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Abstract
In this paper, we use a fixed point principle regarding a condensing mapping with
some measure of noncompactness. We assume there is no compactness assumption,
and we give sufficient conditions for the existence of mild solutions to some classes
of impulsive neutral evolution differential inclusions with infinite delay. A concrete
example is presented in the end to illustrate the abstract theorem.

MSC: 34K30; 34K40; 34G25; 47H04; 47H10

Keywords: condensing mapping; evolution family; fixed point principle; impulsive
neutral evolution differential inclusions; infinite delay; measure of noncompactness

1 Introduction
In this paper, we are concerned with the existence of a mild solution of impulsive neutral
evolution differential inclusions with infinite delay in a Banach space X. More precisely,
we consider the following class of evolution systems:

⎧
⎪⎪⎨

⎪⎪⎩

d
dt [x(t) + F(t, xt)] ∈ A(t)x(t) + G(t, xt), t ∈ [, T], t �= ti,

�x(ti) = Ii(xti ), i = , , . . . , m,

x = ϕ ∈ B,

(.)

where T > , A(t) : D ⊂ X → X are linear closed operator in a Banach space (X,‖ · ‖),  <
t < · · · < ti < · · · < tm < T are pre-fixed numbers; the history xt : (–∞, ] → X, xt(s) = x(t +
s), belongs to some abstract phase space B which will be defined with axioms introduced
by Hale and Kato []; F : [, T] × B → X is some suitable function; G is a multimap from
[, T] × B to the collection of all nonempty, compact, and convex subset of X; Ii : B →
X, i = , , . . . , m are suitable mappings satisfying some conditions which will be specified
later, and the symbol �x(t) represents the jump of the function x at t, which is defined
by �x(t) = x(t+) – x(t–), where x(t+

i ) and x(t–
i ) represent the right and left limits of x(t) at

t = ti. Finally X denotes the family of nonempty subsets of X.
The theory of impulsive evolution equations, as well as inclusions, has been proven to

be applicable to problems arising in mechanics, electrical engineering, medicine, biol-
ogy, ecology, population dynamics, etc., and it has been extensively investigated in the
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last several decades. For these considerable developments in this topic, one may refer
to the monographs of Bainov and Simeonov [], Benchohra et al. [], Haddad et al. [],
Lakshmikantham et al. [], Samoilenko and Perestyuk [], and [–] and the references
therein. On the other hand, a partial neutral differential equation with unbounded delay
lies in problems from various fields such as macroeconomic model including dynamics of
income or value of capital stock (see the book of Chukwu []), the theory of viscoelastic
fluid (see [, ]), and the theory of heat flow in materials with memory. For example, in
[–], the authors studied the following system:

du
dt

[

u(t, x) +
∫ t

–∞
k(t – s)u(s, x) ds

]

= c�u(t, x) +
∫ t

–∞
k(t – s)u(s, x) ds, t ≥ ,

u(t, x) = , x ∈ ∂�,

where � ⊂ R
n is open, bounded, and with smooth boundary; (t, x) ∈ [,∞) × �, u(t, x)

represents the temperature in x at the time t; c is a physical constant and ki : R → R,
i = , , are the internal energy and the heat flux relaxation, respectively. It is clear that this
equation can be modeled by system (.), and this serves as the physical motivation to study
(.). We point out that the theory of impulsive neutral evolution differential equations or
inclusions with infinite delay assuming axioms introduced by Hale and Kato has been the
subject of many papers; see for example [–], and many others.

There are several works reporting existence results of mild solutions for impulsive neu-
tral evolution systems with infinite delay similar to (.); see for example [, ]. In these
works, the authors impose compactness on the operator family generated by A(t). How-
ever, this condition is too severe in application, which serves as the main motivation of
this work. In the present article, we give an existence result for the problem (.) without
any compactness assumption by using a method based on a fixed point principle regard-
ing a condensing mapping with respect to some nonsingular measure of noncompactness.
The approach we use here is much inspired by []. The rest of this work is arranged as
follows: In Section , we recall briefly some basic definitions and preliminary facts which
will be used throughout the following sections. In Section , we prove the existence of
mild solutions problem (.), and in the last section an example is addressed to illustrate
the obtained abstract result.

2 Preliminaries
We introduce certain notations which will be used throughout the article. In this paper,
(X,‖ ·‖) is a Banach space and the linear part A(t) of equation (.) are operators in X, with
domain D(A(t)) = D for all t ∈ [, T] and dense in X and let {U(t, s)}≤s≤t≤T ⊂ L(X) be the
evolution family generated by {A(t) : t ∈ [, T]}.

Definition . A family of linear operators {U(t, s)}≤s≤t≤T ⊂ L(X) is called an evolution
family of operators generated by {A(t) : t ∈ [, T]} if the following conditions hold:

(i) U(s, s) = I ,
(ii) U(t, r)U(r, s) = U(t, s) for  ≤ s ≤ r ≤ t ≤ T ,

(iii) (t, s) → U(t, s) is strongly continuous for  ≤ s ≤ t ≤ T ,
(iv) the function (s, t] → L(X) is differentiable with ∂

∂t U(t, s) = A(t)U(t, s).
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In the following, we put � := {(t, s) :  ≤ s < t ≤ T}, and

M := sup
(t,s)∈�

∥
∥U(t, s)

∥
∥

L(X).

