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Abstract
In this paper, we consider the biharmonic problem of a partial differential inclusion
with Dirichlet boundary conditions. We prove existence theorems for related partial
differential inclusions with convex and nonconvex multivalued perturbations, and
obtain an existence theorem on extremal solutions, and a strong relaxation theorem.
Also we prove that the solution set is compact Rδ if the perturbation term of the
related partial differential inclusion is convex, and its solution set is path-connected if
the perturbation term is nonconvex.
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1 Introduction
In this paper, we examine the following biharmonic problem of the partial differential
inclusion:

⎧
⎪⎨

⎪⎩

�u ∈ H(x, u,∇u,�u) a.e. in �,
u =  on ∂�,
∂u
∂n =  on ∂�.

(.)

Here � is a bounded domain in RN with a smooth boundary ∂�, and H : �×R×RN ×R →
R \ {∅} is a set-valued map. Biharmonic equations with Dirichlet boundary conditions
were studied by Lions-Magenes [, ], Mozolevski-Süli [, ], Amrouche-Fontes [], and
Amrouche-Raudin [, ]. Boundary value problems involving partial differential equations
with discontinuous nonlinearities which may be reduced to boundary value problems for
partial differential inclusions were studied by Carl-Heikkilä [, ] and Chang [, ] (we
refer the reader also to the work of Marano [, ]). In [], Xue-Cheng studied periodic
problems for a nonlinear evolution inclusion, defined on an evolution triple of spaces,
driven by a monotone operator, and with a perturbation term which is multivalued. They
established existence theorems for periodic solutions, extremal periodic solutions and a
strong relaxation theorem in Banach spaces, which are similar to those in Xue-Yu [] in
infinite dimensional spaces. In [], Cheng-Cong-Xue considered the following boundary
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value problem:

{
�u ∈ G(x, u,∇u) a.e. in �,
u =  on ∂�,

(.)

and they established the existence of solutions for inclusions with convex- and nonconvex-
valued perturbations, extremal solutions, and a strong relaxation theorem in a strong so-
lution sense. The multivalued term in problem (.) that we consider contains not only
the gradient but also a Laplacian item, and we obtain results in a weak solution sense.
The Lipschitz condition (H(F)(iv) in []) with respect to the second variable u of the
multifunction G is essential to get a strong relaxation theorem in Cheng-Cong-Xue [].
However, we only need a one-sided Lipschitz condition to get this result. Furthermore,
the topological structure of the solution set is discussed (this is not considered in []
and []).

Inspired by Cheng-Cong-Xue [], in this paper we prove existence theorems for both
‘convex’ and ‘nonconvex’ cases by using techniques from multivalued analysis and fixed
point theory. For related works on this subject, we refer the reader to [, –] and the
references therein. Based on the Baire category method, De Blasi and Pianigiani in []
gave an existence result for the following problem:

{
∇u ∈ ext F(x, u) a.e. x ∈ �,
u(x) = ϕ(x), x ∈ ∂�.

(.)

In this paper, we will also consider the differential inclusion in which H(x, u,∇u,�u)
will be replaced by its extreme point set ext H(x, u,∇u,�u). We show that the resulting
problem always has a solution (‘extremal solutions’) and the solution set is dense in the
solution set of the convexified version of the problem (‘strong relaxation theorem’). Also
we address the structural properties of the solution sets for this type of biharmonic inclu-
sion problem. In [], Himmelberg and Van Vleck studied the topological structure of the
solution set in RN for the ordinary differential inclusions:

ẋ(t) ∈ F
(
t, x(t)

)
, x() = ,

and proved that the solution set is an Rδ-set. For Cauchy problems the topological struc-
ture of the solution set of evolution inclusions was examined by Bothe [], Andres-
Pavlackova [], Gabor-Grudzka [], and Chen-Wang-Zhou [] in a Banach space,
Bakowska-Gabor [], and O’Regan [] in Fréchet spaces.

We also refer the reader to the works of Papageorgiou-Shahzad [] for the first-order
evolution inclusion and Papageorgiou-Yannakakis [] for the second-order evolution in-
clusion where the structure of solution sets was discussed. Following their lead, in this
paper, we obtain the Rδ-structure of the solution set for a biharmonic differential inclu-
sion based on the space variable x ∈ �. We prove that the solution set of the biharmonic
inclusion problem in the convex-valued case is compact Rδ in C(�), and the solution set
is path-connected in the case of a nonconvex-valued orientor field.

The plan of our paper is as follows. In Section , we collect some preliminary results
which will be used in this work. In Section , we present some basic assumptions and
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existence theorems for the both convex and nonconvex multivalued terms. Here, our re-
sults are based on the Leray-Schauder alternative. In Section , a relaxation theorem is
established. Finally the properties of the solution set is given in Section .

2 Preliminaries
In this section, we introduce some basic definitions and facts which are essential tools in
the later sections; see Hu-Papageorgiou [] for details.

Let RN (N ≥ ) be the N-dimensional real Euclidean space. Throughout this paper
the symbol � denotes a nonempty, bounded, open set of RN , with a smooth boundary
∂�. Moreover, from now on, ‘measurable’ simply means Lebesgue measurable. Given
two nonnegative constants k, p ≥ , we denote by W k,p(�) the space of all real-valued
functions defined on � whose weak partial derivatives up to the order k lie in Lp(�),
equipped with W k,p(�) the usual norm ‖ · ‖k,p. If u ∈ W ,p(�), we set �u =

∑n
i=

∂u
∂xi ,

∇u = grad u = ( ∂u
∂xi

)N
i=. For any real number p > , we denote by q the dual exponent of p

(and throughout the paper we assume p > ).
Let V be a Hausdorff topological space and a multifunction F : � → V \ {∅}. We intro-

duce the following notations:

Pk(V ) = {D ⊂ V : D is a nonempty compact subset of V },
Pc(V ) = {D ⊂ V : D is a nonempty and convex subset of V },
Pfc(V ) = {D ⊂ V : D is a nonempty, closed. and convex subset of V },
P(w)kc(V ) =

{
D ⊂ V : D is a nonempty, (weakly) compact, and convex subset of V

}
.

