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Abstract
Departing from a finite-difference scheme to approximate the solutions of the
Burgers-Huxley equation, the present manuscript extends that technique to higher
dimensions. We show that our methodology possesses the same numerical
properties of the one-dimensional version (exactness, positivity, boundedness,
monotonicity, etc.). Moreover, helped by a recent theorem on the existence and
uniqueness of positive and bounded solutions of the Burgers-Huxley equation, we
establish that the present method is a convergent scheme.
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1 Background
Let R+ represent the set of positive numbers, let R+ = R

+ ∪ {} and suppose that α and
γ are real numbers such that  < γ < . Throughout, we assume that u = u(x, y, t) is a real
function on (x, y, t) ∈R×R×R+ which satisfies

∂u
∂t

+ αu
(

∂u
∂x

+
∂u
∂y

)
– �u – f (u) = . ()

Here, � denotes the two-dimensional Laplacian operator, and

f (u) = u( – u)(u – γ ). ()

This model is the Burgers-Huxley equation that generalizes the classical Burgers equa-
tion [] and the Hodgkin-Huxley model []. Many applications of this equation and its
variations may be found in the sciences and in engineering [–].

Several discretizations of () and related equations have been proposed in the litera-
ture using different approaches [–]. Recently, the first author derived an exact finite-
difference scheme for the one-dimensional Burgers-Huxley equation, which preserved
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positivity, boundedness and monotonicity []. However, questions like the following were
left unanswered (the present note intends to provide affirmative responses to all of them).

Problem  Are there analytical results that guarantee the existence and uniqueness of
positive and bounded solutions of the Burgers-Huxley equation?

Problem  Can the scheme of [] be dimensionally generalized in such way that the
resulting method preserves the dynamical properties derived therein?

Problem  Is the scheme convergent? In the affirmative case, under which conditions?
What is the order of convergence?

The following results are the most important properties on the existence and uniqueness
of positive and bounded solutions of the Burgers-Huxley equation. They provide affirma-
tive responses to Problem .

Theorem  (See [], p.) Let � ⊆ R
 be open, bounded and connected, let T ∈ R

+

and let A be an elliptic operator of order . Consider the parabolic initial-boundary-value
problem

{
∂u
∂t = Au + F(x, t, u,∇u), subject to
u(x, t) = û(x, t), for (x, t) ∈ � × {} ∪ ∂� × [, T],

()

and suppose that the following hypotheses are satisfied:
. û is smooth,
. F(x, t, u,∇u) is locally Hölder continuous with respect to (x, t),
. F(x, t, u,∇u) is Lipschitz continuous in u, uniformly for bounded subsets of

� × [, T] ×R×R
, and

. ût = Aû + F(x, , û,∇û) holds for (x, t) ∈ ∂� × {}.
Then there exists a unique solution of () in � × [, T], for some  < T ≤ T .

As a consequence, if the conditions of Theorem  are satisfied for the initial-boundary
conditions of the partial differential equation () then there exist T >  and a unique solu-
tion of () in � × [, T]. The proof readily follows from the theorem with F(x, t, u,∇u) =
–αu · ∇u · (, )t + f (u) and f given by ().

The next result establishes the positivity and the boundedness of classical solutions
of (). It will be a crucial tool in the derivation of the convergent character of our finite-
difference method.

Theorem  (Ervin et al. []) If μ ∈ {,γ } and if u(x, t) is a classical solution of () sat-
isfying  < u(x, t) < μ for each (x, t) ∈ � × {} ∪ ∂� × [, T], then  < u(x, t) < μ for each
(x, t) ∈ � ×R+.

This work is divided as follows. In Section , we introduce the finite-difference scheme
to approximate solutions of () and derive some technical results. In turn, Section  shows
that our numerical method has the same dynamical properties as its one-dimensional
counterpart, thus providing and affirmative answer to Problem . Section  is devoted
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to a proof of the convergence property of our technique. Finally, we close this work with a
brief section of concluding remarks.