Let

PC
(
[, T], X

)
=
{

x : [; T] → X : x(t) be continuous at t �= ti,

left continuous at t = ti,

and the right limit u
(
t+
i
)

exists for i = , , . . . , m
}

.

Evidently PC(, T ; X) is a Banach space with the norm

‖x‖PC = sup
t∈[,T]

∥
∥x(t)

∥
∥.

We assume that the state space (B,‖ · ‖B) is a semi-norm linear space of functions map-
ping (–∞, ] into X, and satisfying the following axiom first introduced by Hale and Kato
in []:

(A) If T >  and x : (–∞, T] → X satisfies that x ∈ B and x|[,T] ∈PC(, T ; X), then for
every t in [, T] the following conditions hold:

(i) xt ∈ B,
(ii) |x(t)| ≤ H‖xt‖B ,

(iii) ‖xt‖B ≤ K(t) sup≤s≤t ‖x(s)‖ + M(t)‖x‖B ,
where H is a constant, K : R+ →R

+ is continuous and M : R+ →R
+ is locally

bounded;
H , K , M are independent of x(·).

(B) The space B is complete.
Let E be the space

{
x : (–∞, T] → X | x ∈ B and x|[,T] ∈PC(, T ; X)

}

with the semi-norm

‖x‖E = ‖x‖B + ‖x|[,T]‖PC .

Definition . Let X be a Banach space, X denote the collection of all nonempty subsets
of X, and (A,≥) a partially ordered set. A function μ : X → A is called a measure of
noncompactness in X if

μ(co�) = μ(�), � ∈ X ,

where co� is the closure of convex hull of �. A measure of noncompactness μ is called
(i) monotone, if for each �,� ∈ X such that � ⊂ �, we have μ(�) ≤ μ(�);

(ii) nonsingular, if μ({a} ∪ �) = μ(�) for any a ∈ X , � ∈ X ;
(iii) invariant with respect to the union with a compact set, if μ(K ∪ �) = μ(�) for

every relatively compact set K ⊂ X and � ∈ X .
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Moreover, if A is a cone in a normed space, we say that μ is
(iv) algebraically semi-additive, if μ(� ∪ �) ≤ μ(�) + μ(�) for any �,� ∈ X ;
(v) regular, if μ(�) =  is equivalent to the relative compactness of �.

The so-called Hausdorff measure of noncompactness, defined by

χ (�) := inf{ε : � has a finite ε net},

satisfies all the above properties. For the main result of the present paper, we introduce
two measure of noncompactness on the space PC([, T], X) of continuous functions on
interval [, T] taking values in X.

(i) For each � ⊂PC([, T], X), the damped modulus of fiber noncompactness of � is
defined by

γ (�) = sup
t∈[,T]

e–Ltχ
(
�(t)

)
,

where L is a nonnegative constant, χ is the Hausdorff measure of noncompactness
on X and �(t) = {ω(t) : ω ∈ �}.

(ii) For each � ⊂PC([, T], X), the modulus of equicontinuity of � is defined by

modC(�) = lim
δ→

sup
ω∈�

max
|t–t|<δ

∥
∥ω(t) – ω(t)

∥
∥.

Now, consider the function ν : PC([,T],X) → [,∞] × [,∞] given by

ν(�) = max
S∈D(�)

(
γ (S), modC(S)

)
, (.)

where D(�) is the collection of all denumerable subsets of � and the maximum is taken
in the sense of the partial order in the cone [,∞] × [,∞]. It is well known that ν is a
measure of noncompactness in the space PC([, T], X), which satisfies all properties in
Definition . and the maximum in (.) is attained in D(�) (see [], Example .. for
details).

In the following, X will be a separable Banach space and we shall use the notations:

Pcl(X) :=
{

Y ∈ X : Y is closed
}

,

Pb(X) :=
{

Y ∈ X : Y is bounded
}

,

Pc(X) :=
{

Y ∈ X : Y is convex
}

,

Pk(X) :=
{

Y ∈ X : Y is compact
}

.

A multimap F : [, T] → Pk(X) is said to be measurable, if F–(W ) is measurable for
every open subset W of X, where F–(W ) := {w ∈ [, T] : F (w) ∩ W �= ∅}. A multimap
F (·) is integrably bounded if and only if F (·) is measurable and ‖F (·)‖ ∈ L([, T],R),
where ‖F (t)‖ = supf ∈F(t) ‖f ‖. For any multifunction F : [, T] → X and for  ≤ p ≤ ∞ we
denote Sp

F , the set of all selectors of G(·, x·), which belong to the Lebesgue-Bochner space
Lp([, T], X), i.e.,

Sp
F =

{
f (·) ∈ Lp([, T], X

)
: f (t) ∈F (t) a.e. t ∈ [, T]

}
.
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If Sp
F is nonempty and F(·) is closed valued, then it is well known that Sp

F is a closed subset
of Lp([, T], X) ( ≤ p ≤ ∞). The following result, which is adapted from [], is crucial to
our main result.

Lemma . If F : [, T] → Pwkc(X) is integrably bounded, then S
F is nonempty, convex

and w-compact in L([, T], X).

Denote by W : L([, T], X) →PC([, T], X) the operator

Wψ(t) =
∫ t


U(t, s)ψ(s) ds. (.)

