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Abstract
We consider a class of higher-order nonlinear Riemann-Liouville fractional differential
equation with Riemann-Stieltjes integral boundary value conditions and impulses as
follows:

⎧
⎨

⎩

–Dα
0+u(t) = λa(t)f (t,u(t)), t ∈ (0, 1) \ {tk}mk=1,

�u(tk) = Ik(u(tk)), t = tk ,
u(0) = u′(0) = · · · = u(n–2)(0), u′(1) =

∫ 1
0 u(s)dH(s).

By converting the boundary value problem into an equivalent integral equation and
applying the Schauder fixed-point theorem, fixed-point index theorem, we have
established sufficient conditions for the existence and multiplicity of positive
solutions. The eigenvalue intervals are also given. Some examples are presented to
illustrate the validity of our main results.

Keywords: impulsive fractional differential equations; eigenvalue intervals; multiple
positive solutions; Riemann-Stieltjes integral boundary value problems; fixed-point
index theorem

1 Introduction
This paper is concerned with the eigenvalue intervals and positive solutions of integral
boundary value problem for the following higher-order nonlinear fractional differential
equation with impulses (abbreviated by BVP (.) throughout this paper):

⎧
⎪⎨

⎪⎩

–Dα
+ u(t) = λa(t)f (t, u(t)), t ∈ (, ) \ {tk}m

k=,
�u(tk) = Ik(u(tk)), t = tk ,
u() = u′() = · · · = u(n–)(), u′() =

∫ 
 u(s) dH(s),

(.)

where Dα
+ is the standard Riemann-Liouville fractional derivative of order n –  < α ≤ n,

n ≥ . The number n is the smallest integer greater than or equal to α. The impulsive
point sequence {tk}m

k= satisfies  = t < t < · · · < tm < tm+ = , �u(tk) = u(t+
k ) – u(t–

k ).
u(t–

k ) = u(tk), and u(t+
k ) = limh→ u(tk + h) and u(t–

k ) = limh→ u(tk – h) represent the right-
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and left-hand limits of u(t) at t = tk , respectively; λ >  is a parameter, f ∈ C([, ] ×
[, +∞) → [, +∞)), a(t) ∈ C((, ), [, +∞)), Ik ∈ C(R+,R+). The integral

∫ 
 u(s) dH(s) is

the Riemann-Stieltjes integral with H : [, ] → R. By applying the Schauder fixed-point
theorem, fixed-point index theorem, we obtain some sufficient conditions for the exis-
tence and multiplicity of positive solutions of BVP (.). Meanwhile, the eigenvalue inter-
vals are also given.

During the past decades, the subject of fractional differential equations has aroused
great attention due to both the further development of fractional-order calculus theory
and important applications in the fields of science and engineering such as physics, chem-
istry, aerodynamics, electrodynamics of complex medium, polymer rheology, Bode’s anal-
ysis of feedback amplifiers, capacitor theory, electrical circuits, electron-analytical chem-
istry, biology, control theory, fitting of experimental data, and so forth. Fractional deriva-
tives provide an excellent tool for description of memory and hereditary properties of
various materials and processes. This is the main advantage of fractional differential equa-
tions in comparison with classical integer-order models. As a consequence, the subject of
fractional differential equations is gaining much importance and attention. In particular,
there are many papers focused on the existence or multiplicity of positive solutions for the
boundary value problems of fractional ordinary differential equations (see [–]).

However, there are a few papers [–] that consider the existence or multiplicity of
positive solutions for fractional differential equations involving in eigenvalue parameters.
For example, Bai [] considered the following fractional ordinary differential equation
boundary value problem:

{
cDs

+u(t) + λh(t)f (u) = ,  < t < ,
u() = u′() = u′′() = ,

where  < s ≤  is a real number, cDs
+ is the standard Caputo differentiation, and λ > . By

applying a fixed-point theorem on a cone, some sufficient conditions of multiplicity and
eigenvalue intervals for the problem are established.

In order to describe the dynamics of populations subject to abrupt changes and other
phenomena such as harvesting, diseases, and so on, some authors have used an impulsive
differential system to describe these kinds of phenomena since the last century. Recently,
some scholars have begun to study the boundary value problems of impulsive fractional
differential equations (see [–]). This type of boundary value problems has become
one of the hottest problems at present.

To the best of our knowledge, there is less research dealing with the eigenvalue intervals
and positive solutions of Riemann-Stieltjes integral boundary problems for higher-order
nonlinear fractional differential equation with impulses. Therefore, we will investigate the
existence and multiplicity of positive solutions for BVP (.) under some further condi-
tions.

The rest of this paper is organized as follows. In Section , we recall some useful defini-
tions and properties and present properties of the Green functions. In Section , we give
some sufficient conditions for the existence of single positive solutions for BVP (.). In
Section , some sufficient conditions are established to guarantee the existence of multi-
ple positive solutions for BVP (.). Finally, some examples are also provided to illustrate
the validity of our main results in Section .



