b) = , (.)

cV ′′
n(u, b) +

(
c
μ

– (λ + nα)
)

V ′
n(u, b) –

nα

μ
Vn(u, b) = , (.)

[
r(u – �) + c

]
V ′′

n(u, b) +
(

r(u – �) + c
μ

+ r – (λ + nα)
)

V ′
n(u, b)

–
nα

μ
Vn(u, b) = . (.)

Letting Vn(u, b) = gn(z) and z = – βu+c
βμ

for – c
β

< u < , (.) is reduced to

zg ′′
n (z) +

(
 –

λ + nα

β
– z

)
g ′

n(z) +
nα

β
gn(z) = .

By Slater [], p., the solution of this equation is of the form

gn(z) = anz
λ+nα

β ezU
(

 +
nα

β
,  +

λ + nα

β
, –z

)

+ anz
λ+nα

β ezM
(

 +
nα

β
,  +

λ + nα

β
, –z

)
,

where an and an are arbitrary constants,

M(a, v, x) =
�(v)

�(v – a)�(a)

∫ 


extta–( – t)v–a– dt, v > a > ,

U(a, v, x) =


�(a)

∫ ∞


e–xtta–( + t)v–a– dt, a > ,

are the confluent hypergeometric functions of the first and second kinds, respectively.
Then

Vn(u, b) = gn

(
–

βu + c
βμ

)
= anhn(u) + anhn(u) (.)

with

hn(u) =
(

–
βu + c
βμ

) λ+nα
β

e– βu+c
βμ U

(
 +

nα

β
,  +

λ + nα

β
,
βu + c
βμ

)
,

hn(u) =
(

–
βu + c
βμ

) λ+nα
β

e– βu+c
βμ M

(
 +

nα

β
,  +

λ + nα

β
,
βu + c
βμ

)
.
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We know that

lim
u↓– c

β

hn(u) =
�( λ+nα

β
)

�( β+nα

β
)
, lim

u↓– c
β

hn(u) = . (.)

Letting u ↓ – c
β

on both sides of (.) and substituting (.) and (.) into it, we obtain
an = , and thus

Vn(u, b) = anhn(u). (.)

It follows from (.) that Vn(u, b) takes the form

Vn(u, b) = anesnu + anesnu, (.)

where an and an are arbitrary constants, and sn, sn are the two roots of the following
equation:

s +
(


μ

–
nα + λ

c

)
s –

nα

μc
= ,

with pn = 
μ

– nα+λ
c , qn = – nα

μc , that is,

sn =
–pn +

√
p

n – qn


, sn =

–pn –
√

p
n – qn


.

On the other hand, let Vn(u, b) = jn(y) and y = – ru+c–r�
rμ . Similarly to (.), we obtain the

solution of (.):

jn(y) = any
λ+nα

r eyU
(

 +
nα

r
,  +

λ + nα

r
, –y

)

+ any
λ+nα

r eyM
(

 +
nα

r
,  +

λ + nα

r
, –y

)
.

So we get

Vn(u, b) = jn
(

–
ru + c – r�

rμ

)
= anhn(u) + anhn(u), (.)

where

hn(u) = e– ru+c–r�
rμ

(
–

ru + c – r�
rμ

) λ+nα
r

U
(

 +
nα

r
,  +

λ + nα

r
,

ru + c – r�
rμ

)
,

hn(u) = e– ru+c–r�
rμ

(
–

ru + c – r�
rμ

) λ+nα
r

M
(

 +
nα

r
,  +

λ + nα

r
,

ru + c – r�
rμ

)
,

and an and an are arbitrary constants.
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When n = , since a = , we can get explicit values of a, a, . . . , a. By (.)-(.)
we obtain the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ah′
(b) + ah′

(b) = ,
ah() = a + a,
aes� + aes� = ah(�) + ah(�),
ah′

() = as + as,
ases� + ases� = ah′

(�) + ah′
(�).

Solving this system, we obtain:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = [h(�)h(�)CB–h′
(�)h(�)CA+h

(�)CB–h′
(�)h(�)CA](s–s)

(h′
()–sh())CCA

,

a = [h(�)h(�)CB–h′
(�)h(�)CA+h

(�)CB–h′
(�)h(�)CA](sh()–h′

())
(h′

()–sh())CCA
,

a = h(�)h(�)CB–h′
(�)h(�)CA+h

(�)CB–h′
(�)h(�)CA

CCA
,

a = h(�)B–h′
(�)A

C
,

a = h(�)B–h′
(�)A

C
,

(.)

where

A =
(sh() – h′

())es� + (h′
() – sh())es�

h′
() – sh()

,

B =
(sh() – h′

())ses� + (h′
() – sh())ses�

h′
() – sh()

,

C =
[
h′

(b)h(�) – h(�)h′
(b)

]
B +

[
h′

(�)h′
(b) – h′

(b)h′
(�)

]
A,

C =
[
h′

(b)h(�) – h(�)h′
(b)

]
B +

[
h′

(b)h′
(�) – h′

(�)h′
(b)

]
A.

