
Allahyari et al. Advances in Difference Equations  (2015) 2015:376 
DOI 10.1186/s13662-015-0718-x

R E S E A R C H Open Access

Construction of measures of
noncompactness of DCn[J , E] and Cn

[J , E]
with application to the solvability of
nth-order integro-differential equations in
Banach spaces
Reza Allahyari1, Reza Arab2* and Ali Shole Haghighi2

*Correspondence:
mathreza.arab@iausari.ac.ir
2Department of Mathematics, Sari
Branch, Islamic Azad University, Sari,
Iran
Full list of author information is
available at the end of the article

Abstract
In the present paper, we first investigate the construction of compact sets of DCn[J, E]
and Cn

0 [J, E], and then we introduce new measures of noncompactness on these
spaces. In addition, as an application, we discuss the existence of solutions of initial
value problems for nth-order nonlinear integro-differential equations of mixed type
on an infinite interval in Banach spaces. We will also state an interesting example
which shows that our results can apply for solving infinite systems of
integro-differential equations.
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1 Introduction
The integro-differential equation (IDE) can be considered in different branches of sci-
ences and engineering. It is connected naturally with a variety of models obtained from
biological science, applied mathematics, physics, and other disciplines, such as theory of
elasticity, biomechanics, electromagnetic, electrodynamics, fluid dynamics, heat and mass
transfer, oscillating magnetic fields, etc. [–]. In recent years, several authors have studied
different techniques such as the mixed monotone iterative method [–], the numerical
methods [–] and the variational iteration method [, ] for solving initial value prob-
lems (IVP) of nonlinear integro-differential equations.

On the other hand, measures of noncompactness are very useful tools in functional anal-
ysis, for instance in metric fixed point theory and in the theory of operator equations in
Banach spaces. They are also used in the studies of functional equations, ordinary and
partial differential equations, integral and integro-differential equations, fractional partial
differential equations, and optimal control theory (see [, –]).

Now, in this paper, we shall investigate the existence of solutions of an IVP for nth-order
nonlinear integro-differential equations of mixed type on an infinite interval in E by a new
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measure of noncompactness. Please notice that our new measure of noncompactness is
not necessarily equal to zero on the family of all relatively compact sets and is also very
fruitful in applications. In this situation, new spaces DCn[J , E] and Cn

[J , E] are introduced
and it is verified that the corresponding operators are completely continuous (i.e., con-
tinuous and compact). Consider the IVP for the nth-order nonlinear integro-differential
equation of mixed type,

u(n)(t) = f
(

t, u
(
ξ (t)

)
, u′(ξ (t)

)
, . . . , u(n–)(ξ (t)

)
,

∫ ∞


k(t, s)h

(
s, u(s), u′(s), . . . , u(n–)(s)

)
ds,

∫ β(t)


k(t, s)g

(
s, u(s), u′(s), . . . , u(n–)(s)

)
ds

)
,

u() = u, u′() = u, . . . , u(n–)() = un–.

(.)

We are going to show that the above functional integro-differential equation has at least
one solution in the space DCn[J , E] where J = [,∞) and E is a Banach space. Also notice
that the results of this paper extend those obtained in [, , , ].

Throughout this paper, we assume some basic facts concerning measures of noncom-
pactness in []. Denote by R the set of real numbers and put R+ = [, +∞). Let (E,‖ · ‖)
be a real Banach space with zero element . Let B(x, r) denote the closed ball centered
at x with radius r. The symbol Br stands for the ball B(, r). For X, a nonempty subset of
E, we denote by X and Conv X the closure and the closed convex hull of X, respectively.
Moreover, let us denote by ME the family of nonempty bounded subsets of E and by NE

its subfamily consisting of all relatively compact sets.

Definition . [] A mapping μ : ME → R+ is said to be a measure of noncompactness
in E if it satisfies the following conditions:

◦ The family kerμ = {X ∈ME : μ(X) = } is nonempty and kerμ ⊂NE .
◦ X ⊂ Y 	⇒ μ(X) ≤ μ(Y ).
◦ μ(X) = μ(X).
◦ μ(Conv X) = μ(X).
◦ μ(λX + ( – λ)Y ) ≤ λμ(X) + ( – λ)μ(Y ) for λ ∈ [, ].
◦ If {Xn} is a sequence of closed sets from ME such that Xn+ ⊂ Xn for n = , , . . . and if

limn→∞ μ(Xn) =  then X∞ =
⋂∞

n= Xn �= ∅.

We recall that a measure of noncompactness is regular [] if it additionally satisfies the
following conditions:

◦ μ(X ∪ Y ) = max{μ(X),μ(Y )}.
◦ μ(X + Y ) ≤ μ(X) + μ(Y ).
◦ μ(λX) = |λ|μ(X) for λ ∈R.
◦ kerμ = NE .

It is worth mentioning that the Kuratowski and Hausdorff measures of noncompactness,
two important ones, have all the properties above.

The following theorem, Darbo’s fixed point theorem, will be needed in Section .
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Theorem . [] Let � be a nonempty, bounded, closed, and convex subset of a Banach
space E and also let F : � → � be a continuous mapping such that there exists a constant
k ∈ [, ) with the property

μ(FX) ≤ kμ(X) (.)

for any nonempty subset X of �. Then F has a fixed point in the set �.

