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Abstract
In this paper, we consider the fractional modified Zakharov system with a quantum
correction. This system can be regarded as a generalization of the Garcia model to the
fractional order. By the properties of the fractional Sobolev spaces and a priori
estimates, we overcome the mathematical difficulty arising in the fractional model
and establish the global existence and uniqueness of the solution.
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1 Introduction
In this paper, we consider the following fractional modified Zakharov system

i∂tE + ∂xxE – H(–∂xx)αE = nE, ()

∂ttn – ∂xxn + H(–∂xx)βn = ∂xx
(|E|), ()

E(x, ) = E(x), n(x, ) = n(x), ∂tn(x, ) = n(x), ()

E(x + π , t) = E(x, t), n(x + π , t) = n(x, t), ∂tn(x + π , t) = ∂tn(x, t), ()

where  < α ≤ β < , E : R+ → C represents the slowly varying envelope of the high-
frequency electric field, n : R+ → R denotes the low-frequency variation of the density
of the ions and H is the dimensionless quantum parameter given by the ratio of the ion
plasmon and electron thermal energies.

When H = , ()-() reduce to the classical Zakharov system. It is well known that
the classical Zakharov system [], which describes the nonlinear interaction of Langmuir
waves and ion-acoustic waves, is one of the most important models in plasma physics.
Physically, many authors have paid much attention to investigate the nonlinear properties
of this system, such as the existence of solitons, chaos, hyperchaos, Hopf bifurcation. For
more details, see [–]. Mathematically, this system was also broadly studied concerning
its existence, uniqueness and regularity of the solutions, see [–].

When H > , α = , β = , it was exactly the Garcia model [] which obtained by using a
quantum fluid approach. Since this system took into account the quantum corrections, it
has became more important on the investigation of the quantum counterpart of some of
the plasma physics phenomena [, ]. In this sense, ()-() can be regarded as a fractional
generalization of the Garcia model.
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The interest in the study of differential equations of fractional order lies in the fact that
fractional derivatives provide a powerful and useful tool for the description of memory
and hereditary properties of various material and process. With this advantage, particu-
larly in some interdisciplinary fields, the fractional order models become more realistic
and practical than the classical integer-order models []. Recently, the fractional differ-
ential equations have been attracting great attention and widely been used in the areas
of physics, engineering, chemistry, biology, economics, control theory, signal and image
processing, biophysics, aerodynamics, etc. [–]. For example, the authors [] studied
the chaotic behavior of a generalization of the Liu system with fractional order. In [],
the existence and uniqueness of the solution for fractional neutral differential equations
with infinite delay was obtained. Other new results concerning the numerical investiga-
tion on the dynamics and properties of the system for fractional differential equations can
be found in [–], etc.

Concerning the mathematical issues for ()-(), You et al. [] established the global ex-
istence of the solution to ()-() with initial boundary conditions via a priori estimates and
Galerkin method when H > , α = , β = . Jin et al. obtained the existence of weak solu-
tions and the global attractor for modified Zakharov equations with a quantum correction
[, ]. To our knowledge, there is no general existence theory that has been developed
for ()-().

In this paper, we are interested in studying the global existence and uniqueness of the
weak solution. Motivated by [], we combine the energy method with a priori estimates
to establish the existence of the weak solution in some fractional Sobolev spaces. To over-
come the mathematical difficulty arises in the fractional model, we use the properties of
fractional Sobolev spaces and the linear interpolation to deal with the nonlinear terms.

This paper is organized as follows. In Section , we obtain a priori estimates. In Sec-
tion , we prove the existence and uniqueness of global solution to the problem ()-(). In
Section , we give a conclusion for our results.

Now we give some notations.
Let � = [, π ]. We denote by Lp(�) the space of all the pth integrable functions f

normed by

‖f ‖Lp(�) =
(∫

�

∣∣f (x)
∣∣p dx

) 
p

, ‖f ‖L∞(�) = ess sup
�

∣∣f (x)
∣∣.