When n ≥ , by (.)-(.) we obtain the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

anh′
n(b) + anh′

n(b) = nV ′
(n–)(b, b),

anhn() = an + an,
anesn� + anesn� = anhn(�) + anhn(�),
anh′

n() = ansn + ansn,
ansnesn� + ansnesn� = anh′

n(�) + anh′
n(�).

Solving this system of equations, we obtain:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

an = nV(n–)(b,b)[hn(�)hn(�)CnBn–h′
n(�)hn(�)CnAn+h

n(�)CnBn–h′
n(�)hn(�)CnAn](sn–sn)

(h′
n()–snhn())CnCnAn

,

an = nV(n–)(b,b)[hn(�)hn(�)CnBn–h′
n(�)hn(�)CnAn+h

n(�)CnBn–h′
n(�)hn(�)CnAn]

(h′
n()–snhn())CnCnAn

× (snhn() – h′
n()),

an = nV(n–)(b,b)[hn(�)hn(�)CnBn–h′
n(�)hn(�)CnAn+h

n(�)CnBn–h′
n(�)hn(�)CnAn]

CnCnAn
,

an = nV(n–)(b,b)[hn(�)Bn–h′
n(�)An]

Cn
,

an = nV(n–)(b,b)[hn(�)Bn–h′
n(�)An]

Cn
,

(.)
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where

An =
(snhn() – h′

n())esn� + (h′
n() – snhn())esn�

h′
n() – snhn()

,

Bn =
(snhn() – h′

n())snesn� + (h′
n() – snhn())snesn�

h′
n() – snhn()

,

Cn =
[
h′

n(b)hn(�) – hn(�)h′
n(b)

]
Bn +

[
h′

n(�)h′
n(b) – h′

n(b)h′
n(�)

]
An,

Cn =
[
h′

n(b)hn(�) – hn(�)h′
n(b)

]
Bn +

[
h′

n(b)h′
n(�) – h′

n(�)h′
n(b)

]
An.

From (.) and a, a in (.) we can obtain V(b, b) see the following Examples -.
Recursively, we can obtain explicit expressions of Vn(u, b), Vn(u, b), and Vn(u, b).

We summarize the exact solution for Vn(u, b), Vn(u, b), and Vn(u, b) in the following
theorem.

Theorem . Suppose that the claim size distribution is the exponential distribution with
F(x) =  – e– x

μ . Then Vn(u, b) is given by

Vn(u, b) = anhn(u), –
c
β

< u < ,

Vn(u, b) = anesnu + anesnu,  ≤ u < �, (.)

Vn(u, b) = anhn(u) + anhn(u), � ≤ u ≤ b.

Here, a, a, . . . , a are obtained in (.) for n = ; otherwise, for n ≥ , an, an, . . . , an

are obtained by (.).

Remark . In fact, we can obtain the following explicit expressions of M(u, y, b),
M(u, y, b), and M(u, y, b):

M(u, y, b) =  +
∞∑

n=

yn

n!
anhn(u), –

c
β

< u < ,

M(u, y, b) =  +
∞∑

n=

yn

n!
(
anesnu + anesnu),  ≤ u < �,

M(u, y, b) =  +
∞∑

n=

yn

n!
(
anhn(u) + anhn(u)

)
, � ≤ u ≤ b.

At the end of this section, we use the following numerical examples to discuss the impact
of the model parameters on the expected dividend payments.

Example  Table  provides numerical results for V(u, b) for various u and r. We find
out that V(u, b) increases as the credit interest or the initial surplus increases.

Example  Table  provides numerical results for V(u, b) for various u and β . We find
out that V(u, b) decreases as the force of debit interest increases but increases as the
initial surplus increases.
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Table 1 Influence of u and r on V13(u, b) with b = 2.8, � = 1.5, α = 0.03, μ = 1, λ = 1, c = 1.5,
β = 0.09

u \ r 0.03 0.04 0.05 0.06 0.07 0.08

1.6 27.8537 28.1717 28.4903 28.8095 29.1294 29.4498
1.7 27.9233 28.2420 28.5614 28.8813 29.2018 29.5230
1.8 27.9961 28.3155 28.6355 28.9562 29.2744 29.5992
1.9 28.0719 28.3920 28.7127 29.0340 29.3559 29.6784
2.0 28.1507 28.4714 28.7928 29.1147 29.4372 29.7603
2.1 28.2323 28.5537 28.8756 29.1981 29.5212 29.8449
2.2 28.3167 28.6386 28.9610 29.2840 29.6077 29.9318
2.3 28.4038 28.7261 29.0490 29.3725 29.6965 30.0212
2.4 28.4933 28.8161 29.1394 29.4632 29.7877 30.1127