2 Main results
In this section, we first introduce the Banach spaces DCn[J , E] and Cn

[J , E]. Then we char-
acterize the compact subsets of DCn[J , E] and Cn

[J , E]. Also, we introduce a new measure
of noncompactness on DCn[J , E] and Cn

[J , E].
Let BC[J , E] = {u ∈ C[J , E] : e–t‖u(t)‖E bounded for all t ≥ } and

DCn[J , E] =
{

u ∈ Cn[J , E] : e–t∥∥u(i)(t)
∥∥ bounded for all t ≥ , i = , , . . . , n

}
,

where u()(t) = u(t). It is easy to see that BC[J , E] is a Banach space with norm

‖u‖B = sup
t∈J

∥∥u(t)
∥∥

E ,

and DCn[J , E] is a Banach space with norm

‖u‖D = max
{‖u‖B,

∥∥u′∥∥
B,

∥∥u′′∥∥
B, . . . ,

∥∥u(n)∥∥
B

}
.

If we define C[J , E] = {u ∈ C[J , E] : e–t‖u(t)‖E →  as t → ∞} and

Cn
[J , E] =

{
u ∈ Cn[J , E] : e–t∥∥u(i)(t)

∥∥
E →  as t → ∞, i = , , . . . , n

}
,

then C[J , E] with norm ‖ · ‖B is a Banach subspace of BC[J , E] and Cn
[J , E] with ‖ · ‖D

is a Banach subspace of DCn[J , E]. Now, we need to characterize the compact subsets of
DCn[J , E].

Theorem . Let E be a Banach space, n ∈N, and B be a bounded set in DCn[J , E]. Then
B is relatively compact if the following conditions are satisfied:

(i) B(k)|[,T] are equicontinuous on [, T] for any T >  where B(k)|[,T] denotes the
restrictions to [, T] of the functions B(k) = {u(k) : u ∈ B}.

(ii) B(k)(t) = {u(k)(t) : u ∈ B} is a relatively compact subset of E for all t ∈ J and
k ∈ {, , . . . , n}.

(iii) For each ε > , there exists T >  such that

e–t∥∥u(k)(t)
∥∥

E ≤ ε

for all t > T , k ∈ {, , . . . , n}, and u ∈ B.

The proof relies on the following useful observation.

Lemma . [] Let X be a metric space. Assume that, for every ε > , there exist some
δ > , a metric space W , and a mapping � : X → W so that �[X] is totally bounded,
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and whenever x, y ∈ X are such that d(�(x),�(y)) < δ, then d(x, y) < ε. Then X is totally
bounded.

Proof of Theorem . Let ε > . From condition (iii) of Theorem ., for ε >  there exists
T >  such that

e–t∥∥u(k)(t)
∥∥

E ≤ ε

for all t > T , k ∈ {, , . . . , n} and u ∈ B. Using the equicontinuity of B(k)|[,T], we can find a
finite set of points s, . . . , sm ∈ [, T] with neighborhoods I, . . . , Im covering all of [, T] so
that

∥∥u(k)(t) – u(k)(sj)
∥∥

E < ε,

whenever u ∈ B, t ∈ Ij and  ≤ k ≤ n. Define � : B → Em(n+) by

�(u) =
(
u(s), . . . , u(sm), u′(s), . . . , u′(sm), . . . , u(n)(s), . . . , u(n)(sm)

)
.

By the boundedness of B(k) for all  ≤ k ≤ n, the image �[B] is bounded and �[B] ⊆∏n
k=

∏m
i= B(k)(si). Since B(k)(si) is relatively compact for all  ≤ k ≤ n and  ≤ i ≤ m, �[B]

is totally bounded in Em(n+). Furthermore, if u, f ∈ B with ‖�(u) – �(f )‖Em(n+) < ε, then
since any t ∈ [, T] belongs to some Ij, we get

∥∥e–tu(k)(t) – e–t f (k)(t)
∥∥

E ≤ ∥∥u(k)(t) – u(k)(sj)
∥∥

E +
∥∥u(k)(sj) – f (k)(sj)

∥∥
E

+
∥∥f (k)(sj) – f (k)(t)

∥∥
E

< ε. (.)

On the other hand, for any t ∈ [T ,∞), we have

∥∥e–tu(k)(t) – e–t f (k)(t)
∥∥

E ≤ ∥∥e–tu(k)(t)
∥∥

E +
∥∥e–t f (k)(t)

∥∥
E ≤ ε. (.)

So from (.) and (.), we get ‖u – f ‖D ≤ ε. Now by Lemma ., B is totally bounded.
�

The next result is also a consequence of Theorem ..

Corollary . Let n ∈N and B be a bounded set in Cn
[J , E]. Then B is totally bounded in

Cn
[J , E] if and only if the following conditions are satisfied:

(i) B(k)|[,T] are equicontinuous on [, T] for any T > , where B(k)|[,T] denotes the
restrictions to [, T] of the functions B(k) = {u(k) : u ∈ B}.

(ii) B(k)(t) = {u(k)(t) : u ∈ B} is a relatively compact subset of E for all t ∈ J and
k ∈ {, , . . . , n}.

(iii) For each ε > , there exists T >  such that

e–t∥∥u(k)(t)
∥∥

E ≤ ε

for all t > T , k ∈ {, , . . . , n} and u ∈ B.
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Proof Assume that B satisfies conditions (i)-(iii). Since Cn
[J , E] is a subspace of DCn[J , E],

B is totally bounded.
Conversely, assume that B is totally bounded. Let us fix arbitrarily k ∈ {, , . . . , n} and

T > . To prove the equicontinuity of B(k)|[,T], let t ∈ [, T] and ε >  be given. Pick an
ε-cover {U, . . . , Um} of B, and choose gj ∈ Uj for j = , . . . , m. Pick a neighborhood Ij of t,
so that

∥∥gj
(k)(t) – gj

(k)(s)
∥∥

E < ε,

whenever s ∈ Ij, for j = , . . . , m. Let I = I ∩ · · · ∩ Im. If u ∈ Uj then ‖u – gj‖D < ε, and so
when s ∈ I ,

∥∥u(k)(s) – u(k)(t)
∥∥

E ≤ ∥∥u(k)(s) – gj
(k)(s)

∥∥
E +

∥∥gj
(k)(s) – gj

(k)(t)
∥∥

E +
∥∥gj

(k)(t) – u(k)(t)
∥∥

E < ε.