When no confusion arises, we set Lp := Lp(�) for  ≤ p ≤ ∞.
The space Lp(, T ; X) consists of all measurable functions f : [, T] → X with

‖f ‖Lp(,T ;X) =
(∫ T


‖f ‖p

X dt
) 

p
< ∞,

for  ≤ p < ∞, and

‖f ‖L∞(,T ;X) = ess sup
≤t≤T

‖f ‖X < ∞.

If u is a periodic function, we can express it by Fourier series and write

u =
∑

j∈Z
ajeij·x.
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�αu can be defined by

�αu =
∑

j∈Z
|j|αajeij·x,

where � := (–�) 
 is the so-called Zygmund operator.

Define

A =
{

u
∣∣
∣ u =

∑

j∈Z
ajeij·x,

∑

j∈Z
a

j < ∞,
∑

j∈Z
|j|αa

j < ∞
}

.

Hα is a complete space of A with the induced norm

‖u‖Hα =
(∑

j∈Z
a

j

) 


+
(∑

j∈Z
|j|αa

j

) 


.

Then Hα is a Banach space. It is easy to show that Hα is a Hilbert space with the inner
product

(u, v)Hα =
(
�αu,�αv

)
=

∑

j∈Z
|j|αajbj,

where �αv =
∑

j∈Z |j|αbjeij·x.
We denote by C a positive constant which may change from one line to the next line.

2 A priori estimates
To study the solution of the fractional system, we bring in φ, and transform ()-() into
the following form

i∂tE + ∂xxE – H�αE = nE, ()

∂tn – ∂xxφ = , ()

∂tφ – n – H�(β–)n – |E| = , ()

E(x, ) = E(x), n(x, ) = n(x), φ(x, ) = φ(x), ()

E(x + π , t) = E(x, t), n(x + π , t) = n(x, t), φ(x + π , t) = φ(x, t). ()

Lemma  Assume that E(x) ∈ L(�), then we have

∥
∥E(x, t)

∥
∥

L =
∥
∥E(x)

∥
∥

L .

Proof Multiplying () by E, integrating over �, and then taking the imaginary part, we
have




d
dt

‖E‖
L = .

This completes the proof. �
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Lemma  Assume that E(x) ∈ Hα(�), n(x) ∈ Hβ–(�), φ(x) ∈ H(�), then we have

sup
≤t≤T

(‖∂xE‖
L + ‖∂xφ‖

L +
∥
∥�αE

∥
∥

L + ‖n‖
L +

∥
∥�β–n

∥
∥

L
) ≤ C,

where C is a positive constant depending on ‖E‖Hα , ‖n‖Hβ– , ‖φ‖H , and T .

Proof Multiplying () by n, and integrating over �, we have




d
dt

‖n‖
L –

∫

�

∂xxφn dx = .

Since
∫

�

∂xxφn dx =
∫

�

∂xxφ
(
∂tφ – H�(β–)n – |E|)dx

= –



d
dt

‖∂xφ‖
L –

H


d
dt

∥∥�(β–)n
∥∥

L –
∫

�

∂tn|E| dx,

it follows that




d
dt

(‖n‖
L + ‖∂xφ‖

L + H∥∥�(β–)n
∥
∥

L
)

+
∫

�

∂tn|E| dx = . ()

Multiplying () by ∂tE, integrating over �, and taking the real part, we have




d
dt

‖∂xE‖
L +

H


d
dt

∥
∥�αE

∥
∥

L +



∫

�

n∂t
(|E|)dx = . ()

Since

d
dt

∫

�

n|E| dx =
∫

�

∂tn|E| dx +
∫

�

n∂t
(|E|)dx,

from () and (), we can deduce that

d
dt

(


‖n‖

L +


‖∂xφ‖

L +
H


∥∥�(β–)n

∥∥
L + ‖∂xE‖

L

+ H∥∥�αE
∥
∥

L +
∫

�

n
(|E|)dx

)
= .