2 Preliminaries
Mimicking the approach followed in [], we suppose that a, b, c, d, and T are real numbers
which satisfy a < b, c < d, and T > . Let us fix a rectangular spatial domain � = [a, b] ×
[c, d] of ⊆ R

, and assume that K , M, and N are positive integers. In this work, we consider
regular partitions

a = x < x < · · · < xm < · · · < xM = b, m ∈ {, , . . . , M},
c = y < y < · · · < yn < · · · < yN = d, n ∈ {, , . . . , N},

of the intervals [a, b] and [c, d], respectively, each of them with norm given by �x and �y.
Also, let us consider a (not necessarily uniform) partition

 = t < t < · · · < tk < · · · < tK = T , k ∈ {, , . . . , K},

of the temporal interval [, T]. We convey that uk
m,n will represent an approximation to the

exact value of the solution of () at the point (xm, yn) and the time tk .
Let �tk = tk+ – tk for each k ∈ {, , . . . , K – }. For each m ∈ {, . . . , M – }, n ∈ {, . . . , N –

}, and z = x, y we define the constants

rk
z =

�tk

�z
,

Rk
z =

�tk

(�z) ,

Ck
m,n = Rk

x
(
uk

m+,n + uk
m–,n

)
+

(
 – Rk

x – Rk
y
)
uk

m,n + Rk
y
(
uk

m,n+ + uk
m,n–

)
,

Dk
m,n =  + αrk

x
(
uk

m+,n – uk
m–,n

)
+ αrk

y
(
uk

m,n+ – uk
m,n–

)
.

For the sake of convenience, we introduce the following discrete operators (which are al-
ready standard in the literature of the area):

δtuk
m,n =

uk+
m,n – uk

m,n

�t
,

δ()
x uk

m,n =
(uk

m+,n – uk
m–,n)

�x
,

δ()
y uk

m,n =
(uk

m,n+ – uk
m,n–)

�y
,

δ()
x uk

m,n =
uk

m+,n – uk
m,n + uk

m–,n

(�x) ,

δ()
y uk

m,n =
uk

m,n+ – uk
m,n + uk

m,n–

(�y) .
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With this nomenclature at hand, the following formula provides a discretization of () at
the point (xm, yn, tk), for each m ∈ {, . . . , M – }, n ∈ {, . . . , N – }, and k ∈ {, , . . . , K – }:

δtuk
m,n + αuk+

m,n
(
δ()

x + δ()
y

)
uk

m,n –
(
δ()

x + δ()
y

)
uk

m,n – f
(
uk+

m,n
)

= . ()

For convenience, we use Luk
m,n to denote the left-hand side of this identity. One may readily

check that () can be expressed as Fk
m,n(uk+

m,n) = , where

Fk
m,n(u) = –u( – u)(u – γ )�tk + Dk

m,nu – Ck
m,n.

A simplification of the notation may prove convenient here []. More precisely, when no
danger of confusion is present, we will denote the function Fk

m,n by F . It is obvious that F
is a cubic polynomial on u which may be rewritten as

F(u) = �tku – ( + γ )�tku +
[
γ�tk + Dk

m,n
]
u – Ck

m,n.

As expected, the calculation of the roots of F will be carried out exactly using Cardano’s
method which, in spite of the fact that it is an elementary technique, has been used as an
auxiliary tool in various mathematical problems [].

For the remainder of this work, we let μ ∈ {,γ } and assume that the following inequality
holds at time tk :


(
Rk

x + Rk
y
)

< .

Lemma  Suppose that uk >  for some k ∈ {, , . . . , K}. Then Ck
m,n >  for each m ∈

{, . . . , M – } and n ∈ {, . . . , N – }.

Proof Clearly  – Rk
x – Rk

y > , so all the terms in the right-hand side of Ck
m,n = Rk

x(uk
m+,n +

uk
m–,n) + ( – Rk

x – Rk
y)uk

m,n + Rk
y(uk

m,n+ + uk
m,n–) are positive. �

Lemma  If |α|μrk
z < Rk

z and uk < μ for z = x, y and some k ∈ {, , . . . , K} then Ck
m,n –

αμrk
x (uk

m+,n – uk
m–,n) – αμrk

y (uk
m,n+ – uk

m,n–) < μ.