Now, since [, T] is compact, we have the equicontinuity of B(k)|[,T].
Next, we show that (ii) holds. Let t ∈ J and k ∈ {, , . . . , n} be given. We define the func-

tion Pk : DC(n–)[J , E] → E by Pk(u) = u(k)(t). Since Pk are continuous for all  ≤ k ≤ n – 
and B is compact subset of DCn[J , E], so Bk(t) is compact.

Finally, take an arbitrary ε > . Thus, there exist u, . . . , um ∈ B such that B ⊆ ⋃i=m
i= B(ui,

ε). Since ui ∈ Ck
[J , E], there exists T >  such that

∥∥u(k)
i (t)

∥∥
E < ε

for all  ≤ i ≤ m,  ≤ k ≤ n and t > T . Hence for each u ∈ B, there exists an  ≤ i ≤ m such
that u belongs to B(ui, ε), and therefore we get

∥∥u(k)(t)
∥∥

E ≤ ∥∥u(k)(t) – u(k)
i (t)

∥∥
E +

∥∥u(k)
i (t)

∥∥
E

≤ ε

for all t > T and  ≤ k ≤ n, and consequently conditions (i)-(iii) are satisfied. �

Now, we are ready to define a new measure of noncompactness on DCn[J , E].
Let E be a Banach space, μ be a measure of noncompactness on E, n ∈ N and B be a

bounded set in DCn[J , E]. For u ∈ B and ε > . Let us denote

ωT (u, ε) = sup
{∥∥u(k)(t) – u(k)(s)

∥∥
E : t, s ∈ [, T], |t – s| < ε,  ≤ k ≤ n

}
,

ωT (B, ε) = sup
{
ωT (u, ε) : u ∈ B

}
,

ωT (B) = lim
ε→

ωT (B, ε),

ω(B) = lim
T→∞ωT (B),

and

W (B) = sup
{
μ

(
B(k)(t)

)
: t ∈ J ,  ≤ k ≤ n

}
,

d(B) = lim
t→∞ sup

{
e–t∥∥u(k)(t)

∥∥
E : u ∈ B,  ≤ k ≤ n

}
.
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Moreover, let us put

ω(B) = ω(B) + d(B) + W (B).

Theorem . The function ω, where ω : MDCn[J ,E] →R, is a measure of noncompactness
on DCn[J , E].

Proof First we show ◦ holds. To do this, take B ∈MDCn[J ,E] such that ω(B) = . Let η > 
be arbitrary, since ω(B) = ,

lim
T→∞ lim

ε→
ωT (B, ε) = .

Thus, there exist δ >  and T ′ >  such that ωT (B, δ) < η for all T > T ′. This implies that

∥∥u(k)(t) – u(k)(s)
∥∥

E < η

for all u ∈ B,  ≤ k ≤ n and t, s ∈ [, T] such that |t – s| < δ. Then B(k)|[,T] is bounded and
equicontinuous for all  ≤ k ≤ n and T > T ′. On the other hand, since B(k)|[,T ′] is bounded
and equicontinuous for all  ≤ k ≤ n, then B(k)|[,T] is bounded and equicontinuous for all
 ≤ k ≤ n and T < T ′. Using again the fact that ω(B) =  we have d(B) =  and W (B) = .
Hence the condition (ii) and (iii) of Theorem . is valid and we conclude that ◦ holds.

◦ follows directly from the definition ω.
Next, we show that ◦ holds. Suppose that B ∈MDCn[J ,E] and {um} ⊂ B such that um →

u ∈ B in DCn[J , E]. By the definition of ωT (B, ε) we have

∥∥u(k)
m (t) – u(k)

m (s)
∥∥

E ≤ ωT (B, ε)

for all m ∈N,  ≤ k ≤ n and t, s ∈ [, T] with |t – s| < ε. Letting m → ∞, we get

∥∥u(k)(t) – u(k)(s)
∥∥

E ≤ ωT (B, ε)

for any  ≤ k ≤ n and t, s ∈ [, T] with |t – s| < ε, and hence

lim
T→∞ lim

ε→
ωT (B, ε) ≤ lim

T→∞ lim
ε→

ωT (B, ε).

This implies that ω(B) ≤ ω(B) and by means of ◦, we obtain

ω(B) = ω(B). (.)

Also, since

sup
{

e–t∥∥uk(t)
∥∥

E : u ∈ B,  ≤ k ≤ n
}

= sup
{

e–t∥∥uk(t)
∥∥

E : u ∈ B,  ≤ k ≤ n
}

and

sup
{
μ

(
B(k)(t)

)
: t ∈ [, T],  ≤ k ≤ n

}
= sup

{
μ

(
B(k)(t)

)
: t ∈ [, T],  ≤ k ≤ n

}
,
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we have d(B) = d(B), W (B) = W (B), and from (.) we get ω(B) = ω(B). Hence ω sat-
isfies condition ◦ of Definition ..