Set


(t) =


‖n‖

L +


‖∂xφ‖

L +
H


∥∥�(β–)n

∥∥
L + ‖∂xE‖

L

+ H∥∥�αE
∥
∥

L +
∫

�

n
(|E|)dx,

we have


(t) = 
().
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By using the Hölder inequality, the Gagliardo-Nirenberg inequality, and Lemma , we have



‖n‖

L +


‖∂xφ‖

L +
H


∥∥�(β–)n

∥∥
L + ‖∂xE‖

L + H∥∥�αE
∥∥

L

≤ 
() +
∣∣∣
∣

∫

�

n|E| dx
∣∣∣
∣

≤ 
() +



‖n‖
L + ‖E‖

L

≤ 
() +



‖n‖
L + C‖E‖

L‖∂xE‖L

≤ 
() +



‖n‖
L +




‖∂xE‖
L + C.

Owing to the inequality


() ≤ C
(‖n‖

L + ‖∂xφ‖
L +

∥∥�(β–)n
∥∥

L + ‖∂xE‖
L +

∥∥�αE
∥∥

L
)

≤ C
(‖E‖Hα + ‖n‖Hβ– + ‖φ‖

H
)
,

we obtain the desired result. �

Lemma  Assume that E(x) ∈ Hα(�), n(x) ∈ Hβ (�), φ(x) ∈ H(�), then we have

sup
≤t≤T

(‖∂tE‖
L + ‖∂tn‖

L + ‖∂tφ‖
L +

∥∥�αE
∥∥

L +
∥∥�βn

∥∥
L + ‖∂xxφ‖

L
) ≤ C,

where C is a positive constant depending on ‖E‖Hα , ‖n‖Hβ , ‖φ‖H and T .

Proof Differentiating () with respect to t, then multiplying it by Et , integrating over �,
and taking the imaginary part, we have




d
dt

‖∂tE‖
L = Im

∫

�

∂t(nE)Et dx.

Therefore

d
dt

‖∂tE‖
L =  Im

∫

�

∂t(nE)Et dx

=  Im
∫

�

∂tnEEt dx

≤ ‖E‖L∞‖∂tn‖L‖∂tE‖L

≤ C
(‖∂tn‖

L + ‖∂tE‖
L

)
, ()

where we have used the fact ‖E‖L∞ ≤ C‖∂xE‖L and Lemma .
Differentiating () with respect to t, then multiplying it by ∂tn, and integrating over �,

we have




d
dt

‖∂tn‖
L +




d
dt

‖∂xn‖
L +

H


d
dt

∥
∥�βn

∥
∥

L =
∫

�

∂tn∂xx
(|E|)dx.
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By using the Hölder inequality, the Gagliardo-Nirenberg inequality, and Lemma , we have
∫

�

∂tn∂xx
(|E|)dx ≤ C

(‖∂tn‖
L +

∥∥∂xx
(|E|)∥∥

L
)

≤ C
(‖∂tn‖

L + ‖E‖
L∞‖∂xxE‖

L + ‖∂xE‖
L

)

≤ C
(‖∂tn‖

L + ‖∂xxE‖
L + 

)

≤ C
(‖∂tn‖

L +
∥∥�αE

∥∥
L + 

)
.

From (), it is easy to see that

∥∥�αE
∥∥

L ≤ C
(‖∂tE‖

L + ‖∂xxE‖
L + ‖nE‖

L
)
.

By using the Gagliardo-Nirenberg inequality, the ε-Young inequality and Lemma , we
have

∥
∥�αE

∥
∥

L ≤ C
(‖∂tE‖

L +
∥
∥�αE

∥
∥


α

L‖E‖– 
α

L + ‖E‖
L∞‖n‖

L
)

≤ 

∥∥�αE

∥∥
L + C

(‖∂tE‖
L + 

)
.

Thus

∥
∥�αE

∥
∥

L ≤ C
(‖∂tE‖

L + 
)
. ()

Consequently




d
dt

‖∂tn‖
L +




d
dt

‖∂xn‖
L +

H


d
dt

∥
∥�βn

∥
∥

L

≤ C
(‖∂tn‖

L + ‖∂tE‖
L + 

)
. ()

From () and (), we have

d
dt

(‖∂tE‖
L + ‖∂tn‖

L + ‖∂xn‖
L + H∥∥�βn

∥
∥

L
)

≤ C
(‖∂tn‖

L + ‖∂tE‖
L + 

)
.