This is the so-called generalized Cauchy operator and it is well known (see []) that it
satisfies the following properties:

(W) W sends each bounded set to an equicontinuous one;
(W) there exists a constant C >  such that

∥
∥W(ψ)(t) – W(ψ)(t)

∥
∥≤ C

∫ t



∥
∥ψ(s) – ψ(s)

∥
∥ds

for all ψ,ψ ∈ L([, T], X), t ∈ [, T];
(W) for each compact set K ⊂ X and sequence {ψn} ⊂ L([, T], X) such that {ψn(t)} ⊂ K

for a.e. t ∈ [, T], the weak convergence ψn → ψ implies W(ψn) →W(ψ) strongly
in PC([, T], X).

The following lemma, which also comes from [], is useful in the proof of our main result.

Lemma . Let {ψn} be an integrably bounded sequence in L([, T], X), i.e.,

∥
∥ψn(t)

∥
∥≤ η(t) for a.e. t ∈ [, T],

where η ∈ L([, T]). If Q satisfies (W), (W) and there exists q ∈ L([, T]) such that

χ
({

ψn(t)
}∞

n=

)≤ q(t) for a.e. t ∈ [, T],

then

χ
({

Q(ψn)(t)
}∞

n=

)≤ C
∫ t


q(s) ds

for each t ∈ [, T], where C >  is the constant given in condition (W).

Definition . A multimap F : X → Pk(X) is said to be condensing with respect to a mea-
sure of noncompactness μ or μ-condensing if for every bounded set � ⊂ X, the relation

μ
(
F (�)

)≥ μ(�)

implies the relative compactness of �.
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The following fixed point principle can be found in [].

Lemma . If U is a closed convex subset of a Banach space X and � : U → Pcv,k(X) is
a closed μ-condensing multimap, where μ is a nonsingular measure of noncompactness
defined on the subsets of U , then � has a fixed point.

3 Existence result
The system (.) has the following equivalent form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d
dt [x(t) + F(t, xt)]

∈ A(t)[x(t) + F(t, xt)] – A(t)F(t, xt) + G(t, xt), t ∈ [, T], t �= ti,

�x(ti) = Ii(xti ), i = , , . . . , m,

x = ϕ ∈ B.

Let x : (–∞, T] → X be a function such that x, x′ ∈ E . If x is a solution of (.), then from the
semi-group theory (see [], Sections . and .), there exist functions f , g ∈ L([, T], X)
with f ∈ F(t, xt), g ∈ G(t, xt) for a.e. t ∈ [, T] such that

x(t) + f (t) = U(t, )
[
ϕ() + f ()

]
–
∫ t


A(s)U(t, s)f (s) ds

+
∫ t


U(t, s)g(s) ds.

This implies that

x
(
t–

)

+ f (t) = U(t, )
[
ϕ() + f ()

]
–
∫ t


A(s)U(t, s)f (s) ds

+
∫ t


U(t, s)g(s) ds,

and since x(t+
 ) = x(t–

 ) + I(xt ), we have, for t ∈ (t, t),

x(t) + f (t) = U(t, t)
[
x
(
t+

)

+ f (t)
]

–
∫ t

t

A(s)U(t, s)f (s) ds

+
∫ t

t

U(t, s)g(s) ds

= U(t, t)
[
x
(
t–

)

+ f (t) + I(xt )
]

–
∫ t

t

A(s)U(t, s)f (s) ds

+
∫ t

t

U(t, s)g(s) ds

= U(t, t)
[

U(t, )
(
ϕ() + f ()

)
–
∫ t


A(s)U(t, s)f (s) ds

+
∫ t


U(t, s)g(s) ds + I(xt )

]

–
∫ t

t

A(s)U(t, s)f (s) ds

+
∫ t

t

U(t, s)g(s) ds
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= U(t, )
[
ϕ() + f ()

]
–
∫ t


A(s)U(t, s)f (s) ds

+
∫ t


U(t, s)g(s) ds + U(t, t)I(xt ).

Reiterating these procedures, we can prove that

x(t) = U(t, )
[
ϕ() + f ()

]
– f (t) –

∫ t


A(s)U(t, s)f (s) ds

+
∫ t


U(t, s)g(s) ds +

m∑

i=

U(t, ti)Ii(xti ), t ∈ [, T].

This expression motivates the following definition.

Definition . We say that a function x ∈ E is a mild solution of the system (.) if x = ϕ,
xt ∈ B for every t ∈ [, T], �x(ti) = Ii(xti ), i = , , . . . , m, the function s → A(s)U(t, s)F(s, xs)
is Bochner integrable on [, T], and the impulsive integral inclusion

x(t) ∈ U(t, )
[
ϕ() + F(,ϕ)

]
– F(t, xt) –

∫ t


A(s)U(t, s)F(s, xs) ds

+
∫ t


U(t, s)G(s, xs) ds +

m∑

i=

U(t, ti)Ii(xti ), t ∈ [, T],

is satisfied.

In order to study system (.), we impose the following assumptions.
(H) There is a Banach space (Y ,‖ · ‖Y ) continuously embedded in X such that the

function s → A(s)U(t, s) defined from [, T] into L(Y , X) is strongly measurable
and there exists a function H ∈ L([, T]) for which the following holds:

∥
∥A(s)U(t, s)

∥
∥

L(Y ,X) ≤H(t – s) for  ≤ s < t ≤ T .