Condition ◦ follows directly from [Conv(B)](k) = Conv(B(k)) and is left to the reader.
The proof of condition ◦ can be carried out by using the equality

(
λf + ( – λ)g

)(k) = λf (k) + ( – λ)g(k)

for all λ ∈ [, ].
It remains to prove ◦, suppose that {Bm} is a sequence of closed and nonempty sets

of MDCn[J ,E] such that Bm+ ⊂ Bm for m = , , . . . , and limm→∞ ω(Bm) = . Now for any
m ∈N, take um ∈ Bm. Suppose that A is a countable dense subset of J .

Claim  {um} has a subsequence {umk } such that u(k)
mk (t) converges for every t ∈ A and  ≤

k ≤ n.

Let {ti} be the points of A, arranged in the sequence. Since ω(Bm) → , μ(B(k)
m (t)) → 

and there exists a subsequence, which we denote by {u,i} such that {u(k)
,i } ( ≤ k ≤ n)

converges, as i → ∞. Let us now consider the sequence S, S, . . . , which we represent by
the array

S: u,, u,, u,, . . .
S: u,, u,, u,, . . .
S: u,, u,, u,, . . .
...

...
...

...
. . .

such that Sj is a subsequence of Sj– for j = , , . . . and u(k)
j,i (tj) ( ≤ k ≤ n) converges, as

i → ∞. We now go down the diagonal of the array, i.e., we consider the sequence

S: u,, u,, u,, . . . .

Hence u(k)
m,m(t) converges for every t ∈ A and  ≤ k ≤ n.

Without loss of generality, we can suppose that A be a countable dense subset of J and
{un(t)} converges for every t ∈ A.

Claim  {um} has a subsequence {umk } and there exists a u ∈ DCn[J , E] such that umk →
u in DCn[J , E].

Let ε >  be fixed, since limm→∞ ω(Bm) = , there exists N ∈ N such that ω(BN ) < ε.
Hence, we can find T >  and δ >  such that

ωT (BN , δ) < ε (.)

and

e–t∥∥u(k)(t)
∥∥

E < ε (.)
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for all u ∈ BN ,  ≤ k ≤ n, and t ∈ J with t > T . Also, we can find a finite set of points
y, . . . , yl ∈ A ∩ [, T] with neighborhoods Bδ(y), . . . , Bδ(yl) that cover [, T], so that for all
t ∈ [, T] we have i ∈ {, , . . . , l} where

∥∥u(k)
n (yi) – u(k)

n (t)
∥∥

E ≤ ωT (un, δ) ≤ ωT (BN , δ) < ε (.)

for all  ≤ k ≤ n. Since {u(k)
n (y)} converges for every y ∈ A and  ≤ k ≤ n, there exists

N > N such that for all p, q > N and  ≤ i ≤ l, we have

∥∥u(k)
p (yi) – u(k)

q (yi)
∥∥

E < ε.

There are now two cases.
Case : If t ≤ T , then there exists i, such that for all p, q > N, using (.) we get

e–t∥∥u(k)
p (t) – u(k)

q (t)
∥∥

E ≤ ∥∥u(k)
p (t) – u(k)

q (t)
∥∥

E

≤ ∥∥u(k)
p (t) – u(k)

p (yi )
∥∥

E +
∥∥u(k)

p (yi ) – u(k)
q (yi )

∥∥
E

+
∥∥u(k)

p (yi ) – u(k)
q (t)

∥∥
E

< ε.

Case : If ‖x‖ > T , by (.), we have

e–t∥∥u(k)
p (t) – u(k)

q (t)
∥∥

E ≤ e–t(∥∥u(k)
p (t)

∥∥
E +

∥∥u(k)
q (t)

∥∥
E

) ≤ ε

for all p, q > N and  ≤ k ≤ n. Thus, {un} is a Cauchy sequence in DCn[J , E] and there
exists u ∈ DCn[J , E] such that un → u and this completes the proof of the claim.

Now, since un ∈ Bn, Bn+ ⊂ Bn, and Bn is closed for all n ∈N we obtain

u ∈
∞⋂

n=

Bn = B∞,

which completes the proof of ◦. �

Corollary . The function ω : MCn
 [J ,E] →R is a regular measure of noncompactness on

Cn
[J , E].

Proof Since Cn
[J , E] is a subspace of DCn[J , E], ω defines a measure of noncompact-

ness on Cn
[J , E]. Also, it is easy to see that ω satisfies conditions ◦-◦. Suppose that

B ∈ NCk
[J ,E]. Thus, the closure of B in Ck

[J , E] is compact. Let us fix arbitrarily ε > . Since
B(k)|[,T] are bounded and equicontinuous on [, T] for all  ≤ k ≤ n and T > , there exists
δ >  such that

∥∥u(k)(t) – u(k)(s)
∥∥ < ε

for all  ≤ k ≤ n, u ∈ B, and t, s ∈ [, T] such that |t – s| ≤ δ. Then for all u ∈ B we have

ωT (u, δ) = sup
{∥∥u(k)(t) – u(k)(s)

∥∥ : t, s ∈ [, T], |t – s| < δ,  ≤ k ≤ n
} ≤ ε
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and

ωT (B, ε) = sup
{
ωT (u, ε) : u ∈ B

} ≤ ε.

This implies that

ω(B) = lim
T→∞ lim

δ→
ωT (B, δ) = . (.)