Proof Note that  – Rk
x – Rk

y , Rk
z + αμrk

z , Rk
z – αμrk

z ∈ R
+ for each z = x, y. On the other

hand, the fact that uk < μ holds yields

μ =
(
Rk

x – αμrk
x
)
μ +

(
Rk

y – αμrk
y
)
μ +

(
Rk

y + αμrk
y
)
μ

+
(
Rk

x + αμrk
x
)
μ +

(
 – Rk

x – Rk
y
)
μ

>
(
Rk

x – αμrk
x
)
uk

m+,n +
(
Rk

y – αμrk
y
)
uk

m,n+ +
(
Rk

y + αμrk
y
)
uk

m,n–

+
(
Rk

x + αμrk
x
)
uk

m–,n +
(
 – Rk

x – Rk
y
)
uk

m,n

= Ck
m,n – αμrk

x
(
uk

m+,n – uk
m–,n

)
– αμrk

y
(
uk

m,n+ – uk
m,n–

)
,

as desired. �

From these lemmas and the intermediate value theorem, F has a root in (,μ) when
|α|μrk

z < Rk
z and  < uk for z = x, y and k ∈ {, , . . . , K – }.
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Lemma  If �tk < , |α|μrk
z < 

 for z = x, y, and uk
m–,n, uk

m+,n, uk
m,n–, uk

m,n+ are in (,μ)
then F is strictly increasing in (,μ).

Proof From the hypotheses,

±αrk
x
(
uk

m+,n – uk
m–,n

)
< |α|μrk

x < ,

±αrk
y
(
uk

m,n+ – uk
m,n–

)
< |α|μrk

y < .

Note that F ′(u) = �tku –(+γ )�tku+γ�tk +Dk
m,n is a parabola for which the minimum

value v of F ′ satisfies

v =  + γ�tk + αrk
x
(
uk

m+,n – uk
m–,n

)
+ αrk

y
(
uk

m,n+ – uk
m,n–

)
–

( + γ )�tk



=
 + (γ – γ )�tk + α[rk

x (uk
m+,n – uk

m–,n) + rk
y (uk

m,n+ – uk
m,n–)] – �tk



>
 + α[rk

x (uk
m+,n – uk

m–,n) + rk
y (uk

m,n+ – uk
m,n–)] – �tk



=
( – �tk) + [ + αrk

x (uk
m+,n – uk

m–,n)] + [ + αrk
y (uk

m,n+ – uk
m,n–)]


.

So, the ordinate of the vertex of F ′ is positive. This means that F ′ >  in all R. �

Let �tk <  and |α|μrk
z < Rk

z
 for z = x, y and k ∈ {, , . . . , K}. Note that F has a unique

root in (,μ) if uk ∈ (,μ). Indeed, F has roots in (,μ) since |α|μrk
z < Rk

z
 < Rk

z for z = x, y.
On the other hand Rk

z <  implies that |α|μrk
z < Rk

z
 < 

 . The assumptions of the previous
lemma are satisfied, and we conclude that F has exactly one zero in (,μ), as desired.

3 Dynamical consistency
The dynamical properties of the method () are noticed in this section. Following the
nomenclature in [], for each k ∈ {, , . . . , K} we let

uk =
(
uk

,, uk
,, . . . , uk

,N , uk
,, uk

,, . . . , uk
,N , . . . , uk

M,, uk
M,, . . . , uk

M,N
)
.

Theorem  Let  < u < μ and suppose that for each k ∈ {, , . . . , K}:
() �tk < ,
() (Rk

x + Rk
y) < ,

() |α|μrk
z < Rk

z / for z = x, y, and
() uk

,n, uk
M,n, uk

m,, uk
m,N ∈ (,μ) for m ∈ {, . . . , M – }, n ∈ {, . . . , N – }.

Then () has a unique solution (uk)K
k= with each  < uk < μ.

Proof Suppose that  < uk < μ and m ∈ {, . . . , M – }, n ∈ {, . . . , N – }. Then uk+
m,n ∈ (,μ)

by discussions in the previous section, whence the result follows. �

The next result establishes that the method () preserves the monotonicity. We employ
here ideas of [] again.
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Theorem  Let  < u < v < μ. Suppose that (), () and () of Theorem  as well as the
condition

•  < uk
,n < vk

,n < μ,  < uk
M,n < vk

M,n < μ,  < uk
m, < vk

m, < μ, and  < uk
m,N < vk

m,N < μ for
each m ∈ {, . . . , M} and n ∈ {, . . . , N},

hold for each k ∈ {, , . . . , K}. Then  < uk < vk < μ for each such k.