(H) The function F satisfies
(i) F is Y -valued and F : [, T] ×B → Y is continuous;

(ii) F : [, T] ×B → X is completely continuous;
(iii) there exists LF >  such that

∥
∥F(t,ϕ) – F(s,ϕ)

∥
∥

Y ≤ LF
(|t – s| + ‖ϕ – ϕ‖B

)

for any t, s ∈ [, T] and ϕ,ϕ ∈ B.
(H) The multimap G : [, T] ×B → X satisfies the Carathéodory condition (see [],

p.), i.e., for each ϕ ∈ B, G(·,ϕ) has a strongly measurable selection, and for a.e.
t ∈ [, T], G(t, ·) : B → Pc,k(X) is upper semi-continuous. Moreover, there exists a
function α ∈ L([, T],R+) such that

∥
∥G(t,ϕ)

∥
∥≤ α(t)

(
 + ‖ϕ‖B

)
for a.e. t ∈ [, T],

where ‖G(t,ϕ)‖ := supg∈G(·,ϕ) ‖g(t)‖.
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(H) For each V ⊂ E , let

VB :=
{
φ ∈ B : φ = xt for some x ∈ V and t ∈ [, T]

}
.

Then there exists a function β : [, T] ∈ L([, T],R+) such that, for all bounded
set V ⊂ E ,

χ

( ⋃

φ∈VB

G(t,φ)
)

≤ β(t)χ (VPC) for a.e. t ∈ [, t],

where VPC := {x(t); x ∈ V , t ∈ [, T]} and χ is the Hausdorff measure of
noncompactness.

Remark . It is clear that assumption (H) is fulfilled if G is compact in its second ar-
gument, i.e., for each t ∈ [, T] and bounded � ⊂ B, the set G(t,�) =

⋃
ω∈� G(t,ω) is rel-

atively compact in X.

(H) The function Ii : B → X is continuous and there are positive constants Li,
i = , , . . . , m, such that

∥
∥Ii(φ) – Ii(φ)

∥
∥≤ Li‖φ – φ‖B

for φ,φ ∈ B and i = , , . . . , m.
Note that the assumptions (H) and (H) are linked to the integrability of the function

s → A(s)U(t, s)f (s, xs). In general, we observe that, except in trivial cases, the operator
function s → A(s)U(t, s) is not integrable over [, T]; for an interpretation of this observa-
tion, we refer the reader to the article []. We are now in a position to state and prove the
main result of this section.

Theorem . Suppose that the hypotheses (H)-(H) are satisfied. Then the system (.)
has at least one mild solution provided

K̃

[

( + H̃)LF + M

(

‖α‖L +
m∑

i=

Li

)]

< , (.)

where H̃ := ‖H‖L([,T]) and K̃ := sup≤t≤T |K(t)|.

Proof We introduce the multioperator � : PC([, T], X) → PC([,T],X) by

(�x)(t) :=

{

U(t, )
[
ϕ() + F(t,ϕ)

]
– F(t, x̄t) +

∫ t


A(s)U(t, s)F(s, x̄s) ds

+
∫ t


U(t, s)g(s) ds +

m∑

i=

U(t, ti)Ii(x̄ti ); g ∈ S
G(·,x̄·), t ∈ [, T]

}

, (.)

where for every x ∈PC([, T], X), x̄ denotes the extension of x to E given by

x̄(t) =

⎧
⎨

⎩

x(t), t ∈ [, T],

ϕ(t), t ≤ .
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It is readily seen that if x ∈ Fix(�) := {x ∈PC([, T], X) : x ∈ �(x)}, then x̄ is a mild solution
of the system (.). It therefore suffices to show that the set Fix(�) is nonempty, and the
proof is divided into several steps.

Step . It is already seen that � has convex values, using the hypotheses that the multimap
G has convex values.

Step . To see that � has closed graph, let {xn}∞n= be a sequence in PC([, T], X) with
xn → x ∈PC([, T], X). Then by axiom (A)(iii),

∥
∥x̄n

t – x̄t
∥
∥
B ≤ K(t) sup

s∈[,T]

∥
∥xn(s) – x(s)

∥
∥ + M(t)

∥
∥x̄n

 – x̄
∥
∥
B

= K(t) sup
s∈[,T]

∥
∥xn(s) – x(s)

∥
∥

→  as n → ∞. (.)

Now, for each n ∈ N, choose yn ∈ �(xn). Then by (.), for each n ∈ N, the mapping
t → G(t, x̄n

t ) admits a selector gn such that

yn(t) := U(t, )
[
ϕ() + F(t,ϕ)

]
– F

(
t, x̄n

t
)

+
∫ t


A(s)U(t, s)F

(
s, x̄n

s
)

ds

+
∫ t


U(t, s)gn(s) ds +

m∑

i=

U(t, ti)Ii
(
x̄n

ti

)
, t ∈ [, T].

Let

W (t) = co
⋃

n≥

G
(
t, x̄n

t
)
.