Definition . Let X be a Banach space. A multifunction F : � → Pf (X) is said to be
‘measurable’, if for all y ∈ X, the R+-valued function x → d(y, F(x)) = inf{‖y – v‖, v ∈ F(x)}
is measurable.

The above definition of measurability is equivalent to saying that

Gr F =
{

(x, v) ∈ � × X : v ∈ F(x)
} ∈ � × B(X),

with B(X) being the Borel σ -field of X, � is Lebesgue σ -field of �, that is, x → F(x) is
graph measurable. In general, however, we can only say that measurability implies graph
measurability.

Definition . A generalized metric known in the literature as the ‘Hausdorff metric’, is
obtained by setting

h(A, B) = max
{

sup
a∈A

d(a, B), sup
b∈B

d(b, A)
}

for all A, B ∈Pkc(V ).

Definition . Let Y , Z be Hausdorff topological spaces and β : Y → Z \{∅}. β(·) is called
‘upper semicontinuous (USC)’ (resp., ‘lower semicontinuous (LSC)’), if for any nonempty
closed set C ⊆ Z, β–(C) = {y ∈ Y : β(y)∩C �= ∅} (resp., β+(C) = {y ∈ Y : β(y) ⊆ C}) is closed
in Y .
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A multifunction which is both USC and LSC is said to be continuous. From Theorem .
and Remark . of [], we note the following result.

Theorem . Let X be a Banach Space with the weak topology, and D ⊆ X a weakly
compact, convex subset of X, Then any weakly sequentially upper semicontinuous map
F : D →Pwkc(D) has a fixed point, i.e., there exists x ∈ D, such that x ∈ F(x).

Remark . Recall F : D → Pwkc(D) is weakly sequentially upper semicontinuous if for
any weakly closed set A of D, F–(A) is sequentially closed for the weak topology on D.

We now use Theorem . to obtain the following result.

Lemma . Let � be a nonempty, closed, convex subset of a Banach space X. Suppose F :
� →Pc(�) has a weakly sequentially closed graph and F(�) is weakly relatively compact.
Then F has a fixed point.

Proof Let D = co(F(�)). It follows from the Krein-Šmulian theorem that D is a weakly
compact convex set. Note F(�) ⊆ D ⊆ �. Notice also that T = F|D : D → Pc(D). First
we prove that Gr T is weakly compact. Since (X × X)w = Xw × Xw (Xw is the space X en-
dowed its weak topology), it follows that D × D is a weakly compact subset of X × X.
Also, Gr T = {(x, y) ∈ D × X : y ∈ T(x)} ⊂ D × D, so, Gr T is weakly relatively compact.
Let (x, y) ∈ D × D be weakly adherent to Gr T . Then from the Eberlein-Šmulian theorem
we can find {({xn}, {yn})}n ⊆ Gr T such that yn ∈ T(xn), xn → x weakly and yn → y weakly
in X. Because F has weakly sequentially closed graph, y ∈ T(x) and so (x, y) ∈ Gr T . There-
fore, Gr T is a weakly closed subset of D × D and so weakly compact. Consequently T(x)
is weakly closed and so a weakly compact subset of D for every x ∈ D. In view of Theo-
rem . it suffices to show that T is weakly sequentially upper semicontinuous. First we
note that Gr T is weakly closed and therefore is sequentially weakly closed. Let A ⊂ D
be a weakly closed set and let xn ∈ T–(A) with xn → x weakly. Now since T(xn) ∩ A �= ∅
and T(xn) ⊂ D, then for yn ∈ T(xn) ∩ A we may assume yn → y weakly for some y ∈ A.
Since (xn, yn) ∈ Gr T and Gr T is sequentially weakly closed, we have y ∈ T(x) ∩ A and so
x ∈ T–(A). Thus T–(A) is sequentially weakly closed. Applying Theorem ., we see that
T has a fixed point x ∈ D ⊂ �. Therefore F has a fixed point. �

Let X be a Banach space and Lp(�, X) be the Banach space of all functions u : � → X
which are Bochner integrable. Let D(Lp(�, X)) be the collection of nonempty decompos-
able subsets of Lp(�, X). Next is the Bressan-Colombo continuous selection theorem.

Lemma . (see, e.g., []) Let X be a separable metric space and let F : X → D(Lp(�, X))
be a LSC multifunction with closed decomposable values. Then F has a continuous selec-
tion.

Let X be a separable Banach Space and C(�, X) be the Banach space of all continuous
functions. A multifunction F : � × X → Pwkc(X) is said to be of Carathéodory type, if
for every u ∈ X, F(·, u) is measurable, and for almost all x ∈ �, F(x, ·) is h-continuous.
A nonempty subset η ⊂ C(�, X) is called σ -compact if there is a sequence {ηk}k≥ of
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compact subsets ηk such that η =
⋃

k≥ ηk . Let η ⊂ η, such that η is dense in η and σ -
compact. The following continuous selection theorem in the extreme point case is due to
Tolstonogov [].

Lemma . (see, e.g., []) Let the multifunction F : �×X →Pwkc(X) be of Carathéodory
type and be integrably bounded. Then there exists a continuous function g : η → Lp(�, X)
such that for almost x ∈ �, if u(·) ∈ η, then g(u)(x) ∈ ext F(x, u(x)), and if u(·) ∈ η \η, then
g(u)(x) ∈ ext F(x, u(x)).

Definition . A nonempty subset D of Y is said to be contractible if there exist a point
y ∈ D and a continuous function h : [, ] × D → D such that h(, y) = y and h(, y) = y
for every y ∈ D.

Definition . A subset D of a metric space is called an Rδ-set if there exists a decreasing
sequence {Dn} of compact and contractible sets such that

D =
∞⋂

n=

Dn.

Note that a compact Rδ set D is nonempty, compact, and connected. However, in con-
trast to contractible sets, a compact Rδ set D need not be path-connected. We also need
the following approximation result that can be proved from Proposition . of [] with
minor modifications to accommodate the presence of x ∈ �.