Also, using conditions (ii) and (iii) of Corollary . implies that d(B) = , W (B) = , and
the condition ker(ω) = NCk

[J ,E] holds. �

3 Application
In this section, we will investigate the solvability of the functional integral equation (.)
in the space DCn[J , E]. We will assume that the following conditions are satisfied:

(i) ki : R+ ×R+ →R (i = , ) and ξ ,β : R+ →R+ are continuous functions such there
exist two positive constants Q and Q such that

Q := sup

{
e–t

∣∣∣∣
∫ ∞


k(t, s) ds

∣∣∣∣ : t ∈R+

}
< ∞,

Q := sup

{
e–t

∣∣∣∣
∫ β(t)


k(t, s) ds

∣∣∣∣ : t ∈R+

}
< ∞,

lim
t→∞ e–t

∣∣∣∣
∫ ∞


k(t, s) ds

∣∣∣∣ = ,

and

lim
t→∞ e–t

∣∣∣∣
∫ β(t)


k(t, s) ds

∣∣∣∣ = .

(ii) u, u, . . . , un– ∈ E.
(iii) f : R+ × En+ → E is continuous and there exist two continuous functions

a, a : R+ →R+ and a nondecreasing and continuous function ψ : R+ →R+ such
that

∥∥f (t, x, x, . . . , xn+, xn+)
∥∥

E ≤ a(t) + a(t)ψ
(

e–t max
≤i≤n+

‖xi‖E

)
. (.)

Moreover, there exist two positive constants M and M such that

Mi = sup

{
e–t

(n –  – k)!

∣∣∣∣
∫ t


(t – s)n––kai(s)ds

∣∣∣∣ : t ∈R+,  ≤ k ≤ n – 
}

< ∞

for i = ,  and

lim
t→∞ sup

{
e–t

∣∣∣∣
∫ t


(t – s)n––kai(s)ds

∣∣∣∣ : i = , ,  ≤ k ≤ n – 
}

= .

(iv) For any r > , h and g are uniformly continuous on [, r] × Bn
r , and f ([, r] × Bn+

r ) is
uniformly continuous and relatively compact in E.
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(v) h, g : R+ × En → E are continuous such that for any r > , h and g are uniformly
continuous on [, r] × Bn

r ,

∥∥h(t, x, x, . . . , xn–)
∥∥

E ≤ e–t max
≤i≤n–

‖xi‖E

and

∥∥g(t, x, x, . . . , xn–)
∥∥

E ≤ e–t max
≤i≤n–

‖xi‖E .

(vi) There exists a positive solution r of the inequality

Mψ
(
max{r, Qr, Qr}) + M + M ≤ r,

where M = max{‖u‖E ,‖u‖E , . . . ,‖un–‖E}.
Now, we will need the following lemmas later.

Lemma . Assume that h satisfies the hypothesis (v), then H : DC(n–)[J , E] → BC[J , E],
defined by

Hx(t) =
∫ ∞


k(t, s)h

(
s, x(s), x′(s), . . . , x(n–)(s)

)
ds, (.)

is a continuous operator and ‖Hx‖B ≤ Q‖x‖D.

Proof Obviously, Hx(t) for any x ∈ DC(n–)[J , E] is continuous on J , and we have

e–t∥∥Hx(t)
∥∥

E = e–t
∥∥∥∥
∫ ∞


k(t, s)h

(
s, x(s), x′(s), . . . , x(n–)(s)

)
ds

∥∥∥∥
E

≤ e–t
∥∥∥∥
∫ ∞


k(t, s)e–s max

≤i≤n–
x(i) ds

∥∥∥∥
E

≤ Q‖x‖D.

Thus, we obtain

‖Hx‖B ≤ Q‖x‖D. (.)

Hence H(x) ∈ BC[J , E] and H is well defined. Now we show that H is continuous. To verify
this, take x ∈ DCn–[J , E] and ε >  arbitrarily. Moreover, take y ∈ DCn–[J , E] with ‖x –
y‖D < ε. Then, considering condition (i), there exists T >  such that for t > T , we obtain

e–t∥∥Hx(t) – Hy(t)
∥∥

E

≤ e–t
∥∥∥∥
∫ ∞


k(t, s)

[
h
(
s, x(s), x′(s), . . . , x(n–)(s)

)
– h

(
s, y(s), y′(s), . . . , y(n–)(s)

)]
ds

∥∥∥∥
E

≤ e–t
∫ ∞


k(t, s)

[∥∥h
(
s, x(s), x′(s), . . . , x(n–)(s)

)∥∥
E

+
∥∥h

(
s, y(s), y′(s), . . . , y(n–)(s)

)∥∥
E

]
ds
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≤ 
(‖x‖D + ε

)
e–t

∫ ∞


k(t, s) ds

≤ 
(‖x‖D + ε

)
ε. (.)

Also if t ∈ [, T], then from the first inequality in (.) follows that

e–t∥∥Hx(t) – Hy(t)
∥∥

E ≤ Qω
T
b (h, ε), (.)

where

b = ‖x‖D + ε,

ωT
b (h, ε) = sup

{∣∣h(s, x, x, . . . , xn–) – h(s, y, y, . . . , yn–)
∣∣ :

s ∈ [, T], xi, yi ∈ Bb,‖xi – yi‖E ≤ ε
}

.

Since h is uniformly continuous on [, T] × Bb × · · ·× Bb, we have ωT
b (h, ε) →  as ε → .

Thus, H is a continuous function. �

Lemma . Assume that g satisfies the hypothesis (v), then G : DC(n–)[J , E] → BC[J , E]
defined by

Gx(t) =
∫ β(t)


k(t, s)g

(
s, x(s), x′(s), . . . , x(n–)(s)

)
ds, (.)

is a continuous operator and ‖Gx‖B ≤ Q‖x‖D.

Proof The proof is similar to Lemma .. �

Theorem . Under assumptions (i)-(vi), equation (.) has at least one solution in the
space DCn[J , E].

Proof By Taylor’s formula, we have

u(t) = u() + u′()t + · · · +
u(n–)()
(n – )!

tn– +


(n – )!