Zhao Advances in Difference Equations  (2015) 2015:382 Page 3 of 16

2 Preliminaries
For convenience, now we introduce some definitions and results of fractional calculus.

Definition . (see [, ]) The Riemann-Liouville fractional integral of order α >  of
a function u : (,∞) →R is given by

Iα
+u(t) =


�(α)

∫ t


(t – s)α–u(s) ds,

provided that the right-hand side is pointwise defined on (,∞).

Definition . (see [, ]) The Riemann-Liouville fractional derivative of order α > 
of a continuous function u : (,∞) →R is given by

Dα
+u(t) =


�(n – α)

dn

dtn

∫ t


(t – s)n–α–u(s) ds,

where n –  < α ≤ n, provided that the right-hand side is pointwise defined on (,∞).

Lemma . (see []) Assume that u ∈ C(, )∩L(, ) with a fractional derivative of order
α >  that belongs to u ∈ C(, ) ∩ L(, ). Then

Iα
+Dα

+u(t) = u(t) + Ctα– + Ctα– + · · · + Cntα–n

for some Ci ∈R, i = , , . . . , n, where n is the smallest integer greater than or equal to α.

Lemma . (Schauder fixed-point theorem, see []) If U is a close bounded convex subset
of a Banach space X and T : U → U is completely continuous, then T has at least one fixed
point in U .

Lemma . (Fixed-point index theorem, see []) Let E be a Banach space, and P ⊂ E
be a cone. For r > , define �r = {u ∈ P : ‖u‖ < r}. Assume that A : �r → P is a completely
continuous operator such that Au �= u for u ∈ ∂�r = {u ∈ P : ‖u‖ = r}.

() If ‖Au‖ ≥ ‖u‖ for u ∈ ∂�r , then i(A,�r , P) = .
() If ‖Au‖ ≤ ‖u‖ for u ∈ ∂�r , then i(A,�r , P) = .

Now we present the Green function for the system associated with BVP (.).

Lemma . If H : [, ] → R is a function of bounded variation δ �
∫ 

 sα– dH(s) �= α – 
and h ∈ C([, ]), then the unique solution of

⎧
⎪⎨

⎪⎩

Dα
+ u(t) + h(t) = , t ∈ (, ) \ {tk}m

k=, n –  < α ≤ n, n ≥ ,
�u(tk) = Ik(u(tk)), t = tk ,
u() = u′() = · · · = u(n–)(), u′() =

∫ 
 u(s) dH(s),

(.)

is

u(t) =
∫ 


G(t, s)h(s) ds + tα–

∑

t≤tk <

t–α
k Ik

(
u(tk)

)
, t ∈ [, ], (.)
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where

G(t, s) = G(t, s) + G(t, s), (.)

G(t, s) =

{
tα–(–s)α––(t–s)α–

�(α) ,  ≤ s ≤ t ≤ ,
tα–(–s)α–

�(α) ,  ≤ t ≤ s ≤ ,
(.)

G(t, s) =
tα–

α –  – δ

∫ 


G(τ , s) dH(τ ). (.)

Proof We denote the solution of (.) by u(t) � uk(t) in [tk , tk+] (k = , , . . . , m).
For t ∈ [, t), applying Lemma ., we have

u(t) = –


�(α)

∫ t


(t – s)α–h(s) ds + C

 tα– + C
 tα– + · · · + C

n tα–n.

In the light of u() = u′() = u′′() = · · · = u(n–)() = , we have C
 = C

 = · · · = C
n = .

Thus, we get

u(t) = –


�(α)

∫ t


(t – s)α–h(s) ds + C

 tα–

and

u
(
t–

)

+ I
(
u(t)

)
= u(t) + I

(
u(t)

)
= u

(
t+

)

= –
∫ t



(t – s)α–

�(α)
h(s) ds + C

 tα–
 .

For t ∈ [t, t), by applying Lemma . we have

u(t) = –


�(α)

∫ t


(t – s)α–h(s) ds + C

tα– + C
tα– + · · · + C

ntα–n.

In view of u() = u′() = u′′() = · · · = u(n–)() = , we have C
 = C

 = · · · = C
n = . Thus,

we get

u(t) = –


�(α)

∫ t


(t – s)α–h(s) ds + C

tα–.

Noting that u(t) = u(t), we derive C
 = C

 – t–α
 I(u(t)). So we obtain

u(t) = –


�(α)

∫ t


(t – s)α–h(s) ds + C

 tα– – tα–t–α
 I

(
u(t)

)

and

u
(
t–

)

+ I
(
u(t)

)
= u(t) + I

(
u(t)

)
= u

(
t+

)

= –
∫ t



(t – s)α–

�(α)
h(s) ds + C

tα–
 .