Proof Suppose that uk < vk , let m ∈ {, . . . , M – } and n ∈ {, . . . , N – }, and observe that
vk+

m,n is the unique solution of G(v) = –v( – v)(v – γ )�tk + Ek
m,n – Jk

m,n in (,μ), where

Jk
m,n = Rk

x
(
vk

m+,n + vk
m–,n

)
+

(
 – Rk

x – Rk
y
)
vk

m,n + Rk
y
(
vk

m,n+ + vk
m,n–

)
,

Ek
m,n =  + αrk

x
(
vk

m+,n – vk
m–,n

)
+ αrk

y
(
vk

m,n+ – vk
m,n–

)
.

If H = F – G then

H(w) =
[
 – Rk

x – Rk
y
](

vk
m,n – uk

m,n
)

+
[
Rk

x – αrk
x
](

vk
m+,n – uk

m+,n
)

+
[
Rk

x + αrk
x
](

vk
m–,n – uk

m–,n
)

+
[
Rk

y – αrk
y
](

vk
m,n+ – uk

m,n+
)

+
[
Rk

y + αrk
y
](

vk
m,n– – uk

m,n–
)
,

which is positive for each w ∈ [,μ], so F(w) > G(w). It follows that uk+
m,n < vk+

m,n, and the
conclusion is reached by recursion. �

Corollary  Let  < u < u < μ, and suppose that (), (), and () of Theorem  together
with the following condition hold for each k ∈ {, , . . . , K}:

• If m ∈ {, . . . , M – } and n ∈ {, . . . , N – } then  < uk
,n < uk+

,n < μ,  < uk
M,n < uk+

M,n < μ,
 < uk

m, < uk+
m, < μ, and  < uk

m,N < uk+
m,N < μ.

Then  < uk < uk+ < μ for each k ∈ Z
+ ∪ {}.

This corollary still holds if we reverse the corresponding inequalities between successive
approximations.

4 Convergence
We follow now the approach of [] to show that the method () is a convergent technique.
First, we quote or prove some technical lemmas.

Lemma  (Discrete Gronwall’s inequality []) Let K > , and let A, B, Ck ∈ R+ for each
k ∈ {, , . . . , K}. If (A + B)�t ≤ K–

K , and if {wk}K
k= satisfies wk – wk– ≤ A�twk + B�twk– +

Ck�t for each k = , . . . , K , then

max
≤k≤K

∣∣wk∣∣ ≤
(

w + �t
K∑

l=

Cl

)
e(A+B)T .

For simplicity, we consider now a regular partition of [, T] consisting of K subintervals.
This implies that �tk = �t for each k ∈ {, , . . . , K – } where �t = T/K , and that Rk

z = Rz

and rk
z = rz for z = x, y. We use u to denote an exact solution of the continuous model while
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w will represent a solution of the numerical method. Note that u satisfies () at the point
(xm, yn, tk), with truncation error

Rk
m,n = Lu(xm, yn, tk) – Luk

m,n = –Luk
m,n. ()

Here, Lu represents the left-hand side of equation ().

Lemma  If u ∈ C,,
x,y,t (� × [, T]) is a solution of () bounded in (, ) then there exists

C ∈ R
+ independent of �t, �x, and �y with |Rk

m,n| ≤ C(�t + (�x) + (�y)) for each m ∈
{, . . . , M – } and n ∈ {, . . . , N – }.

Proof Fix a common bound C ∈ R
+ for the functions ∂ttu, ∂xu, ∂xxxu, ∂xxxxu, ∂yu, ∂yyyu,

and ∂yyyyu in the interior of �, and such that the following holds:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

|uk+
m,n – uk

m,n| ≤ C�t,
|δtuk

m,n – ∂tuk
m,n| ≤ 

 C�t,
|δ()

x uk
m,n – ∂xuk

m,n| ≤ 
 C(�x),

|δ()
y uk

m,n – ∂yuk
m,n| ≤ 

 C(�y),
|δ()

x uk
m,n – ∂xxuk

m,n| ≤ 
 C(�x),

|δ()
y uk

m,n – ∂yyuk
m,n| ≤ 

 C(�y).