Lemma . Let G : � × R × RN →Pfc(R) be a multifunction such that
(i) ∀(u, s) ∈ R × RN , x → G(x, u, s) is measurable;

(ii) ∀x ∈ �, (u, s) → G(x, u, s) is USC;
(iii) ∀(x, u, s) ∈ � × R × RN , |G(x, u, s)| ≤ ϕ(x) a.e. with ϕ(x) ∈ Lq

+(�).
Then there exists a sequence of multifunctions Gn : � × R × RN → Pfc(R), n ≥  with the
following properties:

(a) For every x ∈ �, and (u, s) ∈ R × RN there exist μn(u, s) >  and εn >  such that if
u, u ∈ Bεn (u) = {y ∈ R : |u – y| ≤ εn}, s, s ∈ Bεn (s), then
h(Gn(x, u, s), Gn(x, u, s)) ≤ μn(x, u, s)ϕ(x)(|u – u| + ‖s – s‖) a.e. (i.e., Gn(x, u, s)
is locally h-Lipschitz with respect to (u, s)).

(b) G(x, u, s) ⊆ · · · ⊆ Gn(x, u, s) ⊆ Gn–(x, u, s) ⊆ · · · , |G(x, u, s)| ≤ ϕ(x) a.e. n ≥ ,
Gn(x, u, s) → G(x, u, s) as n ≥  for every (x, u, s) ∈ � × R × RN , and finally there
exists gn : � × R × RN → R, measurable in x, locally Lipschitz in (u, s) and
gn(x, u, s) ∈ Gn(x, u, s) for every (x, u, s) ∈ � × R × RN . Moreover, if G(x, ·, ·) is
h-continuous, then x → Gn(x, u, s) is measurable (hence (x, u, s) → Gn(x, u, s) is
measurable too; see []).

Theorem . (see, e.g., []) Let X and Y be two normed spaces. If T : X → Y is a compact
linear operator and {xn}n is a sequence in X such that xn → x weakly then T(xn) → T(x)
strongly.

3 Existence theorems of solutions
Definition . A function u ∈ W ,p

 (�) is called a solution of problem (.) if
∫

�

�u · �v dx = 〈f , v〉, ∀v ∈ W ,q
 (�),
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where f (x) ∈ H(x, u,∇u,�u) and 〈·, ·〉 denotes (here and in the sequel) the duality pairing
between W –,p

 (�) and W ,q
 (�).

Consider the kernel Dp
(�) of a biharmonic operator with Dirichlet boundary condi-

tions:

Dp
(�) :=

{

z ∈ W ,p
 (�) : �z = , z =

∂z
∂n

=  on ∂�

}

, (.)

where n is the unit vector normal to ∂� pointing outside �. Then Wp(�) := W ,p(�)/
Dp

(�) is a reflexive Banach space, with norm ‖ · ‖W , which is equivalent to the quotient
norm ‖ · ‖W ,p . From Theorem . of [], Dp

(�) =  when p < N . We prove an existence
theorem for nonconvex problems under the following assumptions:

H(F): H : �×R×RN ×R →Pk(R) is a multifunction satisfying the following properties:
(a) (x, u, s, t) → H(x, u, s, t) is graph measurable.
(b) For almost all x ∈ �, (u, s, t) → H(x, u, s, t) is LSC.
(c) For every (u, s, t) ∈ R × RN × R, there exist ω(x) ∈ Lp(�), ω(x) ∈ L

p
–α (�),

ω(x) ∈ L
p

–β (�), ω(x) ∈ L
p

–γ (�) such that

∣
∣H(x, u, s, t)

∣
∣ =

{|v| : v ∈ H(x, u, s, t)
}

≤ ω(x) + ω(x)|u|α + ω(x)‖s‖β + ω(x)|t|γ a.e. x ∈ �,

where  ≤ α,β ,γ < .

Theorem . If assumption H(F) holds, then the partial differential inclusion (.) has a
solution u ∈ Wp(�).

Proof Following [], we define the biharmonic operator L := � : Wp(�) → W –,p
 (�), and

then L : Wp(�) → W –,p(�) is a linear mapping. According to Theorem . of [], for
each f ∈ W –,p

 (�) the following problem:

{
�u = f (x) a.e. in �,
u = ∂u

∂n =  on ∂�,
(.)

has only one solution u ∈ Wp(�), and

‖u‖W ≤ C‖f ‖–,p, (.)

where the constant C depends only on N , p, and �. Thus L : Wp(�) → W –,p
 (�) is one

to one and surjective, which implies L– : W –,p
 (�) → Wp(�) is well defined. Thus, u =

L–(f ), and from (.), we have ‖L–(f )‖W ≤ C‖f ‖–,p. Then we see that L– : W –,p
 (�) →

Wp(�) is a bounded linear operator, which implies L– is continuous from W –,p
 (�) to

Wp(�). Let K ⊂ W –,p
 (�) be a bounded subset, and then we find that L–(K) is also

bounded in Wp(�). From the Sobolev embedding theorem, we see that the embedding
W ,p(�) ⊂ W –,p

 (�) is compact. Now since W ,p(�) is compactly embedded in W –,p
 (�),

it follows that L–(K) is relatively compact in W –,p
 (�). Hence, L– : W –,p

 (�) → W –,p
 (�)

(Wp(�) ⊂ W –,p
 (�)) is completely continuous.
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Now let Sp
H : Wp(�) → W –,p

 (�) (Lp(�) ⊂ W –,p
 (�)) be the multivalued Nemytskii op-

erator corresponding to H defined by

Sp
H (u) =

{
v ∈ Lp(�) : v ∈ H(x, u,∇u,�u) a.e. on �

}
.