For t ∈ [t, t), by applying Lemma . we have

u(t) = –


�(α)

∫ t


(t – s)α–h(s) ds + C

 tα– + C
tα– + · · · + C

ntα–n.
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In view of u() = u′() = u′′() = · · · = u(n–)() = , we have C
 = C

 = · · · = C
n = . Thus,

we get

u(t) = –


�(α)

∫ t


(t – s)α–h(s) ds + C

 tα–.

Noting that u(t) = u(t), we derive C
 = C

 – t–α
 I(u(t)). So we obtain

u(t) = –


�(α)

∫ t


(t – s)α–h(s) ds + C

 tα– – tα–
∑

i=

t–α
i Ii

(
u(ti)

)

and

u
(
t–

)

+ I
(
u(t)

)
= u(t) + I

(
u(t)

)
= u

(
t+

)

= –
∫ t



(t – s)α–

�(α)
h(s) ds + C

 tα–
 .

By the recurrent method and Lemma ., for t ∈ [tk , tk+) (k = , , , . . . , m), we have

u(t) = uk(t) = –


�(α)

∫ t


(t – s)α–h(s) ds + C

 tα– – tα–
k∑

i=

t–α
i Ii

(
u(ti)

)
. (.)

Thus, for t ∈ [tm, tm+] = [tm, ], we have

u(t) = um(t) = –


�(α)

∫ t


(t – s)α–h(s) ds + C

 tα– – tα–
m∑

i=

t–α
i Ii

(
u(ti)

)
. (.)

From u′() =
∫ 

 u(s) dH(s) we obtain

C
 =


�(α)

∫ 


( – s)α–h(s) ds +


α – 

∫ 


u(s) dH(s) +

m∑

i=

t–α
i Ii

(
u(ti)

)
. (.)

By (.) and (.), for t ∈ [tm, tm+] = [tm, ], we get

u(t) = –


�(α)

∫ t


(t – s)α–h(s) ds +

tα–

�(α)

∫ 


( – s)α–h(s) ds +

tα–

α – 

∫ 


u(s) dH(s)

=
∫ 


G(t, s)h(s) ds +

tα–

α – 

∫ 


u(s) dH(s), (.)

which implies that

∫ 


u(s) dH(s) =

α – 
α –  – δ

∫ 



[∫ 


G(τ , s)h(s) ds

]

dH(τ ). (.)

According to (.), (.), and (.), for t ∈ [tk , tk+) (k = , , , . . . , m), the unique solution
of BVP (.) is formulated by

u(t) = –


�(α)

∫ t


(t – s)α–h(s) ds +

tα–

�(α)

∫ 


( – s)α–h(s) ds

+
tα–

α – 

∫ 


u(s) dH(s) + tα–

m∑

i=k+

t–α
i Ii

(
u(ti)

)
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=
∫ 


G(t, s)h(s) ds +

tα–

α – 

∫ 


u(s) dH(s) + tα–

m∑

i=k+

t–α
i Ii

(
u(ti)

)

=
∫ 


G(t, s)h(s) ds +

tα–

α –  – δ

∫ 



[∫ 


G(τ , s)h(s) ds

]

dH(τ )

+ tα–
m∑

i=k+

t–α
i Ii

(
u(ti)

)

=
∫ 


G(t, s)h(s) ds +

∫ 



[
tα–

α –  – δ

∫ 


G(τ , s) dH(τ )

]

h(s) ds

+ tα–
m∑

i=k+

t–α
i Ii

(
u(ti)

)

=
∫ 


G(t, s)h(s) ds +

∫ 


G(t, s)h(s) ds + tα–

m∑

i=k+

t–α
i Ii

(
u(ti)

)

=
∫ 


G(t, s)h(s) ds + tα–

m∑

i=k+

t–α
i Ii

(
u(ti)

)
. (.)

Therefore, for t ∈ [, ], the unique solution of BVP (.) is expressed as

u(t) =
∫ 


G(t, s)h(s) ds + tα–

∑

t≤tk <

t–α
k Ik

(
u(tk)

)
, (.)

where G(t, s), G(t, s), and G(t, s) are defined by (.), (.), and (.), respectively. The
proof is complete. �

From (.), (.), and (.) we can prove that G(t, s), G(t, s), and G(t, s) have the follow-
ing properties.

Lemma . The function G(t, s) defined by (.) satisfies
(i) G(t, s) ≥  is continuous for all t, s ∈ [, ], and G(t, s) >  for all t, s ∈ (, );

(ii) For all t, s ∈ [, ], G(t, s) is increasing with respect to t, and
G(t, s) ≤ g(s) � s(–s)α–

�(α) ;
(iii) For θ ∈ (, 

 ), there exists a constant γ >  such that mint∈Jθ G(t, s) ≥ γ g(s) for
s ∈ [, ], where Jθ � [θ ,  – θ ].

Proof (i) It is obvious that G(t, s) is continuous on [, ] × [, ], and G(t, s) ≥  for s ≥ t.
For  ≤ s < t ≤ , noting that  < t – s <  – s ≤  and t( – s) ≥ t – s, we have

tα–( – s)α– – (t – s)α– = tα–( – s)α–
[

 –
(

t – s
t( – s)

)α–

(t – s)
]

≥ . (.)