Table 2 Influence of u and β on V13(u, b) with b = 2.8, � = 1.5, α = 0.03, μ = 1, λ = 1, c = 1.5,
r = 0.04

u \ β 0.09 0.10 0.11 0.12 0.13 0.14

1.6 28.1717 27.1050 26.1146 25.1984 24.3525 23.5719
1.7 28.2420 27.1783 26.1906 25.2769 24.4333 23.6549
1.8 28.3155 27.2544 26.2691 25.3577 24.5162 23.7396
1.9 28.3920 27.3332 26.3501 25.4407 24.6010 23.8262
2.0 28.4714 27.4147 26.4334 25.5258 24.6877 23.9144
2.1 28.5537 27.4987 26.5191 25.6129 24.7763 24.0042
2.2 28.6386 27.5851 26.6069 25.7020 24.8666 24.0956
2.3 28.7261 27.6738 29.6968 25.7930 24.9585 24.1884
2.4 28.8161 27.7648 26.7887 25.8857 25.0521 24.2827

Table 3 Influence of u and � on V13(u, b) with b = 2.8, α = 0.03, μ = 1, λ = 1, c = 1.5, β = 0.09,
r = 0.04

u \ � 0.9 1.1 1.3 1.5 1.7 1.9

1.6 20.8956 22.6238 24.9465 28.1717 32.8679 40.2129
1.7 20.9881 22.7109 25.0265 28.2420 32.9245 40.2483
1.8 21.0815 22.7994 25.1086 28.3155 32.9857 40.2906
1.9 21.1756 22.8892 25.1928 28.3920 33.0512 40.3394
2.0 21.2706 22.9803 25.2789 28.4714 33.1211 40.3944
2.1 21.3662 23.0727 25.3669 28.5537 33.1950 40.4556
2.2 21.4625 23.1662 25.4568 28.6386 33.2779 40.5256
2.3 21.5594 23.2608 25.5484 28.7261 33.3545 40.5952
2.4 21.6570 23.3565 25.6417 28.8161 33.4398 40.6732

Table 4 Influence of u and b on V13(u, b) with � = 1.5, α = 0.03, μ = 1, λ = 1, c = 1.5, β = 0.09,
r = 0.04

u \ b 2.5 2.6 2.7 2.8 2.9 3.0 3.1

1.6 30.1186 29.4128 28.7660 28.1717 27.6244 27.1195 26.6526
1.7 30.1938 29.4862 28.8378 28.2420 27.6934 27.1872 26.7192
1.8 30.2724 29.5630 28.9128 28.3155 27.7655 27.2579 26.7887
1.9 30.3542 29.6428 28.9909 28.3920 27.8405 27.3316 26.8611
2.0 30.4391 29.7258 29.0720 28.4714 27.9184 27.4080 26.9362
2.1 30.5270 29.8116 29.1560 28.5537 27.9990 27.4872 27.0140
2.2 30.6178 29.9003 29.2427 28.6386 28.0823 27.5689 27.0943
2.3 30.7113 29.9916 29.3321 28.7261 28.1681 27.6532 27.1771
2.4 30.8075 30.0856 29.4239 28.8161 28.2563 27.7398 27.2623
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Example  Table  provides numerical results for V(u, b) for various u and �. We find
out that V(u, b) increases as the liquid reserve or the initial surplus increases.

Example  Table  provides numerical results for V(u, b) for various u and b. We find
out that V(u, b) decreases as b increases but increases as the initial surplus increases.

We plot four figures (Figures -) for the surfaces of the expected dividend payments
with the help of Tables -, from which we can see the influence of credit interest, debit
interest, dividend barrier b, and liquid reserve � on the values of the expected dividend
payments.

For � = , our model is reduced to Wang and Yin []. For example, Figures  and  show
that the expected dividend payments V (u, b) decrease as the debit interest increases but
increase as credit interest increases, which is also obtained by Wang and Yin [], Tables 
and .

Figure 1 Surfaces of V(u, r) when b = 2.8, � = 1.5, α = 0.03, μ = 1, λ = 1, c = 1.5, β = 0.09.

Figure 2 Surfaces of V(u,β) when b = 2.8, � = 1.5, α = 0.03, μ = 1, λ = 1, c = 1.5, r = 0.04.
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Figure 3 Surfaces of V(u, �) when b = 2.8, α = 0.03, μ = 1, λ = 1, c = 1.5, β = 0.09, r = 0.04.

Figure 4 Surfaces of V(u, b) when � = 1.5, α = 0.03, μ = 1, λ = 1, c = 1.5, β = 0.09, r = 0.04.

Figure 5 Surfaces of V(u, b) when � = 0, α = 0.03, μ = 1, λ = 1, c = 1.5, β = 0.09, r = 0.04.
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Figure 6 Surfaces of V(u, b) when � = 0, α = 0.03, μ = 1, λ = 1, c = 1.5, β = 0.09, r = 0.04.
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