Invoking Theorem .. of [], p. and (H), we have W (t) ∈ Pwkc(X). Again by (H),
we have

∥
∥W (t)

∥
∥ = sup

w∈W (t)
‖w‖ ≤ α(t)( + B)

yielding the result that W (·) is integrably bounded, where B = supn≥ ‖x̄n‖B , and hence by
Lemma ., we see that S

W is weakly compact in L([, T], X). We thus may assume, by
passing to a subsequence if necessary, that

gn →w g in L([, T], X
)
. (.)

Moreover, it follows by Theorem . of [] that

g(t) ∈ co
{

w-lim
n

{
gn(t)

}}⊂ co
{

w-lim
n

G
(
t, x̄n

t
)}⊂ G(t, x̄t) a.e. on [, T], (.)

where the last inclusion is guaranteed by (H). Now,

yn(t) = U(t, )
[
ϕ() + F(t,ϕ)

]
– F

(
t, x̄n

t
)

–
∫ t


A(s)U(t, s)F

(
s, x̄n

s
)

ds

+
∫ t


U(t, s)gn(s) ds +

m∑

i=

U(t, ti)Ii
(
x̄n

ti

)
, t ∈ [, T]
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= U(t, )
[
ϕ() + F(t,ϕ)

]
– F

(
t, x̄n

t
)

–
∫ t


A(s)U(t, s)F

(
s, x̄n

s
)

ds

+ Wgn(t) +
m∑

i=

U(t, ti)Ii
(
x̄n

ti

)
, t ∈ [, T]

→ U(t, )
[
ϕ() + F(t,ϕ)

]
– F(t, x̄t) –

∫ t


A(s)U(t, s)F(s, x̄s) ds

+ Wg(t) +
m∑

i=

U(t, ti)Ii(x̄ti ), t ∈ [, T],

by (.), (.), (W), (H), (H), and the dominated convergence theorem. Set

y := U(t, )
[
ϕ() + F(t,ϕ)

]
– F(t, x̄t) –

∫ t


A(s)U(t, s)F(s, x̄s) ds

+ Wg(t) +
m∑

i=

U(t, ti)Ii(x̄ti ).

In view of (.), we see that

y ∈ �(x),

and hence � has a closed graph. By a similar argument, we find that � has compact values.
Step . We now prove that � is ν-condensing. To this aim, consider a bounded set � ⊂

PC([, T], X) such that

ν
(
�(�)

)≥ ν(�). (.)

We will show that � is relatively compact in PC([, T], X). In fact, there exists, by the
definition of ν , a sequence {zn}∞n= which reaches the maximum, i.e.,

ν
(
�(�)

)
=
(
γ
({

zn}∞
n=

)
, modC

({
zn}∞

n=

))
.

Choose {xn}∞n= ⊂ � so that for each n ∈N, zn ∈ �(xn). Then

zn(t) = U(t, )
[
ϕ() + F(t,ϕ)

]
– F

(
t, x̄n

t
)

–
∫ t


A(s)U(t, s)F

(
s, x̄n

s
)

ds

+
∫ t


U(t, s)gn(s) ds +

m∑

i=

U(t, ti)Ii
(
x̄n

ti

)
, t ∈ [, T],

where gn ∈ S
G(·,x̄n· ), so that

γ
({

zn}∞
n=

)
= γ

({Wgn}∞n=
)
,

since F : [, T]×B → X is completely continuous by (H). Now, let t ∈ [, T] and it follows
by (H) that

χ
({

gn(s)
}∞

n=

)≤ β(s)χ
({

xn(τ )
}∞

n=

)≤ β(s)eLs sup
≤τ≤T

e–Lτ χ
({

xn(τ )
}∞

n=

)

= β(s)eLsγ
({

xn}∞
n=

)
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for all s ∈ [, t]. Now, we apply Lemma . and obtain

χ
({
Wgn(t)

}∞
n=

)≤ C
(∫ t


β(s)eLs ds

)

γ
({

xn}∞
n=

)
,

which implies

e–Ltχ
({
Wgn(t)

}∞
n=

)≤ C
(∫ t


β(s)e–L(t–s) ds

)

γ
({

xn}∞
n=

)
,

whence, in view of (.),

γ
({

xn}∞
n=

)≤ γ
({

zn}∞
n=

)≤ ζγ
({

xn}∞
n=

)
. (.)

Here

ζ := C sup
t∈[,T]

∫ t


e–L(t–s)β(s) ds.

Now, choose the constant L >  in the definition of γ so that

ζ := C sup
t∈[,T]

∫ t


e–L(t–s)β(s) ds < , (.)

and we thus combine (.) and (.) to conclude

γ
({

zn}∞
n=

)
= .

On the other hand, it is evident from (H) that {gn} is a bounded sequence in L([, T], X).
Then the property (W) ensures that {Wgn} is equicontinuous in PC([, T], X) and hence

modC
({

zn}∞
n=

)
= modC

({Wgn}∞n=
)

= .