We show that Sp
H(·) has nonempty, closed, decomposable values in Lp(�) and is LSC. The

closedness and decomposability of the values of Sp
H (·) are easy to check. For the nonempti-

ness, note that if u ∈ Wp(�), by hypothesis H(F)(i), (x, u, s, t) → H(x, u, s, t) is graph mea-
surable, so we can apply Aumann’s selection theorem and get a measurable map v : � → R
such that v(x) ∈ H(x, u, s, t) a.e. on �. By hypothesis H(F)(iii), v ∈ Lp(�). Thus for every
u ∈ Wp(�), Sp

H (u) �= ∅. To prove the lower semicontinuity of Sp
H (·), it is sufficient to show

that for every w ∈ Lp(�), u → d(w, Sp
H (u)) is an USC R+-valued function. Note that

d
(
w, Sp

H (u)
)

= inf
{‖w – v‖p : v ∈ Sp

H (u)
}

= inf

{(∫

�

∣
∣w(x) – v(x)

∣
∣p dx

) 
p

: v ∈ Sp
H(u)

}

=
(∫

�

inf
{∣
∣w(x) – v(x)

∣
∣p : v ∈ H(x, u,∇u,�u)

}
dx

) 
p

=
(∫

�

d
(
w(x), H(x, u,∇u,�u)

)p dx
) 

p
.

We claim that for every λ ≥ , the superlevel set Rλ = {u ∈ Lp(�) : d(w, Sp
H(u)) ≥ λ} is

closed in Lp(�). Let {un}n≥ ⊆ Rλ and assume that un → u in Lp(�). By passing to a subse-
quence if necessary, we may assume that un(x) → u(x) a.e. on � as n → ∞. By hypothesis
H(F)(ii), (u, s, t) → d(w, H(x, u, s, t)) is an upper semicontinuous R+-valued function. Thus
via Fatou’s lemma, we have

λp ≤ lim
[
d
(
w, Sp

H (un)
)]p

= lim
∫

�

[
d
(
w(x), H(x, un,∇un,�un)

)]p dx

≤
∫

�

lim
[
d
(
w(x), H(x, un,∇un,�un)

)]p dx

≤
∫

�

[
d
(
w, H(x, u,∇u,�u)

)]p dt =
[
d
(
w, Sp

H (u)
)]p.

Therefore u ∈ Rλ and this proves the LSC of Sp
H (·).

Hence, by Lemma ., there exists a continuous map g : Wp(�) → Lp(�) ⊂ W –,p
 (�)

such that g(u) ∈ Sp
H (u). To complete the proof, we need to consider the fixed point problem:

u = L– ◦ g(u).
To this aim, we show that the set � = {u ∈ W –,p

 (�) : u = σL– ◦ g(u),σ ∈ (, )} is
bounded. Let u ∈ �, then Lu = σ g(u) and so ‖Lu‖p = σ‖g(u)‖p. By hypothesis H(F)(iii),
we derive

∣
∣g(u)

∣
∣ ≤ ω(x) + ω(x)|u|α + ω(x)‖∇u‖β + ω(x)|�u|γ ,
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and then
∥
∥g(u)

∥
∥

p ≤ ∥
∥ω(x)

∥
∥

p +
∥
∥ω(x)|u|α∥

∥
p +

∥
∥ω(x)|∇u|β∥

∥
p +

∥
∥ω(x)|�u|γ ∥

∥
p

≤ ‖ω‖p +
(∥
∥ω

p

∥
∥ 

–α

∥
∥|u|pα

∥
∥ 

α

)/p +
(∥
∥ω

p

∥
∥ 

–β

∥
∥|∇u|pβ

∥
∥ 

β

)/p

+
(∥
∥ω

p

∥
∥ 

–γ

∥
∥|�u|pγ

∥
∥ 

γ

)/p

= ‖ω‖p + ‖ω‖ p
–α

‖u‖α
p + ‖ω‖ p

–β
‖∇u‖β

p + ‖ω‖ p
–γ

‖�u‖γ
p .

Thus by (.), it follows that

‖u‖W ≤ C‖Lu‖–,p

≤ C
∥
∥g(u)

∥
∥

p

≤ C‖ω‖p + C‖ω‖ p
–α

‖u‖α
p + C‖ω‖ p

–β
‖∇u‖β

p + C‖ω‖ p
–γ

‖�u‖γ
p

≤ C‖ω‖p + Ĉ‖u‖θ
W (.)

for some θ ∈ (, ). Now since  < θ < , we can find a constant M >  such that
‖u‖W ≤ M. Thus in view of the continuity of the embedding Wp(�) → W –,p

 (�), it fol-
lows that � is bounded in W –,p

 (�). Apply the Leray-Schauder alternative, and we find
that there exists u ∈ Wp(�) such that u = L– ◦ g(u), i.e., u is a solution of problem (.).
This completes the proof. �

The assumptions we need for convex problems are as follows:

H(F): H : �×R×RN ×R →Pkc(R) is a multifunction satisfying the following properties:
(a) (x, u, s, t) → H(x, u, s, t) is graph measurable.
(b) For almost all x ∈ �, (u, s, t) → H(x, u, s, t) is USC; and H(F)(iii) holds.

Theorem . If assumption H(F) holds, then the solution set of the partial differential in-
clusion (.) is nonempty in Wp(�). Moreover, the solution set is weakly compact in Wp(�).

Proof In view of the proof of Theorem ., we only need to emphasis those steps where
the proofs differ.

In this case the multivalued Nemytskii operator Sp
H : Wp(�) → Lp(�) has nonempty con-

vex values in Lp(�). The convexity of the values of Sp
H (·) are clear. To prove the nonempti-

ness, let u ∈ Wp(�), and let {sn}n≥, {rn}n≥, {tn}n≥ be three sequences of step functions
such that

sn → u, rn → ∇u, tn → �u

and

|sn| ≤ |u|, ‖rn‖ ≤ ‖∇u‖, ‖tn‖ ≤ |�u| a.e. on �.