Use these inequalities to obtain




C(�z) + C
 �t ≥ uk+

m,n
∣∣δ()

z uk
m,n – ∂zuk

m,n
∣∣ +

∣∣uk+
m,n – uk

m,n
∣∣∣∣∂zuk

m,n
∣∣

≥ ∣∣uk+
m,nδ

()
z uk

m,n – uk+
m,n∂zuk

m,n + uk+
m,n∂zuk

m,n – uk
m,n∂zuk

m,n
∣∣

≥ ∣∣uk+
m,nδ

()
z uk

m,n – uk
m,n∂zuk

m,n
∣∣

for z = x, y. The fact that u is bounded in (, ) yields

(γ + )C�t = γ C�t + C�t + γ C�t + C�t

≥ γ
∣∣uk+

m,n – uk
m,n

∣∣∣∣uk+
m,n + uk

m,n
∣∣

+
∣∣uk+

m,n – uk
m,n

∣∣∣∣uk+
m,n + uk

m,n
∣∣ + γ

∣∣uk+
m,n – uk

m,n
∣∣

+
∣∣uk+

m,n – uk
m,n

∣∣∣∣(uk+
m,n

) + uk+
m,nuk

m,n +
(
uk

m,n
)∣∣

≥ ∣∣uk+
m,n

(
 – uk+

m,n
)(

uk+
m,n – γ

)
– uk

m,n
(
 – uk

m,n
)(

uk
m,n – γ

)∣∣.
As a consequence,

∣∣Rk
m,n

∣∣ ≤ ∣∣δtuk
m,n – ∂tuk

m,n
∣∣ + |α|{∣∣uk+

m,nδ
()
x uk

m,n – uk
m,n∂xuk

m,n
∣∣

+
∣∣uk+

m,nδ
()
y uk

m,n – uk
m,n∂yuk

m,n
∣∣} +

∣∣δ()
x uk

m,n – ∂xxuk
m,n

∣∣
+

∣∣uk+
m,n

(
 – uk+

m,n
)(

uk+
m,n – γ

)
– uk

m,n
(
 – uk

m,n
)(

uk
m,n – γ

)∣∣
+

∣∣δ()
y uk

m,n – ∂yyuk
m,n

∣∣
≤ 


C�t + |α|

{



C
[
(�x) + (�y)] + C

 �t
}
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+



C

[
(�x) + (�y)] + γ C�t + C�t

= C

(



+ |α|C + γ

)
�t + C

( |α|


+




)[
(�x) + (�y)].

If we define D = C( 
 + |α|C + γ ) and D = C( |α|

 + 
 ) then the number C =

max{D, D} has the desired property. �

Lemma  Let εk
m,n = wk

m,n – uk
m,n for each m ∈ {, , . . . , M}, n ∈ {, , . . . , N}, and k ∈

{, , . . . , K}. For each m ∈ {, . . . , M – }, n ∈ {, . . . , N – }, and k ∈ {, , . . . , K – },

∣∣εk+
m,n

∣∣ ≤ ∣∣εk
m,n

∣∣| – Rx – Ry| +
∣∣εk

m+,n
∣∣∣∣Rx – αwk+

m,nrx
∣∣

+
∣∣εk

m–,n
∣∣∣∣Rx + αwk+

m,nrx
∣∣ +

∣∣εk
m,n+

∣∣∣∣Ry – αwk+
m,nry

∣∣
+

∣∣εk
m,n–

∣∣∣∣Ry + αwk+
m,nry

∣∣ +
∣∣�tRk

m,n
∣∣

+
∣∣�tεk+

m,n–
∣∣∣∣( – uk+

m,n
)(

uk+
m,n + γ

)
+ wk+

m,n
(
 – wk+

m,n – uk+
m,n – γ

)
– α

(
δ()

x + δ()
y

)
uk

m,n
∣∣.

Proof Departing from (), using the fact that w is a solution for the finite-difference
scheme and simplifying, we reach the following expression for each m ∈ {, . . . , M – },
each n ∈ {, . . . , N – }, and k ∈ {, , . . . , K – }:

Rk
m,n = δtε

k
m,n + αwk+

m,n
(
δ()

x + δ()
y

)
εk

m,n + αεk+
m,n

(
δ()

x + δ()
y

)
uk

m,n

– εk+
m,n

[(
 – uk+

m,n
)(

uk+
m,n + γ

)
+ wk+

m,n
(
 – wk+

m,n – uk+
m,n – γ

)]
–

(
δ()

x + δ()
y

)
εk

m,n.