Consequently,

ν(�) = (, ),

and therefore, the regularity of ν guarantees the relative compactness of �.
Step . To use Lemma ., we shall demonstrate that the solution set belongs to a priori

bounded set in PC([, T], X). Indeed, if this were not the case, the for each n ∈ N, there
is an xn ∈ PC([, T], X) with ‖xn‖ ≤ n but ‖�xn‖ > n. Now, for each n ∈ N, let gn ∈ S

G(·,x̄n· )
and then for every t ∈ [, T] we have

∥
∥�xn(t)

∥
∥ =

∥
∥
∥
∥
∥

U(t, )
[
ϕ() + F(t,ϕ)

]
– F

(
t, x̄n

t
)

–
∫ t


A(s)U(t, s)F

(
s, x̄n

s
)

ds

+
∫ t


U(t, s)g(s) ds +

m∑

i=

U(t, ti)Ii
(
x̄n

ti

)
∥
∥
∥
∥
∥

. (.)
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Now, by assumptions (H), (H), (H), and axiom (A)(iii), we have the following estimates:

∥
∥U(t, )

[
ϕ() + F(t,ϕ)

]∥
∥

≤ M
(∥
∥ϕ()

∥
∥ +

∥
∥F(t,ϕ)

∥
∥

Y

)

≤ M
(∥
∥ϕ()

∥
∥ +

∥
∥F(t,ϕ) – F(, )

∥
∥

Y +
∥
∥F(, )

∥
∥

Y

)

≤ M
[∥
∥ϕ()

∥
∥ + LF

(
T + ‖ϕ‖B

)
+
∥
∥F(, )

∥
∥

Y

]
, (.)

∥
∥F
(
t, x̄n

t
)∥
∥≤ ∥

∥F
(
t, x̄n

t
)∥
∥

Y ≤ ∥
∥F
(
t, x̄n

t
)

– F(, )
∥
∥

Y +
∥
∥F(, )

∥
∥

Y

≤ LF
(
t +

∥
∥x̄n

t
∥
∥
B
)

+
∥
∥F(, )

∥
∥

Y

≤ LF

(
t + K̃ sup

≤τ≤t

∥
∥x(τ )

∥
∥ + M̃‖ϕ‖B

)
+
∥
∥F(, )

∥
∥

Y

= LF
(
T + M̃‖ϕ‖B

)
+
∥
∥F(, )

∥
∥

Y + LF K̃ sup
≤τ≤t

∥
∥xn(τ )

∥
∥, (.)

∥
∥
∥
∥

∫ t


A(s)U(t, s)F

(
s, x̄n

s
)

ds
∥
∥
∥
∥

≤
∫ t



∥
∥A(s)U(t, s)

∥
∥

L(Y ,X)

∥
∥F
(
s, x̄n

s
)∥
∥

Y ds

≤
(∫ t


H(t – s) ds

)[
LF

(
t + K̃ sup

≤τ≤t

∥
∥x(τ )

∥
∥ + M̃‖ϕ‖B

)
+
∥
∥F(, )

∥
∥

Y

]

≤ H̃
[
LF
(
T + M̃‖ϕ‖B

)
+
∥
∥F(, )

∥
∥

Y

]
+ H̃LF K̃ sup

≤τ≤t

∥
∥x(τ )

∥
∥, (.)

∥
∥
∥
∥

∫ t


U(t, s)g(s) ds

∥
∥
∥
∥≤ M

∫ t



∥
∥g(s)

∥
∥ds

≤ M

∫ t


α(s)

(
 +

∥
∥x̄n

s
∥
∥
B
)

ds

≤ M

(∫ t


α(s) ds

)(
 + K(s) sup

≤τ≤s

∥
∥xn(τ )

∥
∥ + M(s)

∥
∥x̄n


∥
∥
B

)

≤ M‖α‖L([,T])

(
 + M̃‖ϕ‖B + K̃ sup

≤τ≤s

∥
∥xn(τ )

∥
∥
)

, (.)

and
∥
∥
∥
∥
∥

m∑

i=

U(t, ti)Ii
(
x̄n

ti

)
∥
∥
∥
∥
∥

≤
m∑

i=

∥
∥U(t, ti)

∥
∥

L(X)

∥
∥Ii
(
x̄n

ti

)∥
∥

≤ M

m∑

i=

∥
∥Ii
(
x̄n

ti

)
– Ii() + Ii()

∥
∥

≤ M

m∑

i=

(
Li
∥
∥x̄n

ti

∥
∥
B +

∥
∥Ii()

∥
∥
)

≤ M

m∑

i=

(
Li

(
K̃ sup

≤τ≤s

∥
∥xn(τ )

∥
∥ + M̃‖ϕ‖B

)
+
∥
∥Ii()

∥
∥
)

, (.)
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where M̃ := sup≤t≤T |M(t)|. Thus, it follows by (.)-(.) and (H) that

n <
∥
∥xn∥∥

PC([,T],X)

≤ M
∥
∥ϕ()

∥
∥ + ( + H̃)LF T + (M + LF + H̃)

∥
∥F(, )

∥
∥

Y

+
(
MLF + LF M̃ + LFH̃M̃ + MM̃‖α‖L

)‖ϕ‖B

+ M‖α‖L + M

(

m
∥
∥Ii()

∥
∥ + M̃‖ϕ‖B

m∑

i=

Li

)

+ K̃

[

( + H̃)LF + M

(

‖α‖L +
m∑

i=

Li

)]

n.

Divide both sides by n and take the lower limit as n → ∞; we get

K̃

[

( + H̃)LF + M

(

‖α‖L +
m∑

i=

Li

)]

≥ ,

which contradicts (.). This completes the proof. �

4 An example
Let X := L([, ]) and denote by ‖ · ‖ the usual L-norm of X. Let

D :=
{
ψ ∈ X : ψ and ψ ′ are absolutely continuous,ψ ′′ ∈ X,ψ() = ψ() = 

}
.

