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Abstract
The aim of this paper is to study asymptotical stability of Runge-Kutta methods for a
class of linear impulsive differential equations with piecewise continuous arguments.
New results about the asymptotical stability region of Runge-Kutta methods for these
equations are obtained by the theory of the Padé approximation. Finally, some
numerical examples are given to illustrate the theoretical results.
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1 Introduction
In the past two decades, the theory of impulsive differential equations has been developed
rapidly [–]. Such equations consist of differential equations with impulse effects and
emerge in modeling of real-world problems observed in engineering, physics, biology, etc.
In addition to these, the theory of numerical methods for impulsive differential equations
has also been studied extensively [–].

In , Cooke and Wiener studied differential equations without impulses and they
noted that such equations were comprehensively related to impulsive and difference equa-
tions []. Later, the case of discontinuous solutions of differential equations with piecewise
continuous arguments was proposed as an open problem by Wiener []. On the other
hand, it is well known that many biological phenomena involving thresholds, bursting
rhythm models in medicine and biology, and optimal control models in economics do ex-
hibit impulsive effects []. Recently, the existence and uniqueness, and oscillation of the
exactly solutions of impulsive delay differential equations with piecewise constant argu-
ments have been widely studied [–]. But to the best of our knowledge, up to now, there
are few articles referring to numerical methods for impulsive delay differential equations
with piecewise constant arguments.

In this paper, we study the asymptotical stability of Runge-Kutta methods for the fol-
lowing scalar equation:

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) = px(t) + qx([t]), t ≥ , t �= k, k = , , . . . ,

�x(k) = rx(k–), k = , , . . . ,

x() = x,

(.)
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where p, q, r, and x are real constants and [·] denotes the greatest integer function. This
paper can be seen not only as the extension of asymptotically stable theory of differential
equations with piecewise arguments in [], but also as the extension of asymptotically
stable theory of impulsive ordinary differential equations in [].

The paper is organized as follows. In Section , we obtain the existence, uniqueness, and
asymptotical stability of the exact solutions of (.). In Section , we study the asymptotical
stability of the Runge-Kutta methods for (.). In Section , two special cases of Section 
are studied, respectively: impulsive differential equations without piecewise constant ar-
gument and differential equations with piecewise constant arguments. In Section , some
numerical examples are given to confirm the theoretical results.

2 Asymptotical stability of the exact solutions
Definition . (See [–, ]) If a function x : R+ →R satisfies the following conditions,
it is said to be a solution of (.):

() x(t) is continuous for t ∈ [, +∞) with the possible exception of the points
[t] ∈ [,∞),

() x(t) is right continuous and has left-hand limit at the points [t] ∈ [,∞),
() x(t) is differentiable and satisfies x′(t) = px(t) + qx([t]) for any t ∈R

+ with the
possible exception of the points [t] ∈ [,∞) where one-sided derivatives exist,

() x(n) satisfies �x(n) = rx(n–) for n ∈ Z
+.

Definition . The zero solution of (.) is said to be asymptotically stable, if

lim
t→∞ x(t) = , (.)

where x(t) is the solution of (.) for any initial data x.

By [], p., Theorem , and [], p., Theorem , we immediately obtain the fol-
lowing theorem.

Theorem . When p �= , on t ∈ [,∞), (.) has a unique solution

x(t) = m
({t}) · n[t]

 · x,

where {t} is the fractional part of t and

m(t) = ept +
q
p
(
ept – 

)
, n = ( + r)m() = ( + r)

(

ep +
q
p
(
ep – 

)
)

.

When p = , on t ∈ [,∞), (.) also has a unique solution

x(t) = ( + r)[t]( + q)[t](q{t} + 
)
x.

Consequently, when p �= , the zero solution of (.) is asymptotically stable if and only if

∣
∣
∣
∣( + r)

(

ep +
q
p
(
ep – 

)
)∣

∣
∣
∣ < ; (.)
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when p = , the zero solution of (.) is asymptotically stable if and only if

∣
∣( + r)( + q)

∣
∣ < . (.)