So, by (.) we get G(t, s) ≥  for all t, s ∈ [, ]. Similarly, for s, t ∈ (, ), we obtain
G(t, s) > .

(ii) In fact,

∂G

∂t
=

{
tα–(–s)α–

�(α–) ≥ ,  ≤ t ≤ s ≤ ,
tα–(–s)α–

�(α–) [ – ( t–s
t(–s) )α–] ≥ ,  ≤ s ≤ t ≤ .

(.)
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From (.) we see that G(t, s) is increasing with respect to t. For  ≤ s ≤ t ≤ , G(t, s) ≤
G(, s) = s(–s)α–

�(α) = g(s); for  ≤ t ≤ s ≤ , G(t, s) ≤ G(s, s) = sα–(–s)α–

�(α) ≤ s(–s)α–

�(α) = g(s).

Therefore, for all t, s ∈ [, ], we have G(t, s) ≤ g(s) = s(–s)α–

�(α) .
(iii) For t ∈ Jθ , we divide the proof into the following three cases for s ∈ [, ].
Case . If s ∈ Jθ , then from (i) of Lemma . we have G(t, s) >  and g(s) >  for all

t, s ∈ Jθ . It is obvious that G(t, s) and g(s) are bounded on Jθ . So, there exists a constant
 > γ >  such that

G(t, s) ≥ γg(s) ∀t, s ∈ Jθ . (.)

Case . If s ∈ [ – θ , ], then from (.) and (ii) of Lemma . we get

min
t∈Jθ

G(t, s) = min
t∈Jθ

tα–( – s)α–

�(α)
=

θα–( – s)α–

�(α)
.

Thus, we have

mint∈Jθ G(t, s)
g(s)

=
θα–

s
≥ θα–,

that is,

min
t∈Jθ

G(t, s) ≥ θα–g(s). (.)

Case . If s ∈ [, θ ], then from (.) and (ii) of Lemma . we obtain

min
t∈Jθ

G(t, s) = min
t∈Jθ

tα–( – s)α– – (t – s)α–

�(α)
=

θα–( – s)α– – (θ – s)α–

�(α)
.

It is clear that

 < min
t∈Jθ

G(t, s) ≤ ,  < g(s) ≤  ∀s ∈ (, θ ], t ∈ Jθ , (.)

and

lim
s→

mint∈Jθ G(t, s)
g(s)

= lim
s→

θα– – (θ – s)α–( – s)–α

s

= lim
s→

[
(α – )(θ – s)α–( – s)–α + ( – α)(θ – s)α–( – s)–α

]

= θα–[(α – ) – θ (α – )
]

> . (.)

In the light of (.) and (.), we conclude that there exists a constant  > γ >  such
that

G(t, s) ≥ γg(s) ∀s ∈ [, θ ], t ∈ Jθ . (.)
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Taking γ = min{γ,γ, θα–} and applying (.), (.), and (.), we get that (iii) of
Lemma . holds. The proof is complete. �

Lemma . If  ≤ δ �
∫ 

 sα– dH(s) < α – , then we have
(i) G(t, s) ≥  is continuous for all t, s ∈ [, ], and G(t, s) >  for all t, s ∈ (, );

(ii) G(t, s) ≤ 
α––δ

∫ 
 G(τ , s) dH(τ ) for all t ∈ [, ], s ∈ (, ).

Employing the properties of G(t, s) and the definition of G(t, s), it is easy to show that (i)
and (ii) of Lemma . hold. So we omit it.

Lemma . If  ≤ δ �
∫ 

 sα– dH(s) < α – , then the function G(t, s) defined by (.) satis-
fies

(i) G(t, s) ≥  is continuous for all t, s ∈ [, ], and G(t, s) >  for all t, s ∈ (, );
(ii) G(t, s) ≤ g(s) for all t, s ∈ [, ], and

min
t∈[θ ,–θ ]

G(t, s) ≥ σ g(s) ∀s ∈ [, ], (.)

where

σ = min
{
γ , θα–}, g(s) = g(s) + G(, s) (.)

with γ defined in Lemma ..

Proof (i) From Lemma . and Lemma . we obtain that G(t, s) ≥  is continuous for all
t, s ∈ [, ] and G(t, s) >  for all t, s ∈ (, ).

(ii) From (ii) of Lemma . and (ii) of Lemma . we have that G(t, s) ≤ g(s) for all t, s ∈
[, ]. Now, we show (.). Indeed, from Lemma . we have

min
t∈Jθ

G(t, s) ≥ γ g(s) +
θα–

α –  – δ

∫ 


G(τ , s) dH(τ )

≥ σ

[

g(s) +


α –  – δ

∫ 


G(τ , s) dH(τ )

]

= σ g(s) ∀s ∈ [, ]. (.)