∫ t


(t – s)n–u(n)(s) ds

for all Cn[J , E]. Then the nth-order nonlinear integro-differential equation (.) has at least
one solution in the space DCn[J , E] if and only if nonlinear integral equation

u(t) = p(t) +


(n – )!

∫ t


(t – s)n–f

(
s, u(s), u′(s), . . . , u(n–)(s), Hu(s), Gu(s)

)
ds (.)

has at least one solution in the space DC(n–)[J , E] where

p(t) = u + ut + · · · +
un–

(n – )!
tn–.

Now, we define the operator F : DC(n–)[J , E] → DC(n–)[J , E] by

Fu(t) = p(t) +


(n – )!

∫ t


(t – s)n–f

(
s, u(s), u′(s), . . . , u(n–)(s), Hu(s), Gu(s)

)
ds. (.)
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First, notice that the continuity of dk (Fu)
dtk (t) for any u ∈ DC(n–)[J , E] and  ≤ k ≤ n –  is

obvious. Also, for any t ∈R+,  ≤ k ≤ n – , and by (.) we have

dk(Fu)
dtk (t) = p(k)(t) +


(n –  – k)!

∫ t


(t – s)n––k

× f
(
s, u(s), u′(s), . . . , u(n–)(s), Hu(s), Gu(s)

)
ds.

Using conditions (i)-(iv), for arbitrarily fixed t ∈ J , we have

e–t
∥∥∥∥dk(Fu)

dtk (t)
∥∥∥∥

E

≤ e–t∥∥p(k)(t)
∥∥

E

+
e–t

(n –  – k)!

∥∥∥∥
∫ t


(t – s)n––kf

(
s, u(s), u′(s), . . . , u(n–)(s), Hu(s), Gu(s)

)
ds

∥∥∥∥
E

≤ ‖p‖D +
e–t

(n –  – k)!

∫ t


(t – s)n––k[a(s)

+ a(s)ψ
(
e–s max

{∥∥u(s)
∥∥

E ,
∥∥u′(s)

∥∥
E . . . ,

∥∥u(n–)(s)
∥∥

E ,
∥∥Hu(s)

∥∥
E ,

∥∥Gu(s)
∥∥

E

})]
ds

≤ ‖p‖D + M + Mψ
(
max

{‖u‖D, Q‖u‖D, Q‖u‖D
})

.

Since M = ‖p‖D, we have

‖Fu‖D ≤ M + M + Mψ
(
max

{‖u‖D, Q‖u‖D, Q‖u‖D
})

(.)

and F(u) ∈ DC(n–)[J , E] for any u ∈ DC(n–)[J , E]. Due to inequality (.) and using (vi),
the function F maps Br into Br . Now we show that F is a continuous function on Br .
To do this, let us fix ε >  and take arbitrary u, v ∈ Br such that ‖u – v‖D < ε. Then for
k ∈ {, , . . . , n – }, we get

e–t
∥∥∥∥dk(Fu)

dtk (t) –
dk(Fv)

dtk (t)
∥∥∥∥

E

≤ e–t

(n –  – k)!

∥∥∥∥
∫ t


(t – s)n––k[f

(
s, u(s), u′(s), . . . , u(n–)(s), Hu(s), Gu(s)

)

– f
(
s, v(s), v′(s), . . . , v(n–)(s), Hv(s), Gv(s)

)]
ds

∥∥∥∥
E
. (.)

Furthermore, considering condition (iii), there exists T >  such that for t > T , we have

e–t
∥∥∥∥dk(Fu)

dtk (t) –
dk(Fv)

dtk (t)
∥∥∥∥

E

≤ e–t

(n –  – k)!

∥∥∥∥
∫ t


(t – s)n––k[f

(
s, u(s), u′(s), . . . , u(n–)(s), Hu(s), Gu(s)

)

– f
(
s, v(s), v′(s), . . . , v(n–)(s), Hv(s), Gv(s)

)]
ds

∥∥∥∥
E

≤ e–t

(n –  – k)!

∫ t


(t – s)n––k[∥∥f

(
s, u(s), u′(s), . . . , u(n–)(s), Hu(s), Gu(s)

)∥∥
E
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+
∥∥f

(
s, v(s), v′(s), . . . , v(n–)(s), Hv(s), Gv(s)

)∥∥
E

]
ds

≤ e–t

(n –  – k)!

∫ t


(t – s)n––k[a(s) + a(s)ψ(r)

]
ds

≤ 
(
ε + ψ(r)ε

)
. (.)

Now we assume that t ∈ [, T]. By applying the assumptions, we have

e–t
∥∥∥∥dk(Fu)

dtk (t) –
dk(Fv)

dtk (t)
∥∥∥∥

E

≤ e–ttn––k

(n – k – )!

∥∥∥∥
∫ t



[
f
(
s, u(s), u′(s), . . . , u(n–)(s), Hu(s), Gu(s)

)

– f
(
s, v(s), v′(s), . . . , v(n–)(s), Hv(s), Gv(s)

)]
ds

∥∥∥∥
E

≤ Tn––k

(n – k – )!
ϑ(ε), (.)

where

ϑ(ε) = sup
{∥∥f (t, u, u, . . . , un–) – f (t, v, v, . . . , vn–)

∥∥ :

t ∈ [, T], ui, vi ∈ Br ,‖ui – vi‖E ≤ ε
}

.