We introduce the sets H and H consisting of (p, q, r) ∈ R
 which satisfy the condition

(.) and (.), respectively, i.e.

H =
{

(, q, r) :
∣
∣( + r)( + q)

∣
∣ < 

}
,

H =
{

(p, q, r) : p �=  and
∣
∣
∣
∣( + r)

(

ep +
q
p
(
ep – 

)
)∣

∣
∣
∣ < 

}

,

and we divide the region H into four parts as p + q �= :

H =
{

(p, q, r) : p < , ep <
q

p + q
and (p, q, r) ∈ H

}

,

H =
{

(p, q, r) : p < , ep >
q

p + q
and (p, q, r) ∈ H

}

,

H =
{

(p, q, r) : p > , ep <
q

p + q
and (p, q, r) ∈ H

}

,

H =
{

(p, q, r) : p > , ep >
q

p + q
and (p, q, r) ∈ H

}

.

3 Runge-Kutta methods for (1.1)
Consider the Runge-Kutta methods for equation (.):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xk,l+ = xk,l + h
∑v

i= bi(pY i
k,l + qxk,), l = , . . . , m – , k = , , . . . ,

Y i
k,l = xk,l + h

∑v
j= aij(pY j

k,l + qxk,), l = , . . . , m – , k = , , . . . ,

x(k+), = ( + r)xk,m, k = , , , . . . ,

x, = x,

(.)

where h = τ
m , m ≥ , m is an integer, h is the stepsize, v is referred to as the number of

stages. The weights are bi, the abscissas are ci =
∑v

j= aij and the matrix A = [ai,j]v
i,j= will

be denoted by (A, b, c).

Definition . Process (.) for equation (.) is called asymptotically stable at (p, q, r) if
and only if for all m ≥ M and h = 

m
. I – zA is invertible where z = hp,
. for any given xk,l ( ≤ l ≤ m) by relationship (.), such that limk→∞ Xk =  where

Xk = (xk,, xk,, . . . , xk,m).

Definition . The set of all pairs (p, q, r) at the process (.) for equation (.) which is
asymptotically stable is called stability region denoted by S.

Theorem . When p �= , the method (.) is asymptotically stable if and only if

∣
∣
∣
∣( + r)

(

R(z)m +
q
p
(
R(z)m – 

)
)∣

∣
∣
∣ < ,
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where R(z) =  + zbT (I – zA)–e, e = (, , . . . , )T is a vector of v dimension. On the other
hand, when p = , the consistent Runge-Kutta method (.) is asymptotically stable if and
only if

∣
∣( + r)( + q)

∣
∣ < .

Proof The Runge-Kutta method (.) can be written as

{
xk,l+ = R(z)xk,l + q

p (R(z) – )xk,, l = , , . . . , m – ,
xk+, = ( + r)xk,m, k = , , , . . . ,

(.)

which implies that

{
xk,l = (R(z)l + q

p (R(z)l – ))xk,, l = , , . . . , m,
xk+, = ( + r)xk,m, k = , , , . . . ,

(.)

which also implies that

xk,l =
(

( + r)
(

R(z)m +
q
p
(
R(z)m – 

)
))k(

R(z)l +
q
p
(
R(z)l – 

)
)

x,.

Hence when p �= , the method (.) is asymptotically stable if and only if |( + r)(R(z)m +
q
p (R(z)m – ))| < .

On the other hand, the Runge-Kutta method being consistent implies
∑v

i= bi = , which
also implies

xk,l =
(
( + r)( + q)

)k( + lhq)x,, l = , , . . . , m – , k = , , . . . . (.)