Then the proof of Lemma . is completed. �

Let Jθ � [θ ,  – θ ] for θ ∈ (, 
 ), and let E = {u(t) : u(t) ∈ C([, ])} be a real Banach space

with the norm ‖u‖ = max≤t≤ |u(t)|. Let

PC
(
[, ]

)
�

{
u ∈ E|u : [, ] → [, +∞), u

(
t–
k
)

and u
(
t+
k
)

exist with u
(
t–
k
)

= u(tk),  ≤ k ≤ m
}

,

K =
{

u ∈ PC
(
[, ]

)
: u ≥ , min

t∈Jθ
u(t) ≥ σ‖u‖

}
, (.)

Kr =
{

u ∈ K : ‖u‖ < r
}

, ∂Kr =
{

u ∈ K : ‖u‖ = r
}

. (.)

Obviously, PC([, ]) ⊂ E is a Banach space with the norm ‖u‖ = maxt∈[,] |u(t)|, and K ⊂
PC([, ]) is a positive cone.

In the following, we need the assumptions and some notation as follows:
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(B) a ∈ C((, ), [, +∞)), and a(t) �≡  on any subinterval of (, ).
(B) f ∈ C([, ] × [, +∞), [, +∞)), and f (t, ) =  uniformly with respect to t on [, ].
(B) Ik(u(tk)) ∈ C([, +∞), [, +∞)), k = , , . . . , m.
(B) H : [, ] → [, +∞) is of bounded variation with  < δ =

∫ 
 sα– dH(s) < α – .

Let

f δ = lim sup
u→δ

max
t∈[,]

f (t, u)
u

, fδ = lim inf
u→δ

min
t∈[,]

f (t, u)
u

,

A =
∫ 


g(s)a(s) ds < ∞, B = σ 

∫ –θ

θ

g(s)a(s) ds < ∞,

where δ denotes  or +∞. In addition, we introduce the following conditions:

(H) f > 
λB , namely, λ > 

Bf
(particularly, f = +∞, λ > ).

(H) f∞ > 
λB , namely, λ > 

Bf∞ (particularly, f∞ = +∞, λ > ).
(H) f  < 

λA , namely, λ < 
Af  (particularly, f  = , λ < +∞).

(H) f ∞ < 
λA , namely, λ < 

Af ∞ (particularly, f ∞ = , λ < +∞).
(H) There exists a >  such that mint∈Jθ ,u∈[θa,a] f (t, u) > u

λB , namely,

λ >
u

B mint∈Jθ ,u∈[θa,a] f (t, u)
.

(H) There exists b >  such that maxt∈[,],u∈[,b] f (t, u) < b
λA , namely,

λ <
b

A maxt∈[,],u∈[,b] f (t, u)
.

Remark . If there exists a >  such that mint∈Jθ ,u∈[θa,a] f (t, u) > a
λB , then (H) holds.

Remark . If there exists b >  such that maxt∈[,],u∈[,b] f (t, u) < u
λA , then (H) holds.

From Lemma . we obtain the following lemma.

Lemma . If (B)-(B) hold, then BVP (.) has a solution u ∈ PC([, ]) if and only if
u ∈ PC([, ]) is a solution of the integral equation

u(t) = λ

∫ 


G(t, s)a(s)f

(
s, u(s)

)
ds + tα–

∑

t≤tk <

t–α
k Ik

(
u(tk)

)
.

Let T : K → K be the operator defined as

(Tu)(t) = λ

∫ 


G(t, s)a(s)f

(
s, u(s)

)
ds + tα–

∑

t≤tk <

t–α
k Ik

(
u(tk)

)
. (.)

Then, by Lemma . the fixed point of operator T coincides with the solution of BVP (.).

Remark . If (B)-(B) hold, then (Tu)′(t) ≥  for all t ∈ [, ], that is, (Tu)(t) is increasing
on [, ].

Lemma . If (B)-(B) hold, then T : K → K defined by (.) is completely continuous.
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Proof () For any u ∈ K , t ∈ [, ], it is clear that (Tu)(t) ≥ . Noting that  < σ < , for
t ∈ [, ], we have (Tu)(t) ≥ σ (Tu)(t), which implies mint∈Jθ (Tu)(t) ≥ maxt∈[,] σ (Tu)(t) =
σ‖Tu‖. Therefore, T(K) ⊂ K , that is, T : K → K is well defined.

() Let u ∈ K , in view of the nonnegativeness and continuity of functions G(t, s), a(t),
f (t, u(t)), Ik(u) and λ > , we conclude that T : K → K is continuous.