Then by virtue of hypothesis H(F)(i), for every n ≥ , x → H(x, sn, rn, tn) admits a mea-
surable selector gn(x). From hypothesis H(F)(iii) and (.), we have

sup
gn∈H(x,sn ,rn ,tn)

‖gn‖p ≤ C‖ω‖p + Ĉ‖u‖θ
W .
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Now p > , and the set {gn, n ≥ } is bounded in the reflexive space Lp(�), so it is rela-
tively weakly compact in Lp(�). Consequently by Eberlein-Šmulian’s theorem and passing
to a subsequence if necessary, we may assume that gn → g weakly in Lp(�). Then from
Theorem . in [], we find

g(x) ∈ conv lim
{

gn(x)
}

n≥

⊆ conv lim H(x, sn, rn, tn)

⊆ H(x, u,∇u,�u) a.e. on �, (.)

here, the last inclusion being a consequence of hypothesis H(F)(ii). Thus g ∈ Sp
H (u), which

shows that Sp
H (·) is nonempty.

As in Theorem ., we obtain the a priori bound for the solution set of problem (.).
Let

D =
{

x ∈ Wp(�) : ‖x‖W ≤ M
}

,

where M >  is a constant (constructed as in Theorem .). Note that the set D is closed,
convex, and bounded in Wp(�) (which is reflexive), so it is compact in a weak topology.
Due to the convexity of the values of Sp

H(·) and L– being a linear map, it follows that
L– ◦ Sp

H (u) is convex for every u ∈D. Using an argument similar to that in (.), we obtain
L– ◦ Sp

H(D) ⊆D. Next we show that L– ◦ Sp
H : D →Pc(D) has weakly sequentially closed

graph. Let (un, vn) ∈ D × D, n ≥ , be in the graph of L– ◦ Sp
H with (un, vn) converging

weakly to (u, v). Note

vn ∈ L– ◦ Sp
H (un), n ≥ , (.)

and passing to a subsequence, we note that un(x) → u(x) a.e. on �. Now for every n ∈ N
there exists fn ∈ Sp

H (un) such that vn = L–(fn). Again from hypothesis H(F)(iii) and (.),
we have

sup
n

‖fn‖p ≤ C‖ω‖p + Ĉ‖u‖θ
W .

Now p > , and the set {fn, n ≥ } is bounded in the reflexive space Lp(�), so it is relatively
weakly compact in Lp(�). Consequently by the Eberlein-Šmulian theorem and passing to
a subsequence if necessary, we may assume that fn → f weakly in Lp(�). As above we have

f (x) ∈ conv lim
{

fn(x)
}

n≥

⊆ conv lim H(x, un,∇un,�un)

⊆ H(x, u,∇u,�u) a.e. on �, (.)

and thus f ∈ Sp
H (u). Let w = L–(f ), and note w ∈ L– ◦ Sp

H(u). From Theorem ., we know
that L– : W –,p(�) → Wp(�) is continuous. Since the embedding Lp(�) ⊆ W –,p(�) is
compact, we get (see Theorem .) that fn → f in W –,p(�). Thus, vn = L–(fn) → w =
L–(f ). Therefore, v ∈ L– ◦ Sp

H (u), and so L– ◦ Sp
H : D → Pc(D) has weakly sequentially

closed graph.
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Invoking Lemma ., there exists u ∈ D such that u ∈ L– ◦ Sp
H(u). Evidently this is a

solution of problem (.). Let S denote the solution set of problem (.). Again, as in The-
orem ., we have

|S| = sup
{‖u‖W : u ∈ S

} ≤ M,

where M > . Since S is bounded and Wp(�) is reflexive, it follows that Sw is weakly com-
pact. Let u ∈ Wp(�) be weakly adherent to S. Since Sw is weakly compact, by Eberlein-
Šmulian’s theorem there exists a sequence {un}n ⊆ S such that un → u weakly in u ∈ D ⊂
Wp(�). Since L– ◦ Sp

H has weakly sequentially closed graph, it follows that u ∈ L– ◦ Sp
H (u)

which implies that u ∈ S. Hence Sw = S and S is weakly closed. Therefore S is weakly com-
pact in Wp(�). �

4 Relation theorem of solutions
In this section, we are concerned with the following extremal problem:

⎧
⎪⎨

⎪⎩

�u ∈ ext H(x, u,∇u,�u) a.e. in �,
u =  on ∂�,
∂u
∂n =  on ∂�,

(.)

where ext H(x, u,∇u,�u) denotes the extremal point set of H(x, u,∇u,�u).
The precise assumptions on the data of problem (.) are the following:

H(F): H : � × R × RN × R → Pkc(R) is multifunction such that for almost all x ∈ �,
(u, s, t) → H(x, u, s, t) is h-continuous, and H(F)(i), (iii) holds, where p > N

 ≥ .

In the following let S denote the solution set of (.), and Se denote the solution set
of (.).

Theorem . If assumption H(F) holds, then the partial differential inclusion (.) has a
solution u ∈ Wp(�) ∩ C(�).

Proof As H is replaced by ext H , we also obtain an a priori bound for Se. Let

|Se| = sup
{‖u‖W : u ∈ Se

} ≤ M

for some constant M > . By virtue of hypothesis H(F)(iii) and (.), there exists a(x) ∈
Lp

+(�) such that for every u ∈ Se, |H(x, u,∇u,�u)| ≤ a(x). Let

V =
{

v ∈ Lp(�) :
∣
∣v(x)

∣
∣ ≤ a(x) a.e. on �

}
,

and we now show that Q̂ = L–(V ) is a compact convex subset in C(�). The closedness
and convexity of Q̂ are clear. We only need to show its compactness. To this aim, since
Q̂ ⊆ W ,p

 (�) and p > N
 , the embedding W ,p

 (�) ↪→ C(�) is compact, and hence Q̂ ⊆
C(�) is compact. From Lemma ., we can find a continuous map: g : Q̂ → Lp(�) such
that g(u) ∈ ext H(x, u,∇u,�u) a.e. � for all u ∈ Q̂. Thus L– ◦ g is a compact operator.
Hence, Schauder’s fixed point theorem is applicable, and there exists a u ∈ Q̂ such that
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u = L– ◦g(u), which is a solution of (.). Therefore Se �= ∅ in Wp(�)∩C(�). This complete
the proof. �

To prove our next result, we need the following definition.