Since f is uniformly continuous on [, T] × Bn
r , we have ϑ(ε) →  as ε → . Thus F is

a continuous operator on DC(n–)[J , E] into DC(n–)[J , E]. Now, let X be a nonempty and
bounded subset of Br , and assume that T >  and ε >  are arbitrary constants. Let t, t ∈
[, T], with |t – t| ≤ ε, u ∈ X, and k ∈ {, , . . . , n – }. We obtain

∥∥∥∥dk(Fu)
dtk (t) –

dk(Fu)
dtk (t)

∥∥∥∥
E

≤
∥∥∥∥p(k)(t) +


(n –  – k)!

∫ t


(t – s)n––kf

(
s, u(s), u′(s), . . . , u(n–)(s), Hu(s), Gu(s)

)

– p(k)(t) –


(n –  – k)!

∫ t


(t – s)n––k

× f
(
s, u(s), u′(s), . . . , u(n–)(s), Hu(s), Gu(s)

)
ds

∥∥∥∥
E

≤ ∥∥p(k)(t) – p(k)(t)
∥∥

E

+
∥∥∥∥ 

(n –  – k)!

∫ t


(t – s)n––kf

(
s, u(s), u′(s), . . . , u(n–)(s), Hu(s), Gu(s)

)

–


(n –  – k)!

∫ t


(t – s)n––kf

(
s, u(s), u′(s), . . . , u(n–)(s), Hu(s), Gu(s)

)
ds

∥∥∥∥
E

+
∥∥∥∥ 

(n –  – k)!

∫ t



[
(t – s)n––k – (t – s)n––k]

× f
(
s, u(s), u′(s), . . . , u(n–)(s), Hu(s), Gu(s)

)
ds

∥∥∥∥
E
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≤ ωT (p, ε) +


(n –  – k)!

[∣∣∣∣
∫ t

t

(t – s)n––k[a(s) + a(s)ψ(r)
]

ds
∣∣∣∣

+
∫ t



∣∣(t – s)n––k – (t – s)n––k∣∣[a(s) + a(s)ψ(r)
]

ds
]

≤ ωT (p, ε) +


(n –  – k)!
[
εTnUT

r + φT (ε)TUT
r

]
, (.)

where

φT (ε) = sup
{∣∣(t – s)n––k – (t – s)n––k∣∣ : t, t, s ∈ [, T],  ≤ k ≤ n – , |t – t| ≤ ε

}
,

UT
r = sup

{∣∣a(s) + a(s)ψ(r)
∣∣ : s ∈ [, T]

}
.

Since u was arbitrary element of X in (.), we obtain

ωT(
F(X), ε

) ≤ ωT (p, ε) +


(n –  – k)!
[
εTnUT

r + φT (ε)TUT
r

]
. (.)

Thus, by the uniform continuity of p(k) and (t – s)n––k on the compact set [, T] and [, T]

for all  ≤ k ≤ n – , we have ωT (p, ε) →  and φT (ε) →  as ε → . Therefore we obtain
ω

T (F(X)) =  and, finally,

ω
(
F(X)

)
= . (.)

In addition, for arbitrary u, v ∈ X, k ∈ {, , . . . , n – }, and t ∈R+, we have

e–t
∥∥∥∥dk(Fu)

dtk (t) –
dk(Fv)

dtk (t)
∥∥∥∥

E

≤ e–t

(n –  – k)!

∥∥∥∥
∫ t


(t – s)n––k[f

(
s, u(s), u′(s), . . . , u(n–)(s), Hu(s), Gu(s)

)

– f
(
s, v(s), v′(s), . . . , v(n–)(s), Hv(s), Gv(s)

)]
ds

∥∥∥∥
E

≤ e–t

(n –  – k)!

∫ t


(t – s)n––k[∥∥f

(
s, u(s), u′(s), . . . , u(n–)(s), Hu(s), Gu(s)

)∥∥
E

+
∥∥f

(
s, v(s), v′(s), . . . , v(n–)(s), Hv(s), Gv(s)

)∥∥
E

]
ds

≤ e–t

(n –  – k)!

∫ t


(t – s)n––k[a(s) + a(s)ψ(r)

]
ds.

Thus, we have

diam F(X) ≤ e–t

(n –  – k)!

∫ t


(t – s)n––k[a(s) + a(s)ψ(r)

]
ds. (.)

Taking t → ∞ in the inequality (.), then using (iii) we arrive at

d
(
F(X)

)
= lim sup

t→∞
diam F(X) = . (.)
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On the other hand, by using (iv) we obtain

W
(
F(X)

)
= . (.)

Further, combining (.)-(.) we get

ω
(
F(X)

)
= 

or, equivalently,

ω
(
F(X)

) ≤ λω(X)

with λ = . From Theorem . we see that the operator F has a fixed point u in Br and
thus the functional integral-differential equation (.) has at least one solution in DCn[J , E].

�

Example . Consider the infinite system of scalar fourth-order integro-differential equa-
tions

u()
n (t) =

cos(t)
n +

e –t


n
ln

(
 +

√
un

(
t

)
+ u′

n+
(
t

)
+ u′′

n+
(
t

)
+ u()

n+
(
t

))

+
e –t



n

(∫ t



e–su()
n (s)

 + ts ds
) 


+

e –t



√

n

(∫ ∞


e–s sin(t – s)u′

n(s) ds
) 


. (.)