Thus the Gronwall inequality yields the estimate

sup
≤t≤T

(‖∂tE‖
L + ‖∂tn‖

L + ‖∂xn‖
L +

∥∥�βn
∥∥

L
) ≤ C,

where C is a positive constant depending on ‖E‖Hα , ‖n‖Hβ , ‖φ‖H , and T .
Then () and () imply

‖∂xxφ‖
L +

∥∥�αE
∥∥

L ≤ C.

From (), we can also obtain

‖∂tφ‖
L ≤ C,

where we have used the fact β –  < β

 . Thus we complete the proof. �
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Lemma  Assume that E(x) ∈ Hα(�), n(x) ∈ Hβ (�), φ(x) ∈ Hβ+(�), then we have

sup
≤t≤T

(‖∂ttE‖
L + ‖∂ttn‖

L + ‖∂ttφ‖
L +

∥∥�α∂tE
∥∥

L +
∥∥�β∂tn

∥∥
L + ‖∂xx∂tφ‖

L
) ≤ C,

where C is a positive constant depending on ‖E‖Hα , ‖n‖Hβ , ‖φ‖Hβ+ , and T .

Proof Differentiating () with respect to t twice, multiplying it by ∂ttn, and integrating
over �, we have

d
dt

(‖∂ttn‖
L + ‖∂x∂tn‖

L + H∥∥�β∂tn
∥∥

L
)

– 
∫

�

∂t∂xx
(|E|)∂ttn dx = .

By using the Hölder inequality, the Gagliardo-Nirenberg inequality, and Lemma , we have

∣∣
∣∣

∫

�

∂t∂xx
(|E|)∂ttn dx

∣∣
∣∣

≤ C
(‖∂ttn‖

L +
∥∥∂t∂xx

(|E|)∥∥
L

)

≤ C
(‖∂ttn‖

L + ‖∂t∂xxE‖
L‖E‖

L∞ + ‖∂t∂xE‖
L‖∂xE‖

L∞
)

≤ C
(‖∂ttn‖

L +
∥∥�α∂tE

∥∥
L + 

)
. ()

Since

i∂ttE + ∂xx∂tE – H�α∂tE – ∂t(nE) = ,

we have

∥∥�α∂tE
∥∥

L ≤ C
(‖∂ttE‖

L + ‖∂xx∂tE‖
L +

∥∥∂t(nE)
∥∥

L
)

≤ C
(‖∂ttE‖

L + ‖∂xx∂tE‖
L + ‖n‖

L∞‖∂tE‖
L + ‖E‖

L∞‖∂tn‖
L

)

≤ C
(‖∂ttE‖

L + ‖∂xx∂tE‖
L + 

)
.

By using the ε-Young inequality and the Gagliardo-Nirenberg inequality, we have

∥∥�α∂tE
∥∥

L ≤ C‖∂ttE‖
L +



∥∥�α∂tE

∥∥
L + C.

Thus

∥∥�α∂tE
∥∥

L ≤ C
(‖∂ttE‖

L + 
)
. ()

Combining () and () leads us to the estimate

d
dt

(‖∂ttn‖
L + ‖∂x∂tn‖

L + H∥∥�β∂tn
∥
∥

L
)

≤ C
(‖∂ttn‖

L + ‖∂ttE‖
L + 

)
. ()
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Differentiating () with respect to t twice, multiplying it by ∂ttE, integrating over �, and
then taking the imaginary part, we have




d
dt

‖∂ttE‖
L – Im

∫

�

∂tt(nE)∂ttE dx = .

Therefore

d
dt

‖∂ttE‖
L ≤ C

(‖∂ttE‖
L + ‖∂ttn‖

L + ‖∂tE∂tn‖
L

)

≤ C
(‖∂ttE‖

L + ‖∂ttn‖
L + ‖∂tE‖

L‖∂tn‖
L∞

)

≤ C
(‖∂ttE‖

L + ‖∂ttn‖
L + ‖∂x∂tn‖

L
)
. ()

From () and (), we have

d
dt

(‖∂ttE‖
L + ‖∂ttn‖

L + ‖∂x∂tn‖
L + H∥∥�β∂tn

∥
∥

L
)

≤ C
(‖∂ttE‖

L + ‖∂ttn‖
L + ‖∂x∂tn‖

L + 
)
.