Consequently, when p = , the consistent Runge-Kutta method (.) is asymptotically sta-
ble if and only if

∣
∣( + r)( + q)

∣
∣ < . �

Lemma . If the same Runge-Kutta method applied to the following test equation:

{
y′(t) = py(t), t ≥ ,
y() = y,

(.)

is convergent (in the following, we always assume this condition holds), then we have
limm→∞,mh= R(z)m = limm→∞,mh= R(hp)m = ep, where R(z) =  + zbT (I – zA)–e is the sta-
bility function.

Proof Obviously, y = R(z)y. Step by step, ym = R(z)my is an approximation of y(). Solv-
ing equation (.), we obtain y() = epy. Because the method is convergent, we have
limh→,mh= ym = y(), which implies limm→∞,mh= R(z)m = ep. �
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Lemma . (See [–]) The (j, k)-Padé approximation to ez is given by

R(z) =
Pj(z)
Qk(z)

, (.)

where

Pj(z) =  +
j

j + k
· z +

j(j – )
(j + k)(j + k – )

· z

!
+ · · · +

j!k!
(j + k)!

· zj

j!
,

Qk(z) =  –
k

j + k
· z +

k(k – )
(j + k)(j + k – )

· z

!
+ · · · + (–)k · k!j!

(j + k)!
· zk

k!
,

with error

ez – R(z) = (–)k · j!k!
(j + k)!(j + k + )!

· zj+k+ + O
(
zj+k+).

It is the unique rational approximation to ez of order j + k, such that the degrees of numer-
ator and denominator are j and k, respectively.

It is easy to prove the following lemma. Therefore, the proof is omitted.

Lemma . Assume p �= , p + q �= , and f (x) = |x + q
p (x – )|. Then f (x) is decreasing for

x < q
p+q . On the other hand, f (x) is increasing for x > q

p+q .

The set S of all (p, q, r) at which the scheme (.) is asymptotically stable is called the
asymptotical stability region,

S =
{

(p, q, r) :
∣
∣
∣
∣( + r)

(

R(z)m +
q
p
(
R(z)m – 

)
)∣

∣
∣
∣ < 

}

.

Theorem . Assume p �= , p + q �= , and the stability function of the Runge-Kutta
method R(z) is the (j, k)-Padé approximation to ez , z = hp. Then for h = 

m , m being an
integer,

. when h ≤ min{h, – ς

p }, H ⊆ S if and only if j is even,
. when h ≤ h, H ⊆ S if and only if j is odd,
. when h ≤ min{h, η

p }, H ⊆ S if and only if k is odd,
. when h ≤ h, H ⊆ S if and only if k is even,

where h = sup{x : R(hp)

h < q

p+q for all h ∈ (, x)}, h = sup{x : R(hp)

h > q

p+q for all h ∈
(, x)}, η is a real zero of Qk(z), and ζ is a real zero of Pj(z). (See Table .)

Proof For brevity, we only prove case  of the theorem; the others, which can be proved
similarly, are omitted. By Lemma ., we see that limm→∞,mh= R(z)m = ep. ep ≤ q

p+q implies
R(z)m ≤ q

p+q for h ≤ h. Assume h ≤ min{h, – ς

p }.
⇐�) By Lemma . and j is even, we can obtain ez ≤ R(z), which implies that ep ≤

R(z)m ≤ q
p+q for m ≥ M. Consequently, by Lemma ., we have

∣
∣R(z)m +

q
p
(
R(z)m – 

)∣
∣ ≤

∣
∣
∣
∣e

p +
q
p
(
ep – 

)
∣
∣
∣
∣,

which implies H ⊆ S.
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Table 1 The high order Runge-Kutta methods for (1.1)

Gauss-Legendre Radau IA, IIA Lobatto IIIA, IIIB Lobatto IIIC

(j, k) (v, v) (v – 1, v) (v – 1, v – 1) (v – 2, v)
H1 ⊆ S v is even v is odd v is odd v is even
H2 ⊆ S v is odd v is even v is even v is odd
H3 ⊆ S v is odd v is odd v is even v is odd
H4 ⊆ S v is even v is even v is odd v is even