For each t ∈ [, T], define

(
A(t)ψ

)
(ξ ) = a(t, ξ )ψ ′′(ξ ) + b(t, ξ )ϕ′(ξ ) + c(t, ξ )ψ(ξ ), ξ ∈ [, ]

for ψ ∈ D(A(t)) := D, where a(t, ξ ) >  for all t ∈ [, T] and ξ ∈ [, ] and

a, b, c ∈ Cα
(
[, T], X

)
(.)

for some α ∈ (, ). By [], Corollary ..(ii), p., A(t) are sectorial operators in X, and
(.) implies that A(·) ∈ Cα([, T], L(D, X)), where D is endowed with the norm ‖ψ‖D :=
∑

i= ‖Diψ‖, ψ ∈ D. We put

Ã := sup
s∈[,T]

∥
∥A(s)

∥
∥

L(D,X).

Here, for a Banach space X and an interval I , Cα(I,X) stands for the space of Hölder con-
tinuous functions I defined as follows:

Cα(I,X) =
{

f ∈ Cb(I,X)
∣
∣
∣ [f ]Cα (I,X) = sup

t,s∈I,s<t

‖f (t) – f (s)‖
(t – s)α

< +∞
}

,

‖f ‖Cα (I,X) = ‖f ‖∞ + [f ]Cα (I,X),
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where Cb(I,X) is the space of all bounded and continuous functions on I equipped with
sup-norm. It is well known that the parabolic nonautonomous system

⎧
⎨

⎩

x′(t) = A(t)x(t), t ≥ s,

x(s) = x ∈ X,

has an associated evolution family {U(t, s)}t≥s on X, and we put M = sup≤s<t≤T ‖U(t,
s)‖L(X). We take the phase space

B = Cγ =
{
φ ∈ C

(
(–∞, ], X

)
: lim
σ→–∞ eγ σφ(σ ) exists in X

}
,

where γ >  and set

‖φ‖B = sup
–∞<σ≤

eγ σ
∥
∥φ(σ )

∥
∥, φ ∈ Cγ .

It is well known (see [], p.) that Cγ satisfies the axioms (A) and (B) with

H = , K(t) = max
(
, e–γ t) and M(t) = e–γ t . (.)

In this section, we consider the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂t [x(t, ξ ) +

∫ t
–∞

∫ 
 e–c(t–s)k(s – t,σ , ξ )x(s,σ ) dσ ds]

= (A(t)x(t))(ξ ) +
∫ t

–∞
∫ 

 e–c(t–s)b(s – t)G(t, x(s, ξ )) dσ ds,

t ∈ [, T], ξ ∈ [, ],

x(t, ) = x(t, ) = , t ∈ [, T],

�x(ti, ·) = x(t+
i , ·) – x(t–

i , ·) =
∫ 

 pi(x(ti,σ ), ·) dσ ,

x(s, ξ ) = ϕ(s, ξ ) ∈ B, s ≤ ,  ≤ ξ ≤ ,

(.)

where c and c are positive constants with  < γ < min{c, c}. Define the functions F , G :
[, T] ×B → X and Ii : B → X by

F(t,φ)(ξ ) =
∫ 

–∞

∫ 


ecsk(s,σ , ξ )φ(s,σ ) dσ ds,

G(t,φ)(ξ ) =
∫ 

–∞
ecsb(s)G

(
t,φ(s, ξ )

)
ds,

Ii(φ)(ξ ) =
∫ 


pi
(
φ(,σ ), ξ

)
dσ .

It is clear that problem (.) can be modeled as the abstract impulsive Cauchy problem
(.). To treat this system, we assume the following conditions:

(C) k : (–∞, ] × [, ] × [, ] →R is square integrable with k(s,σ , ) = k(s,σ , ) = 
for all s ∈ (–∞, ] and σ ∈ [, ]. Moreover, k(s,σ , ξ ) is twice differentiable with
respect to ξ and

c :=
∑

i=

(∫ 



∫ 

–∞

∫ 



∣
∣
∣
∣

∂ i

∂ξ i k(s,σ , ξ )
∣
∣
∣
∣



dσ ds dξ

) 


< ∞.
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(C) The function b : (–∞, ] → R is measurable such that the function s → e(c–γ )sb(s)
is integrable on (–∞, ] and we put

κ =
∫ 

–∞
e(c–γ )s∣∣b(s)

∣
∣ds.

(C) G : [, T] ×B → X is a multimap with compact and convex values and there exist
a function μ ∈ L([, T]) and a function ϑ ∈ Cb((–∞, ],R) such that

∥
∥G
(
t,φ(s, ξ )

)∥
∥≤ μ(t)

∣
∣ϑ(s)

∣
∣
∥
∥φ(s)

∥
∥,  ≤ t ≤ T , s ≤ ,  ≤ ξ ≤ .

Moreover, we suppose that G is compact in its second argument.
(C) The functions pi : R× [, ] →R, i = , , . . . , m, are continuous, and there are

positive constants li such that

∣
∣pi(τ, ξ ) – pi(τ, ξ )

∣
∣≤ li|τ – τ|, ξ ∈ [, ], τ, τ ∈R.