Definition . (see []) The multifunction H : � × R × RN × R → Pk(R) is called ‘one-
sided Lipschitz (OSL)’ continuous if there is an integrable function L : � → R such that
for every u, u ∈ R, x ∈ �, s ∈ RN , t ∈ R, and v ∈ H(x, u, s, t) there exists v ∈ H(x, u, s, t)
such that (v – v) · (u – u) ≤L(x)|u – u|.

We also recall Poincaré’s inequality: there exists a constant λ >  depending on N , p, �

such that
∫

�

|u| dx ≤ λ

∫

�

|�u| dx (.)

for every u ∈ Wp(�).

Theorem . If the hypothesis H(F) holds, and
(i) H is one-sided Lipschitz (OSL) continuous;

(ii) L(x) ≤ α < 
λ

, where L is from Definition . and λ from (.);

then SC(�)
e = S, the closure is taken in C(�).

Proof Let ug ∈ S, then there exist g ∈ Lp(�) and g(x) ∈ H(x, u,∇u,�u) a.e. on �, such that

⎧
⎪⎨

⎪⎩

�ug = g(x) a.e. in �,
ug =  on ∂�,
∂ug
∂n =  on ∂�.

(.)

As earlier, we let V = {v ∈ Lp(�) : |v(x)| ≤ a(x) a.e. on �} and Q̂ = L–(V ), and then Q̂ is a
compact convex subset of C(�). For any u ∈ Q̂ and ε > , we define the multifunction

Qε(x) =
{

v ∈ H(x, u,∇u,�u) : (g – v) · (ug – u) ≤L(x)|ug – u| + ε
}

.

Clearly, for every x ∈ �, Qε(x) �= ∅, and it is graph measurable. On applying Aumann’s
selection theorem, we get a measurable function v : x → R such that v(x) ∈ Qε(x) almost
everywhere on �. We define the multifunction

Rε(u) =
{

v ∈ Sp
H(·,u(·),∇u(·),�u(·)) : (g – v) · (ug – u) ≤L(x)|ug – u| + ε

}
.

It is clear that Rε : Q̂ → Lp(�) has nonempty and decomposable values. Moreover, from
Theorem  of [] Rε(·) is LSC. Therefore u → Rε(u) is LSC where Rε(u) is the closed
hull of Rε(u), and has closed and decomposable values. Thus in view of Lemma . there
exists a continuous map fε : Q̂ → Lp(�) such that fε(u) ∈ Rε(u) for all u ∈ Q̂. Now invok-
ing the Relaxation Theorem in [], we can find a continuous map gε : Q̂ → Lp(�) such
that gε(u)(x) ∈ ext H(x, u,∇u,�u) almost everywhere on �, and ‖fε(u) – gε(u)‖p ≤ ε for all
u ∈ Q̂.
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Next let ε = 
n , gε = gn, fε = fn, and consider the following biharmonic boundary value

problem:
⎧
⎪⎨

⎪⎩

�un = gn(un) ∈ ext H(x, un,∇un,�un) a.e. in �,
un =  on ∂�,
∂un
∂n =  on ∂�.

(.)

It is easy to see that L– ◦ gn : Q̂ → Q̂ is a compact operator, and hence by the Schauder
fixed point theorem, there exists a solution un ∈ Wp(�) of (.). It is clear that {un}n≥ ⊆ Q̂
and {un}n≥ is uniformly bounded. Thus on passing to a subsequence if necessary, we may
assume that un → û weakly in Wp(�). From an earlier argument, we know that un → û in
C(�) as n → +∞, and hence

�un – �ug = gn(un)(x) – g(x)

and
∫

�

(
�un – �ug

)
(un – ug) dx =

∫

�

(
gn(un) – g(x)

)
(un – ug) dx.

Since un –ug ∈ Wp(�), the embedding W ,p
 (�) ⊆ W ,

 (�) is continuous when p ≥ . Thus

∫

�

�(un – ug) · (un – ug) dx =
∫

�

∣
∣�(un – ug)

∣
∣ dx

≥ 
λ

∫

�

|un – ug | dx

→ 
λ

∫

�

|û – ug | dx (.)

and
∫

�

(
gn(un) – g(x)

)
(un – ug) dx ≤

∫

�

(
gn(un) – fn(un)

)
(un – ug) dx

+
∫

�

(
fn(un) – g(x)

)
(un – ug) dx. (.)

Now since

∥
∥fn(un) – gn(un)

∥
∥

p ≤ 
n

,

it follows that
∫

�

(
gn(un) – fn(un)

)
(un – ug) dx → 

as n → ∞. Also, we have
∫

�

(
fn(un) – g(x)

)
(un – ug) dx

≤
∫

�

[

L(x)|un – ug | +

n

]

dx
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≤
∫

�

(

α|un – ug | +

n

)

dx

→ α

∫

�

|û – ug | dx (.)

as n → ∞. Hence, from (.), (.), and (.), we find


λ

∫

�

|û – ug | dx ≤ α

∫

�

|û – ug | dx. (.)

Finally since 
λ

> α, it follows that ug = û, i.e., un → ug and un ∈ Se for n ≥ , and hence

S ⊆ Se. Also, S is closed in C(�) (see the proof of Theorem .), and thus S = SC(�)
e . �

5 Properties of the solutions set
In this section, keeping our above hypotheses on the orientor field H(x, u, s), we will estab-
lish the topological regularity of the solution set S for the following biharmonic problem:

⎧
⎪⎨

⎪⎩

�u ∈ H(x, u,∇u) a.e. in �,
u =  on ∂�,
∂u
∂n =  on ∂�.

(.)

Remark . The results obtained above for the problem (.) hold for the partial differ-
ential inclusion (.).

From Theorem ., it is easy to show that for every f ∈ H(x, u,∇u) ⊆ Lp(�), problem
(.) has at least one weak solution u = L–(f ) ∈ Wp(�) and ‖u‖W ≤ C‖f ‖p, where C is
a constant independent of u and f . Let Lp(�)w denote the Lebesgue-Bochner space fur-
nished with the weak topology. From the proof of Theorem ., it follows that the map
P = L– : Lp(�)w → Wp(�) is sequentially continuous.