�⇒) H ⊆ S implies |R(z)m + q
p (R(z)m – )| ≤ |ep + q

p (ep – )|. Because ep ≤ q
p+q , R(z)m ≤

q
p+q , by Lemma ., we obtain R(z)m ≤ ep, which implies R(z) ≥ ez . By Lemma ., we see
that j is even. �

4 Special cases
In this section, two special cases are studied: the first special case q = , where equation
(.) is changed as linear impulsive ordinary differential equations; second special case
r = , where equation (.) is changed as linear differential equations with piecewise con-
tinuous argument without impulsive perturbations.

4.1 Linear impulsive ordinary differential equations
In this subsection, the special case of (.) when q =  is studied. Equation (.) is changed
as

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) = px(t), t ≥ , t �= k, k = , , . . . ,

�x(k) = rx(k–), k = , , . . . ,

x() = x,

(.)

where p, r, and x.
Theorem . is changed to the following result.

Theorem . On t ∈ [,∞), (.) has a unique solution

x(t) = m
({t}) · n[t]

 · x,

where {t} is the fractional part of t and

m(t) = ept , n = ( + r)m() = ( + r)ep.

Consequently, the zero solution of (.) is asymptotically stable if and only if

| + r|ep < . (.)

The asymptotical stability sets H, H , H, and H are changed as follows, respectively:

H =
{

(p, r) : p =  and | + r| < 
}

,

H =
{

(p, r) : | + r|ep < 
}

,

H =
{

(p, r) : p <  and (p, r) ∈ H
}

,
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Table 2 The high order Runge-Kutta methods for (4.1)

Gauss-Legendre Radau IA, IIA Lobatto IIIA, IIIB Lobatto IIIC

(j, k) (v, v) (v – 1, v) (v – 1, v – 1) (v – 2, v)
H7 ⊆ S1 v is odd v is even v is even v is odd
H8 ⊆ S1 v is even v is even v is odd v is even

H =
{

(p, r) : p >  and (p, r) ∈ H
}

.

Obviously, H and H are empty as q = , so it is not considered.
We also consider the Runge-Kutta methods for (.):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xk,l+ = xk,l + hp
∑v

i= biY i
k,l, l = , , . . . , m – , k = , , . . . ,

Y i
k,l = xk,l + hp

∑v
j= aijY

j
k,l, l = , , . . . , m – , k = , , . . . ,

x(k+), = ( + r)xk,m, k = , , , . . . ,

x, = x,

(.)

where h = 
m , m ≥ , m is an integer, h is the stepsize. The set S of all (p, r) at which the

scheme (.) is asymptotically stable is called the asymptotical stability region,

S =
{

(p, r) : | + r| · R(z)m < 
}

.

From Theorem ., we immediately obtain the following results.

Theorem . Assume the stability function for the Runge-Kutta method is R(z), the (j, k)-
Padé approximation to ez , z = ph. Then for h = 

m , m being an integer,
. H ⊆ S for an arbitrary consistent Runge-Kutta method,
. when h ≤ h, H ⊆ S if and only if j is odd,
. when h ≤ h, H ⊆ S if and only if k is even,

where h = sup{x : R(hp) >  for all h ∈ (, x)}. (See Table .)

The results obtained in this subsection are consistent with the results Ran et al. in [].

4.2 Linear differential equations with piecewise continuous argument
In this subsection, the special case of (.) when r =  is studied. Equation (.) is changed
as

⎧
⎨

⎩

x′(t) = px(t) + qx([t]), t ≥ ,

x() = x,
(.)

where we introduced p, q, and x.
Theorem . is changed to the following result.

Theorem . On t ∈ [,∞), (.) has a unique solution

x(t) = m
({t}) · n[t]

 · x,
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where {t} is the fractional part of t and

m(t) = ept +
q
p
(
ept – 

)
, n = m() = ep +

q
p
(
ep – 

)
.