Let � ⊂ K be any bounded subset in PC([, ]). By the Ascoli-Arzela theorem we only
need to show that T(�) is uniformly bounded in PC([, ]) and T : K → K is equicon-
tinuous. For any u ∈ �, t, s ∈ [, ], there exist some constants Li >  (i = , , , ) such
that

max
t,s∈[,]

∣
∣G(t, s)

∣
∣ ≤ L, max

t∈[,]

∣
∣a(t)

∣
∣ ≤ L,

max
u∈�,t∈[,]

∣
∣f (t, u)

∣
∣ ≤ L, max

≤k≤
max
u∈�

∣
∣Ik

(
u(tk)

)∣
∣ ≤ L.

Then we have

∣
∣(Tu)(t)

∣
∣ ≤

∫ 



∣
∣G(t, s)

∣
∣
[
λ
∣
∣a(s)

∣
∣
∣
∣f

(
s, u(s)

)∣
∣
]

ds +
m∑

k=

∣
∣Ik

(
u(tk)

)∣
∣ ≤ λLLL + mL.

Hence, T(�) is uniformly bounded.
Next, we will prove that S : K → K is equicontinuous. Indeed, for any u ∈ � and t, t ∈

[, ], we have

∣
∣(Tu)(t) – (Tu)(t)

∣
∣

= λ

∫ 



∣
∣G(t, s) – G(t, s)

∣
∣a(s)f

(
s, u(s)

)
ds

+
∣
∣
∣
∣

∑

t≤tk <

(
t

tk

)α–

Ik
(
u(tk)

)
–

∑

t≤tk <

(
t

tk

)α–

Ik
(
u(tk)

)
∣
∣
∣
∣ →  as t → t.

Thus, it follows from the continuity of G(t, s) that for any ε > , there exists a positive con-
stant δ = δ(ε) > , independent of t, t, and u, such that |(Tu)(t) – (Tu)(t)| < ε whenever
|t – t| < δ. Thereby, T : K → K is equicontinuous. The proof is complete. �

3 Single positive solutions and eigenvalue intervals
In this section, employing the Schauder fixed-point theorem, we derive the existence of
one positive solution for BVP (.) under weak assumptions, which improved the results
of [].

Theorem . Assume that (B)-(B) hold. If (H) or (H) is satisfied, then BVP (.) has at
least one positive solution.

Proof If the condition (H) holds, considering f  < 
λA , there exists ε >  such that (f  +

ε)λA ≤ . From the definition of f , there exists r >  such that f (t, u) ≤ (f  + ε)u for all
 ≤ u ≤ r, t ∈ [, ]. Let u ∈ � � Kr be defined as in (.). It is easy to know that � is a
close bounded convex subset of a Banach space PC([, ]). Then, for t ∈ [, ] and u ∈ �,
in view of the nonnegativeness and continuity of functions G(t, s), a(t), f (t, u(t)), Ik(u(tk))
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and λ > , we conclude that Tu ∈ PC([, ]), Tu ≥ , t ∈ [, ]. According to Lemma .,
we have (Tu)(t) ∈ K . Next, we will prove that ‖Tu‖ < r. In fact, by Remark . we have

‖Tu‖ = max
t∈[,]

(Tu)(t) = (Tu)() = λ

∫ 


G(, s)a(s)f

(
s, u(s)

)
ds

≤ λ

∫ 


g(s)a(s)

(
f  + ε

)
u(s) ds ≤ ‖u‖(f  + ε

)
λ

∫ 


g(s)a(s) ds

= ‖u‖(f  + ε
)
λA ≤ ‖u‖ < r.

Therefore, T : � → �. From Lemma . we have T : � → � is completely continuous.
Thus, BVP (.) has at least one positive solution by Lemma ..

If condition (H) holds, the proof is similar to the previous arguments. So we omit it.
The proof is complete. �

Theorem . Assume that (B)-(B) hold. Suppose that one of the following conditions is
satisfied:

(A) there exists a constant M >  such that f (t, u) ≤ M
λA for  ≤ t ≤ ,  ≤ u ≤ M;

(A) there exists a constant N >  such that f (t, u) ≤ N
λA for  ≤ t ≤ , u ≥ N .

Then BVP (.) has at least one positive solution.

Proof If condition (A) holds, then we take � � KM = {u ∈ PC([, ]) : ‖u‖ < M}. If the
condition (A) holds, then we take � � Kd = {u ∈ PC([, ]) : ‖u‖ < d}, where d >  satis-
fies d ≥  + N + λA max≤t≤,≤u≤N f (t, u). The rest of the proof is similar to that of Theo-
rem .. So we omit it. The proof is complete. �

4 Multiple positive solutions and eigenvalue intervals
In this section, applying the fixed-point index theorem, we will discuss the multiplicity of
positive solutions for BVP (.).

Theorem . Assume that (B)-(B) hold. If (H), (H), and (H) are satisfied. Then BVP
(.) has at least two positive solutions u, u with

 < ‖u‖ < b < ‖u‖, (.)

and the parameter λ satisfies

max

{


Bf
,


Bf∞

}

< λ <
b

A maxt∈[,],u∈[,b] f (t, u)
. (.)