Remark . Since the embedding of Wp(�) ↪→ C(�) is compact when p ≥ N , P :
Lp(�)w → C(�) is completely continuous.

Next we introduce the following hypothesis:

H(F): H : � × R × RN →Pkc(R) is a multifunction satisfying the following properties:
(i) (x, s, t) → H(x, s, t) is graph measurable.

(ii) For almost all x ∈ �, (s, t) → H(x, s, t) is USC.
(iii) For every (s, t) ∈ R × RN , there exist ξ(x) ∈ Lp(�), ξ(x) ∈ L

p
–γ (�),

ξ(x) ∈ L
p

–η (�), such that

∣
∣H(x, s, t)

∣
∣ = sup

{|v| : v ∈ H(x, s, t)
} ≤ ξ(x) + ξ(x)|u|γ + ξ(x)|s|η

for a.e. x ∈ �, where  ≤ γ ,η < .

Theorem . If hypothesis H(F) holds and p ≥ N , then the solution set S of problem (.)
is an Rδ set in C(�).
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Proof Similar reasoning as in the proof of Theorem ., for almost all x ∈ �, all u ∈ S, and
all v ∈ H(x, u,∇u), we may assume that |v| ≤ a(x) where a(x) ∈ Lp

+(�). From Lemma ., we
obtain a sequence of multifunctions Hn : � × R × RN → Pfc(R). For every n ≥ , consider
the following biharmonic problem of the partial differential inclusion:

⎧
⎪⎨

⎪⎩

�u ∈ Hn(x, u,∇u) a.e. in �,
u =  on ∂�,
∂u
∂n =  on ∂�.

(.)

Now from the proof of Theorem . and Remark ., we find that problem (.) has a
nonempty solution set Sn ⊆ Wp(�) which is compact in C(�).

First, we prove that the set Sn is contractible. Let gn(x, u,∇u) be locally Lipschitz with
respect to u, measurable selector of Hn(x, u,∇u) postulated from Lemma .. Let d =
dist(�′, ∂�) where dist(�′, ∂�) denotes the distance from �′ to ∂� and �′ ⊆ �, then
d ∈ I := [, τ ] where τ = maxx∈�{dist(x, ∂�)}. Let

�δ =
{

x ∈ �|dist(x, ∂�) ≥ δ
}

.

For δ ∈ [, τ ], given z ∈ Sn, there exists a gn ∈ Hn(x, u,∇u) such that z = P(gn). For each
u ∈ Sn, let zu(δ)(x) ∈ Wp(�) be the unique solution of

⎧
⎪⎨

⎪⎩

�z(x) = gn(x, z(x),∇z) a.e. in �δ ,
z(x) = u(x) on ∂�δ ,
∂z
∂n = ∂u

∂n on ∂�δ .
(.)

Define μ : I × Sn → Sn by

μ(δ, u)(x) =

{
u(x) for x ∈ � \ �δ ,
zu(δ)(x) for x ∈ �δ .

(.)

Evidently μ(, u) = z, and μ(τ , u) = u for every u ∈ Sn. In the following we show that
μ(δ, u) ∈ Sn(u) for each (δ, u) ∈ I × Sn. Note that for each u ∈ Sn(u) there exists fn ∈
Hn(x, u,∇u), such that u = P(fn). Set gn(x) = fnχ[,δ](x) + gnχ(δ,τ ](x) for each x ∈ � where χ

is the characteristic function. It is easy to see that gn(x) ∈ Hn(x, u,∇u). Thus P(gn) = u(x)
for all � \ �δ , P(gn) = zu(x) for all x ∈ �δ , which implies that P(gn) = μ(δ, u)(x), and thus
μ(δ, u)(x) ∈ Sn. In order to prove that Sn is contractible in C(�), we only need to show
that μ(δ, u) is continuous in I × C(�). To this aim, we let (δm, um) → (δ, u) in I × Sn, and
consider the following two distinct cases.

Case : δm ≥ δ for every m ≥ , and then �δm ⊆ �δ . Let vm(x) = μ(δm, um)(x), x ∈ �.
Evidently, vm(x) ∈ Sn, m ≥ , and hence passing to a subsequence if necessary, we may
assume that vm → v in C(�) as m → ∞. Clearly, v(x) = u(x) for a.e. � \ �δ . Also let w ∈
Wp(�) be the unique solution of

{
�w = gn(t, v,∇v) a.e. on �δ ,
w(x) = u(x), ∂w

∂n = ∂u
∂n on ∂�δ .

(.)
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Let N ≥ , m ≥ N , then for m large enough vm(·) satisfies �vm = gn(x, vm,∇vm) a.e. on
�δm , and vm = um, ∂vm

∂n = ∂um
∂n on ∂�δm . From (.) and �δm ⊆ �δ , we have

�(vm – w) = gn(x, vm,∇vm) – gn(x, v,∇v) a.e. on �δm . (.)

From (δm, um) → (δ, u), we have

vm|∂�δm = um|∂�δm → v|∂�δ
= u|∂�δ

,

∂vm

∂n

∣
∣
∣
∣
∂�δm

=
∂um

∂n

∣
∣
∣
∣
∂�δm

→ ∂v
∂n

∣
∣
∣
∣
∂�δ

=
∂u
∂n

∣
∣
∣
∣
∂�δ

as m → ∞. Passing to the limit in (.) as m → ∞, and recalling that δm → δ, vm → v in
Sn, we get

{
�(v – w) =  a.e. on �δ ,
v – w = ∂(v–w)

∂n =  on ∂�δ .
(.)

Clearly, v – w =  a.e. on �δ . Thus v(x) = w(x) for every x ∈ �δ . Hence, from (.) we obtain

{
�v = gn(t, v,∇v) a.e. on �δ ,
v(x) = u(x), ∂v

∂n = ∂u
∂n on ∂�δ .

(.)