Consequently, when p �= , the zero solution of (.) is asymptotically stable if and only if

∣
∣
∣
∣e

p +
q
p
(
ep – 

)
∣
∣
∣
∣ = ep +

|q|
p

(
ep – 

)
< . (.)

Obviously, when p = , the zero solution of (.) is asymptotically stable if and only if
| + q| < .

The asymptotical stability sets H , H, and H are changed as follows, respectively:

H =
{

(p, q) : p =  and |q| < 
}

,

H =
{

(p, q) :
∣
∣
∣
∣e

p +
q
p
(
ep – 

)
∣
∣
∣
∣ < 

}

=
{

(p, q) : –
p(ep + )

ep – 
< q < –p

}

,

H =
{

(p, q) : p <  and (p, q) ∈ H
}

,

H =
{

(p, q) : p >  and (p, q) ∈ H
}

.

Obviously, the sets H and H are empty when r = , so it is not considered.
We also consider the Runge-Kutta methods for (.):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xk,l+ = xk,l + h
∑v

i= bi(pY i
k,l + qxk,), l = , , . . . , m – , k = , , . . . ,

Y i
k,l = xk,l + h

∑v
j= aij(pY j

k,l + qxk,), l = , , . . . , m – , k = , , . . . ,

x(k+), = xk,m, k = , , , . . . ,

x, = x,

(.)

where h = 
m , m ≥ , m is an integer, h is the stepsize, v is referred to as the number of

stages. The following set S of all (p, q) at which the scheme (.) is asymptotically stable
is called the asymptotical stability region,

S =
{

(p, q) :
∣
∣
∣
∣R(z)m +

q
p
(
R(z)m – 

)
∣
∣
∣
∣ < 

}

.

From Theorem ., we immediately obtain the following results.

Theorem . Assume the stability function Runge-Kutta method is R(z), the (j, k)-Padé
approximation to ez , z = ph. Then for h = 

m , m being an integer,
. H ⊆ S for arbitrary consistent Runge-Kutta method,
. when h ≤ min{h, – ς

p }, H ⊆ S if and only if j is even,
. when h ≤ h, H ⊆ S if and only if k is even. (See Table .)

The results obtained in this subsection are consistent with the results of Liu et al. in [].
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Table 3 The high order Runge-Kutta methods for (4.4)

Gauss-Legendre Radau IA, IIA Lobatto IIIA, IIIB Lobatto IIIC

(j, k) (v, v) (v – 1, v) (v – 1, v – 1) (v – 2, v)
H11 ⊆ S2 v is even v is odd v is odd v is even
H12 ⊆ S2 v is even v is even v is odd v is even

Figure 1 Explicit Euler method for (5.1) as h = 1
2 .

Figure 2 Implicit Euler method for (5.1) as h = 1
2 .
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Figure 3 2-stage Lobatto IIIC method for (5.1) as h = 1
10 .

Figure 4 3-stage Lobatto IIIA method for (5.1) as h = 1
10 .

5 Numerical experiments
First of all, we consider the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) = x(t) – x([t]), t ≥ , t �= k, k = , , . . . ,

�x(k) = – 
 x(k–), k = , , . . . ,

x() = .

(.)

Obviously, we have |( + r)(ep + q
p (ep – ))| < . Hence the exact solution of (.) is asymp-

totically stable.
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Figure 5 Implicit Euler method for (5.2) as h = 1
20 .

Figure 6 2-stage Lobatto IIIA method for (5.2) as h = 1
10 .