Proof To begin with, we consider condition (H). Choose r, R with  < r < b < R and let u ∈
�b � Kb. For any u ∈ ∂�b, we have ‖u‖ = b and  ≤ u(t) ≤ b for all t ∈ [, ]. By condition
(H), for u ∈ ∂�b and t ∈ [, ], we get

‖Tu‖ = max
t∈[,]

(Tu)(t) = (Tu)()

= λ

∫ 


G(, s)a(s)f

(
s, u(s)

)
ds
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≤ λ

∫ 


g(s)a(s) max

s∈[,],u∈[,b]
f
(
s, u(s)

)
ds

< λ

∫ 


g(s)a(s)

b
λA

ds = b = ‖u‖.

Therefore,

‖Tu‖ < ‖u‖, u ∈ ∂�b. (.)

By Lemma . we have

i(T ,�b, K) = . (.)

On the one hand, by condition (H) there exists ε >  that satisfies (f – ε)λB ≥ . By
the definition of f there exists r >  such that f (t, u) ≥ (f – ε)u for u ∈ [, r] and t ∈ [, ].
Together with (.), let u ∈ �r � Kr . For u ∈ ∂�r and t ∈ [, ], we have

‖Tu‖ = max
t∈[,]

(Tu)(t) = (Tu)() = λ

∫ 


G(, s)a(s)f

(
s, u(s)

)
ds

≥ λ

∫ 


G(, s)a(s)(f – ε)u(s) ds ≥ (f – ε)λσ

∫ –θ

θ

G(, s)a(s)u(s) ds

≥ (f – ε)λσ 
∫ –θ

θ

g(s)a(s) ds‖u‖ = (f – ε)λB‖u‖ ≥ ‖u‖.

So

‖Tu‖ ≥ ‖u‖, u ∈ ∂�r . (.)

By Lemma . we have

i(T ,�r , K) = . (.)

On the other hand, by condition (H) there exists ε >  that satisfies (f∞ – ε)λB ≥ . By
the definition of f∞ there exists m >  such that f (t, u) ≥ (f∞ – ε)u for u ∈ (m, +∞) and
t ∈ [, ]. Together with (.), let u ∈ �R � KR. For u ∈ ∂�R and t ∈ [, ], we obtain

‖Tu‖ = max
t∈[,]

(Tu)(t) = (Tu)() = λ

∫ 


G(, s)a(s)f

(
s, u(s)

)
ds

≥ λ

∫ 


G(, s)a(s)(f∞ – ε)u(s) ds ≥ (f∞ – ε)λσ

∫ –θ

θ

G(, s)a(s)u(s) ds

≥ (f∞ – ε)λσ 
∫ –θ

θ

g(s)a(s) ds‖u‖ = (f∞ – ε)λB‖u‖ ≥ ‖u‖.

Therefore,

‖Tu‖ ≥ ‖u‖, u ∈ ∂�R. (.)



Zhao Advances in Difference Equations  (2015) 2015:382 Page 13 of 16

By Lemma . we have

i(T ,�R, K) = . (.)

Combining (.) with (.) and (.) with (.), we get

i(T ,�b \ �r , K) = i(T ,�b, K) – i(T ,�r , K)

=  –  =  (.)

and

i(T ,�R \ �b, K) = i(T ,�R, K) – i(T ,�b, K)

=  –  = –. (.)

By (.) and (.), T has a fixed point u ∈ �b \ �r and a fixed point u ∈ �R \ �b. Thus,
it follows that BVP (.) has at least two positive solutions u and u. Noticing (.), we
have ‖u‖ �= b and ‖u‖ �= b. So (.) holds. Combing (H), (H), and (H), we derive (.).
The proof is complete. �

Similarly, we have the following results.

Theorem . Assume that (B)-(B) hold. If (H), (H), and (H) are satisfied, then BVP
(.) has at least two positive solutions u, u with

 < ‖u‖ < a < ‖u‖,

and the parameter λ satisfies

a
B mint∈Jθ ,u∈[θa,a] f (t, u)

< λ < min

{


Af  ,


Af ∞

}

.

Theorem . Assume that (B)-(B) hold. Suppose that there exist m positive numbers
ak , bk (k = , , . . . , m) with  < θa < a < θb < b < θa < a < · · · < θam < am = a < θbm <
bm = b such that the following two conditions are satisfied:

(A) mint∈Jθ ,u∈[θak ,ak ] f (t, u) > ak
λB ;

(A) maxt∈[,],u∈[θbk ,bk ] f (t, u) < bk
λA .

Then BVP (.) has at least m positive solutions uk satisfying with ak < ‖uk‖ < θbk (k =
, , . . . , m), and the parameter λ satisfies

ak

B mint∈Jθ ,u∈[θak ,ak ] f (t, u)
< λ <

bk

A maxt∈[,],u∈[θbk ,bk ] f (t, u)

for k = , , . . . , m.