Let J = [,∞), Jr = [, r], E = C = {u = (u, . . . , un, . . .) : un → } with norm ‖u‖E =
supn |un|. Then the infinite system equation (.) can be regarded as an IVP of the
form of equation (.) in E. In this situation, k(t, s) = e–s sin(t – s), k(t, s) = ( + ts)–,
ξ (t) = β(t) = t, u = (u, . . . , un, . . .), v = (v, . . . , vn, . . .),w = (w, . . . , wn, . . .), x = (x, . . . , xn, . . .),
y = (y, . . . , yn, . . .), z = (z, . . . , zn, . . .), f = (f, . . . , fn, . . .), h = (h, . . . , hn, . . .), g = (g, . . . , gn, . . .),
in which

fn(t, u, v, w, x, y, z) =
cos(t)

n +
e –t



n
ln( +

√
un + vn+ + wn+ + xn+)

+
e –t

 t

n
√

yn +
e –t




√

n
√

zn

and

hn(s, x, x, x, x) = e–sxn , gn(s, x, x, x, x) = e–sxn .

It is clear that f ∈ C(R+ × E, E), and u = (, . . . , 
n , . . .) ∈ E, u = (, . . . , , . . .) ∈ E, u =

(, . . . , 
n , . . .) ∈ E, u = (, . . . , 

n , . . .) ∈ E. So, condition (ii) is valid. On the other hand,

Q = sup

{
e–t

∣∣∣∣
∫ ∞


e–s sin(t – s) ds

∣∣∣∣ : t ∈R+

}
≤ sup

{
e–t : t ∈R+

}
=  < ∞,

Q = sup

{
e–t

∣∣∣∣
∫ β(t)



(
 + ts)– ds

∣∣∣∣ : t ∈R+

}
≤ sup

{
te–t : t ∈R+

}
=


e < ∞,
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lim
t→∞ e–t

∣∣∣∣
∫ ∞


e–s sin(t – s) ds

∣∣∣∣ ≤ lim
t→∞ e–t = ,

lim
t→∞ e–t

∣∣∣∣
∫ β(t)



(
 + ts)– ds

∣∣∣∣ ≤ lim
t→∞ te–t = .

Hence, condition (i) is satisfied. Also, we see that

∣∣fn(t, u, v, w, x, y, z)
∣∣ ≤ cos(t)

n +
e –t



n
ln( +

√‖u‖E + ‖v‖E + ‖w‖E + ‖x‖E)

+
e –t



n

√‖y‖E +
e –t




√

n
√‖z‖E (.)

and

∣∣hn(s, x, x, x, x)
∣∣ ≤ e–s‖x‖E ,

∣∣gn(s, x, x, x, x)
∣∣ ≤ e–s‖x‖E ,

and therefore, by taking ψ(t) = 
√

t we obtain

∥∥f (t, u, v, w, x, y, z)
∥∥

E ≤  +
√

e–t
[

max
≤i≤

‖xi‖E

]

≤ a(t) + a(t)ψ
(

e–t max
≤i≤

‖xi‖E

)
,

where a(t) = a(t) = , and

∥∥h(s, x, x, x, x)
∥∥

E ≤ e–s max
≤i≤

‖xi‖E ,

∥∥g(s, x, x, x, x)
∥∥

E ≤ e–s max
≤i≤

‖xi‖E ,

which imply conditions (iii) and (v) are true. Now, we get

Mi = sup

{
e–t

( – k)!

∣∣∣∣
∫ t


(t – s)–k ds

∣∣∣∣ : t ∈ R+,  ≤ k ≤ 
}

=

e

< ∞

for i = , ,

M = max
{‖u‖E ,‖u‖E ,‖u‖E ,‖u‖E

}
= 

and

lim
t→∞ sup

{
e–t

∣∣∣∣
∫ t


(t – s)–k ds

∣∣∣∣ :  ≤ k ≤ 
}

= .

It can readily be seen that each number r ≥  satisfies the inequality in condition (vi), i.e.,

Mψ
(
max{r, Qr, Qr}) + M + M =


e
√

r +

e

+  ≤ r.
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Thus, as the number r we can take r = . Finally, we check condition (iv). Let r >  be
arbitrarily given. It is clear that f is uniformly continuous on Jr ×Br ×Br ×Br ×Br ×Br ×Br .
Let {t(m)} ⊂ Jr , {u(m)} ⊂ Br , {v(m)} ⊂ Br , {w(m)} ⊂ Br , {x(m)} ⊂ Br , {y(m)} ⊂ Br , {z(m)} ⊂ Br . By
virtue of (.), we have

∣∣fn
(
t(m), u(m), v(m), w(m), x(m), y(m), z(m))∣∣

≤ 
n +


n

ln( +
√

r) +


n

√
r +



√

n
√

r (n, m = , , , . . .), (.)

therefore, |fn(t(m), u(m), v(m), w(m), x(m), y(m), z(m))| is bounded, and so, by a diagonal method,
we can choose a subsequence {mi} ⊂ {m} such that

∣∣fn
(
t(mi), u(mi), v(mi), w(mi), x(mi), y(mi), z(mi)

)∣∣ → dn as i → ∞ (n = , , . . .). (.)

Now, (.) and (.) imply

|dn| ≤ 
n +


n

ln( +
√

r) +


n

√
r +



√

n
√

r (n = , , . . .). (.)

so d = (d, . . . , dn, . . .) ∈ C = E, and it is easy to see from (.)-(.) that

∥∥f
(
t(mi), u(mi), v(mi), w(mi), x(mi), y(mi), z(mi)

)
– d

∥∥
E

= sup
n

{∣∣fn
(
t(mi), u(mi), v(mi), w(mi), x(mi), y(mi), z(mi)

)
– dn

∣∣} →  as i → ∞.

Thus, we have proved that f (Jr × Br × Br × Br × Br × Br × Br) is relatively compact in
E. Also, it is clear that h and g are uniformly continuous on Jr × Bn

r , and condition (iv) is
satisfied. Consequently, all the conditions of Theorem . are satisfied. Hence equation
(.) has at least one solution belonging to the ball B in the space DCn[J , E].
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