By Theorem . (case  of the theorem), we can see that explicit Euler method for (.)
(see Figure ) is asymptotically stable for arbitrary h = 

m , m is an integer. (Obviously,
R(hp)


h = ( + hp)


h = ( + 

m )m ≥  > 
 = q

p+q , which implies h ≤ h holds for arbitrary
h = 

m , m being an integer.)
We all know that the implicit Euler method for the test equation y′(t) = λy(t), (λ) < ,

is asymptotically stable for arbitrary step size h > . But this does not hold for arbitrary
step size h >  when the implicit Euler method is adopted for (.) (see Figure ).

By Theorem . and Table , we can also see that the -stage Lobatto IIIC method and
the -stage Lobatto IIIA method are all asymptotically stable (see Figures  and ) for h
small enough.
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Figure 7 2-stage Lobatto IIIB method for (5.2) as h = 1
10 .

Figure 8 3-stage Lobatto IIIC method for (5.2) as h = 1
10 .

Consider the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) = x(t) – 
 x([t]), t ≥ , t �= k, k = , , . . . ,

�x(k) = x(k–), k = , , . . . ,

x() = .

(.)

Obviously, we have |( + r)(ep + q
p (ep – ))| = ( – e) < . Hence the exact solution of (.)

is asymptotically stable.
By Theorem . (case  of the theorem), we can also see that the implicit Euler method

for (.) (see Figure ) is asymptotically stable for h = 
m , m being an integer and m ≥ .
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Table 4 The errors of the Runge-Kutta methods for (5.1)

m The implicit Euler 2-Lobatto IIIA 2-Lobatto IIIC

AE RE AE RE AE RE

10 0.2731 2.1864 0.0023 0.0188 0.0049 0.0393
20 0.0956 0.7651 5.8209 0.0047 0.0012 0.0096
40 0.0406 0.3251 1.4524e–004 0.0012 2.9546e–004 0.0024
80 0.0188 0.1504 3.6293e–005 2.9057e–004 7.3237e–005 5.8636e–004
160 0.0090 0.0724 9.0721e–006 7.2634e–005 1.8227e–005 1.4594e–004
320 0.0044 0.0355 2.2680e–006 1.8158e–005 4.5464e–006 3.6400e–005
Ratio 2.2977 2.2977 4.0083 4.0083 4.0435 4.0435

Table 5 The errors of the Runge-Kutta methods for (5.2)

m The implicit Euler 2-Lobatto IIIA 2-Lobatto IIIC

AE RE AE RE AE RE

100 0.0013 0.3930 2.5918e–006 8.0380e–004 5.2281e–006 0.0016
200 7.0145e–004 0.2175 6.4811e–007 2.0100e–004 1.3014e–006 4.0362e–004
400 3.6926e–004 0.1145 1.6204e–007 5.0254e–005 3.2470e–007 1.0070e–004
800 1.8947e–004 0.0588 4.0510e–008 1.2564e–005 8.1098e–008 2.5151e–005

1,600 9.5971e–005 0.0298 1.0128e–008 3.1409e–006 2.0265e–008 6.2848e–006
3,200 4.8298e–005 0.0150 2.5319e–009 7.8522e–007 5.0649e–009 1.5708e–006
Ratio 1.9326 1.9227 3.9997 3.9997 4.0064 4.0064

(Obviously, η

p =  and R(hp)

h = ( 

–hp )

h = ( – 

m )–m <  = q
p+q , which implies h ≤ min{h, η

p }
holds for h = 

m , m being an integer and m ≥ .)
Similarly, we can also see that the -stage Lobatto IIIA method for (.) (see Figure )

is asymptotically stable for h = 
m , m being an integer and m ≥ . (Obviously, η

p =  and

R(hp)

h = ( + hp


– hp


)


h = ( + 

m– )m <  = q
p+q , which implies h ≤ min{h, η

p } holds for h = 
m ,

m being an integer and m ≥ .)
By Theorem . and Table , we also see that the -stage Lobatto IIIB and the -stage

Lobatto IIIC (see Figures  and ) are all asymptotically stable for h small enough.
We can see that the methods conserve their orders of convergence from Table  and

Table .
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