Theorem . Assume that (B)-(B) hold. Suppose that there exist n (n ≥ ) positive num-
bers bi (i = , , . . . , n) with  < θb < b < θb < b < · · · < θbn < bn < b such that the following
two conditions are satisfied:
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(A) maxt∈[,],u∈∂D f (t, u) < b
λA ;

(A) maxt∈[,],u∈∂Di f (t, u) < bi
λA .

Then BVP (.) has at least n +  positive solutions ui (i = , , . . . , n) with

ui ∈ Di, u ∈ D\
n⋃

i=

Di,

where D = {u ∈ K : u ∈ [, b]}, Di = {u ∈ K : u ∈ [θbi, bi]},  ≤ i ≤ n.

Proof First, for each Di (i = , , . . . , n), if (A) holds, then it follows from Theorem . that
i(T , Di, K) = . Therefore, BVP (.) has at least one positive solution ui ∈ Di. Thus, we
show that BVP (.) has at least n positive solutions.

On the other hand, if (A) holds, then we get

i

(

T , D\
n⋃

i=

Di, K

)

= i(T , D, K) –
n∑

i=

i(T , Di, K) =  – n �= .

Thus, the operator T has a fixed point u ∈ D\⋃n
i= Di, that is, u is the (n + )th positive

solution of BVP (.). This completes the proof. �

5 Illustrative examples
Example . Consider the following boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

–D


+ u(t) = λ

u(t)(+sin(π t))
+u(t) , t ∈ (, ) \ { 

 },
�u( 

 ) = I(u( 
 )), t = 

 ,
u() = u′() = , u′() =

∫ 
 u(s) dH(s),

(.)

where α = 
 , k = , t = 

 , a(t) = , f (t, u) = u(t)(+sin(π t))
+u(t) . Let I(u) = u

+u , H(s) = 
 s. It is easy

to verify that (B)-(B) hold. By simple calculation we have

f ∞ = lim sup
u→∞

max
t∈[,]

u
(
 + sin(π t)

)

u
(
 + u

) = lim sup
u→∞


 + u = .

Thus, all the assumptions of Theorem . are satisfied. Hence, BVP (.) has at least one
positive solution for λ > .

Remark . Noting that f = lim infu→ mint∈[,]
u(+sin(π t))

u(+u) = lim infu→


+u =  �= ∞, we
do not conclude that BVP (.) has positive solutions by applying the results of [].

Example . Consider the nonlinear fractional differential equations

⎧
⎪⎨

⎪⎩

–D


+ u(t) = λ| u(t) ln u(t)

+t |, t ∈ (, ) \ { 
 },

�u( 
 ) = I(u( 

 )), t = 
 ,

u() = u′() = , u′() =
∫ 

 u(s) dH(s),
(.)
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where α = 
 , k = , t = 

 , a(t) = , f (t, u) = | u(t) ln u(t)
+t |. Let I(u) = u

+u , H(s) = 
 s, θ = 

 ∈
(, 

 ), b = . It is easy to verify that (B)-(B) hold. By simple computation we have

δ =
∫ 


sα– dH(s) = , g(s) =

s( – s) 


�( 
 )

,

G(t, s) =

⎧
⎪⎨

⎪⎩

t

 (–s)


 –(t–s)




�( 
 )

,  ≤ s ≤ t ≤ ,

t

 (–s)




�( 
 )

,  ≤ t ≤ s ≤ ,

G(, s) =


α –  – δ

∫ 


G(τ , s) dH(τ ) =

[( – s) 
 – ( – s) 

 ]
�( 

 )
,

g(s) = g(s) + G(, s) =
s( – s) 

 + [( – s) 
 – ( – s) 

 ]
�( 

 )
,

A =
∫ 


g(s)a(s) ds =

∫ 



s( – s) 
 + [( – s) 

 – ( – s) 
 ]

�( 
 )

ds =


�( 
 )

≈ .,

 < B = σ 
∫ –θ

θ

g(s)a(s) ds ≤ θ(α–)
∫ –θ

θ

g(s)a(s) ds < A < +∞,

f = lim inf
u→

min
t∈[,]

∣
∣
∣
∣

u ln u
( + t)u

∣
∣
∣
∣ = lim inf

u→

| ln u|


= +∞,

f∞ = lim inf
u→∞ min

t∈[,]

∣
∣
∣
∣

u ln u
( + t)u

∣
∣
∣
∣ = lim inf

u→∞
| ln u|


= +∞.

When  ≤ u(t) ≤ ,  ≤ t ≤ , f (t, u) = –u ln u
+t arrives at maximum at u = 

e , t = . Therefore,
we have

max
t∈[,],u∈[,]

f (t, u) = max
t∈[,],u∈[,]

–u ln u
 + t =


e

≈ .,

b
A maxt∈[,],u∈[,b] f (t, u)

=


. × .
≈ ..

Thus, by Theorem . it follows that BVP (.) has at least two positive solutions u, u

satisfying  < ‖u‖ <  < ‖u‖ for  < λ < ..
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