Using the definitions of the discrete operators and rearranging terms, we obtain

εk+
m,n = εk

m,n[ – Rx – Ry] + εk
m+,n

[
Rx – αwk+

m,nrx
]

+ εk
m–,n

[
Rx + αwk+

m,nrx
]

+ εk
m,n+

[
Ry – αwk+

m,nry
]

+ εk
m,n–

[
Ry + αwk+

m,nry
]

+ �tεk+
m,n–

[(
 – uk+

m,n
)(

uk+
m,n + γ

)
+ wk+

m,n
(
 – wk+

m,n – uk+
m,n – γ

)
– α

(
δ()

x + δ()
y

)
uk

m,n
]

+ �tRk
m,n,

and the result follows after taking the absolute values on both sides of this identity. �

Theorem  Let u ∈ C,,
x,y,t (�× [, T]) be a solution of () such that  < u(x, t) < μ for (x, t) ∈

� × [, T], and suppose that the following conditions hold:
() �t < ,
() (Rx + Ry) < ,
() |α|μrz < Rz

 for z = x, y, and
() (�x) + (�y) < .

If (w)K
k= is the unique solution of () in (,μ) then there exists a constant C̃ ∈R

+ indepen-
dent of �t, �x, and �y such that

max
≤k≤K

∣∣uk – wk∣∣ ≤ C̃
(
�t + (�x) + (�y)).
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Proof Following Lemma , let ξ k = max{|εk
m,n| : m = , , . . . , M; n = , , . . . , N} for each k ∈

{, , . . . , K}. Obviously |εk
m,n| ≤ ξ k for each m ∈ {, , . . . , M – }, n ∈ {, , . . . , N – }, and

k ∈ {, , . . . , K}, so

ξ k+ ≤ ξ k| – Rx – Ry| + ξ k∣∣Rx – αwk+
m,nrx

∣∣ + ξ k∣∣Rx + αwk+
m,nrx

∣∣
+ ξ k∣∣Ry – αwk+

m,nry
∣∣ + ξ k∣∣Ry + αwk+

m,nry
∣∣ +

∣∣�tRk
m,n

∣∣
+ �tξ k+∣∣( – uk+

m,n
)(

uk+
m,n + γ

)
+ wk+

m,n
(
 – wk+

m,n – uk+
m,n – γ

)
– α

(
δ()

x + δ()
y

)
uk

m,n
∣∣.

Using the fact that the continuous and the discrete solutions are bounded in (, ) as well as
Lemma  and the positivity of the coefficients in the above inequality, one readily obtains
ξ k+ – ξ k ≤ �tξ k+|Qk

m,n| + �tC(�t + (�x) + (�y)), where

Qk
m,n =

(
 – uk+

m,n
)(

uk+
m,n + γ

)
+ wk+

m,n
(
 – wk+

m,n – uk+
m,n – γ

)
– α

(
δ()

x + δ()
y

)
uk

m,n.

Observe on the other hand that

∣∣Qk
m,n

∣∣ ≤ ∣∣ – uk+
m,n

∣∣(∣∣uk+
m,n

∣∣ + γ
)

+
∣∣wk+

m,n
∣∣(∣∣ – wk+

m,n
∣∣ +

∣∣uk+
m,n

∣∣ + γ
)

+ |α|∣∣(δ()
x + δ()

y
)
uk

m,n
∣∣

≤  + |α|∣∣(δ()
x + δ()

y
)
uk

m,n
∣∣ ≤  + |α|

[
C

(
 +

(�x) + (�y)



)]

=  + |α|C.

As a consequence, we obtain

ξ k+ – ξ k ≤ �tξ k+( + |α|C) + �tC
(
�t + (�x) + (�y)).

Suppose that �t ≤ K–
K (+|α|C) . An application of Lemma  yields

max
≤k≤K

∣∣ξ k∣∣ ≤ e(+|α|C)T[
ξ + K�tC

(
�t + (�x) + (�y))].

Finally, the exactness of the initial-boundary conditions guarantees that ξ = . The con-
clusion follows with C̃ = e(+|α|C)T TC. �

5 Conclusions and perspectives
In this note, we extended dimensionally a numerical technique to approximate the solu-
tion of the well-known Burgers-Huxley equation, using a finite-difference perspective. The
method is an exact technique that requires one to solve a cubic polynomial at each tempo-
ral step and each spatial node via the Cardano formulas. The method is an exact technique
which preserves positivity, boundedness and monotonicity, resembling thus the features
of many classical solutions of the model under investigation. Finally, we also established
that the method is convergent of first order in time and second order in space.
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