The next result is a consequence of Theorem ..

Theorem . Suppose that the previous conditions (C)-(C) hold. If

[

( + MÃ)c + M

(

κ‖ϑ‖∞‖μ‖L([,T]) +
m∑

i=

li

)]

< , (.)

then there is a mild solution of the impulsive system (.).

Proof Observe that

∥
∥A(s)U(t, s)ψ

∥
∥ =

∥
∥U(t, s)A(s)ψ

∥
∥≤ ∥

∥U(t, s)
∥
∥

L(X)

∥
∥A(s)

∥
∥

L(D,X)‖ψ‖D, ψ ∈ D,

and hence

∥
∥A(s)U(t, s)

∥
∥

L(D,X) ≤ ∥
∥U(t, s)

∥
∥

L(X)

∥
∥A(s)

∥
∥

L(D,X) ≤ M sup
s∈[,T]

∥
∥A(s)

∥
∥

L(D,X).

By (C), it is easy to see that F(t,φ) ∈ D for all (t,φ) ∈ [, T] × B, and assumption (H) is
thus fulfilled by taking

H(t – s) = sup
≤s<t≤T

∥
∥U(t, s)

∥
∥

L(X) · sup
s∈[,T]

∥
∥A(s)

∥
∥

L(D,X) = MÃ.

The following estimate, which follows from (C), verifies that F satisfies (H):

∥
∥F(t,φ)

∥
∥ =

∫ 



[∫ 

–∞

∫ 


ecsk(s,σ , ξ )φ(s,σ ) dσ ds

]

dξ

=
∫ 



[∫ 

–∞
ecs

(∫ 


k(s,σ , ξ )φ(s,σ ) dσ

)

ds
]

dξ

≤
∫ 



[∫ 

–∞
ecs

(∫ 



∣
∣k(s,σ , ξ )

∣
∣ dσ

)/(∫ 



∣
∣φ(s,σ )

∣
∣ dσ

)/

ds
]

dξ
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≤
∫ 



[∫ 

–∞
e(c–γ )s

(∫ 



∣
∣k(s,σ , ξ )

∣
∣ dσ

)/

eγ s∥∥φ(s)
∥
∥ds

]

dξ

≤ (
c‖φ‖B

).

Moreover, take g ∈ G(·,φ), and we have

∥
∥g(t)

∥
∥ =

∫ 



(∫ 

–∞
ecsb(s)g

(
t,φ(s, ξ )

)
ds
)

dξ

=
∫ 



(∫ 

–∞
ecsb(s)μ(t)

∣
∣ϑ(s)

∣
∣
∥
∥φ(s)

∥
∥ds

)

dξ

≤
(

μ(t)‖ϑ‖∞
∫ 

–∞
e(c–γ )sb(s)eγ s∥∥φ(s)

∥
∥ds

)

≤ (
κ‖ϑ‖∞μ(t)‖φ‖B

),

yielding

∥
∥G(t,φ)

∥
∥≤ κ‖ϑ‖∞μ(t)

(
 + ‖φ‖B

)
.

This shows that G satisfies (H). From condition (C), we have

∣
∣I(φ)(ξ ) – Ii(ψ)(ξ )

∣
∣ ≤

∫ 



∣
∣pi
(
φ(,σ ), ξ

)
– pi

(
ψ(,σ ), ξ

)∣
∣dσ

≤ li

∫ 



∣
∣φ(,σ ) – ψ(,σ )

∣
∣dσ

≤ l
∥
∥φ() – ψ()

∥
∥

≤ l‖φ – ψ‖B ,

by axiom (A)(ii) and (.).
Consequently, from (.) and Theorem ., the problem (.) has a mild solution. �

The example we provide here is nontrivial. Actually, consider the nonlinear term G :
[, T] ×B → X given by

G(t,φ) := ( + cos t)�φ ,

where �φ is the convex hull of the set

{
η + η | η �=  ∈ X,η ⊥ η,‖η‖ ≤ ,η = aφ(), a ≤ 

}
.

It is clear that G has convex and compact values, G is locally compact, and G is compact
in its second argument. Moreover, G(t,ϕ) �=  even if ϕ ≡ .

Now, let {φn} be a sequence in B = Cγ such that φn → φ in B = Cγ and let ηn = aφn()
for all n ∈N. Since

‖ηn – η‖ ≤ a
∥
∥φn() – φ()

∥
∥≤ a

∥
∥(φn) – φ

∥
∥
B →  as n → ∞,
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G is closed, and hence G is upper semi-continuous (see [], p.). Therefore, G satisfies
the conditions (H) and (H). Thus, if inequality (.) holds with suitable functions ϑ , μ,
k, b, and pi satisfying (C), (C), and (C), then the system (.) considered in Section 
has a nontrivial solution in this case, since for x = , t ∈ [, T], and ξ ∈ [, ], ∂

∂t x(t, ξ ) =
(A(t)x(t))(ξ ) = , and we have

∫ t

–∞

∫ 


e–c(t–s)k(s – t,σ , ξ )x(s,σ ) dσ ds = 

and

∫ t

–∞

∫ 


e–c(t–s)b(s – t)g

(
t, x(s, ξ )

)
dσ ds �= 

for any selection g ∈ G and suitably selected b.
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