Therefore v = μ(δ, u), and we can conclude that μ(δm, um) → μ(δ, u) in I × C(�).
Case : δm ≤ δ for every m ≥ , and then �δ ⊆ �δm . Keeping the notation used in Case ,

from (δm, um) → (δ, u), we find um|∂�δm → u|∂�δ
, ∂um

∂n |∂�δm → ∂u
∂n |∂�δ

as m → ∞. Hence,
vm → v, in C(�) and v(x) = u(x) for a.e. �\�δ . Also using the same argument as in Case ,
we have

�(vm – w) = gn(x, vm,∇vm) – gn(x, v,∇v) a.e. on �δ .

From vm → v in C(�), ∇vm → ∇v in C(�), and gn(x, u,∇u) is locally Lipschitz continuous
in u, it follows that gn(x, vm,∇vm) → gn(x, v,∇v) as m → ∞. Thus

�(v – w) =  a.e. on �δ

for m → ∞. Now since v = u and ∂v
∂n = ∂u

∂n on ∂�δ , we have w = v, i.e., vm → v in C(�).
Hence, v = μ(δ, u), and thus μ(δm, um) → μ(δ, u) as m → ∞.

In general we can always get a subsequence of {δm}m≥ satisfying either Case  or Case .
Thus in conclusion, μ(δ, u) is continuous, and hence for every n ≥ , Sn ⊆ C(�) is compact
and contractible.

Next we claim that S =
⋂

n≥ Sn. Obviously, S ⊆ ⋂
n≥ Sn. Let u ∈ ⋂

n≥ Sn. Then from
definition u = P(vn), vn ∈ Sp

Hn(·,un ,∇un) for some n ≥ . On passing to a subsequence if nec-
essary we may assume that vn → v weakly in Lp(�). Then v ∈ Sp

H(·,u,∇u) (see Theorem .).
Thus u = P(v) with v ∈ Sp

Hn(·,u,∇u), from which we can conclude that u ∈ S i.e., S =
⋂

n≥ Sn.
Finally from Hyman’s result [] we see that S is an Rδ set in C(�). �

The following remark is given as an immediate consequence of Theorem . for the
multivalued problem (.).
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Remark . If hypothesis H(F) holds, then for every x ∈ �, S(x) = {u(x)|u ∈ S} (the
reachable set at x ∈ �) is compact and connected in R.

When H(x, u,∇u) has nonconvex values, an analogous result for the topological struc-
ture can be obtained if we modify our hypothesis on the continuity of H(x, u,∇u). There-
fore, in this case we can prove that the solution set is path-connected. In our next result
we prove that the solution set of (.) is path-connected under the following assumption:

H(F): H : � × R × RN →Pk(R) is a multifunction such that for almost all x ∈ �, (u, s) →
H(x, u, s) is LSC, and H(F)(i), (iii) holds.

Theorem . If hypothesis H(F) holds and there exists a function b(x) ∈ L∞
+ (�), such that

h
(
H(x, u,∇u), H(x, v,∇v)

) ≤ b(x)
∣
∣u(x) – v(x)

∣
∣ a.e. on �,

where C‖b‖∞ <  with C in (.), then S ⊆ C(�) is nonempty and path-connected.

Proof As in Theorem ., a priori estimates for the problem (.) can be obtained easily.
Thus we may assume that |H(x, u,∇u)| ≤ a(x) a.e. � with a(x) ∈ Lp

+(�) for all u ∈ S. Let

Oα =
{

g ∈ Lp(�) :
∣
∣g(x)

∣
∣ ≤ a(x) a.e. on �

}

and consider the multifunction N : Oα → Pf (Lp(�)) defined by N(g) = Sp
H(·,P(g),∇P(g)) (here

P(g) is the solution map as before). Let f , g ∈ Oα and let v ∈ N(g). Let ε >  and define

Dε(x) =
{

u ∈ H
(
x, P(f ),∇P(f )

)
:
∣
∣u(x) – v(x)

∣
∣ ≤ d

(
v(x), H

(
x, P(f ),∇P(f )

))
+ ε

}
.

Set χ (x, u) = d(v(x), H(x, P(f ),∇P(f ))) – |v(x) – u(x)| + ε. Clearly, for every x ∈ �, Dε(x) �= ∅
and Gr Dε = {(x, u) ∈ Gr H(·, P(f ),∇P(f )) :  ≤ χ (x, u)}. By H(F), (x, u, s) → H(x, u, s)
is measurable, thus x → H(x, P(f ),∇P(f )) is measurable. Since (x, u) → χ (x, u) is a
Carathéodory function, it is jointly measurable. Hence, Gr Dε ∈ � × B(R). Applying Au-
mann’s selection theorem we find u : � → R measurable and u(x) ∈ Dε(x) a.e. on �. Thus
it follows that

d
(
v, N(f )

) ≤ ‖v – u‖p

=
(∫

�

|v – u|p dx
) 

p

≤
(∫

�

[
d
(
v(x), H

(
x, P(f ),∇P(f )

))
+ ε

]p dx
) 

p

≤
(∫

�

[
h
(
H

(
x, P(f ),∇P(f )

)
, H

(
x, P(g),∇P(g)

))]p dx
) 

p
+ |�| 

p ε

≤
(∫

�

b(x)
∣
∣P(f )(x) – P(g)(x)

∣
∣p dx

) 
p

+ |�| 
p ε

≤ ‖b‖∞C
∥
∥f (x) – g(x)

∥
∥

p + ε|�| 
p . (.)
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As ε → , we find d(v, N(f )) ≤ ‖b‖∞C‖f (x) – g(x)‖p. Exchanging the roles of f and g we
also have d(u, N(g)) ≤ ‖b‖∞C‖f (x) – g(x)‖p. Thus h(N(f ), N(g)) ≤ ‖b‖∞C‖f (x) – g(x)‖p

with ‖b‖∞C < . Let � := {g ∈ Oα : g ∈ N(g)}. By Nadler’s fixed point theorem [] we find
that � �= ∅ and from [] we know that  is an absolute retract in Lp(�). Since an absolute
retract is path-connected, � is path-connected. Thus P(�) is path-connected in C(�).
Since P(�) = S, we see that S is nonempty and path-connected in C(�). This completes
the proof. �
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