Using the Gronwall inequality, we have

sup
≤t≤T

(‖∂ttE‖
L + ‖∂ttn‖

L +
∥∥�β∂tn

∥∥
L

) ≤ C.

Therefore, from (), we can obtain

sup
≤t≤T

∥∥�α∂tE
∥∥

L ≤ C.

From ()-(), we can also get the following estimates easily:

sup
≤t≤T

(‖∂ttφ‖
L +

∥∥�αE
∥∥

L +
∥∥�βn

∥∥
L +

∥∥�β+φ
∥∥

L
) ≤ C.

Thus we complete the proof. �

Lemma  Assume that E(x) ∈ Hkα(�), n(x) ∈ Hkβ (�), φ(x) ∈ H+(k–)β (�), k ≥ . Then

sup
≤t≤T

(∥∥(∂t)kE
∥
∥

L +
∥
∥(∂t)kn

∥
∥

L +
∥
∥(∂t)kφ

∥
∥

L
) ≤ C,

and

sup
≤t≤T

(∥∥�α(∂t)k–E
∥
∥

L +
∥
∥�β (∂t)k–n

∥
∥

L +
∥
∥∂xx(∂t)k–φ

∥
∥

L
) ≤ C,

where C is a positive constant depending on the initial data and T .

Proof The proof is by induction on k, the case k =  being Lemma  above.
Assume now the lemma is valid for some integer k ≥ , and suppose then

E(x) ∈ Hmα(�), n(x) ∈ Hmβ (�), φ(x) ∈ H+(m–)β (�), m = k + .
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Differentiating () (k + )-times with respect to t, then multiplying it by (∂t)k+E, inte-
grating over �, and taking the imaginary part, we have




d
dt

∥
∥(∂t)k+E

∥
∥

L = Im
∫

�

(∂t)k+(nE)(∂t)k+E dx.

Therefore

d
dt

∥∥(∂t)k+E
∥∥

L =  Im
∫

�

(∂t)k+(nE)(∂t)k+E dx

≤ C
(∥∥(∂t)k+n

∥
∥

L +
∥
∥(∂t)k+E

∥
∥

L + 
)
. ()

Differentiating () (k + )-times with respect to t, then multiplying it by (∂t)k+n, and
integrating over �, we have




d
dt

(∥∥(∂t)k+n
∥
∥

L +
∥
∥∂x(∂t)kn

∥
∥

L + H∥∥�β (∂t)kn
∥
∥

L
)

=
∫

�

∂xx(∂t)k(|E|)(∂t)k+n dx.

Therefore

d
dt

(∥∥(∂t)k+n
∥∥

L +
∥∥∂x(∂t)kn

∥∥
L + H∥∥�β (∂t)kn

∥∥
L

)

≤ C
(∥∥(∂t)k+n

∥
∥

L +
∥
∥∂xx(∂t)k(|E|)∥∥

L
)
. ()

Since

i(∂t)k+E + ∂xx(∂t)kE – H�α(∂t)kE = (∂t)k(nE),

it follows that

∥∥�α(∂t)kE
∥∥

L

≤ C
(∥∥(∂t)k+E

∥∥
L +

∥∥∂xx(∂t)kE
∥∥

L +
∥∥(∂t)k(nE)

∥∥
L

)

≤ C
(∥∥(∂t)k+E

∥∥
L +

∥∥(∂xx)α(∂t)kE
∥∥


α

L

∥∥(∂t)kE
∥∥– 

α

L

+
∥∥(∂t)knE

∥∥
L +

∑

i+j=k,<i<k,<j<k

∥∥(∂t)in(∂t)jE
∥∥

L +
∥∥n(∂t)kE

∥∥
L

)

≤ C
∥∥(∂t)k+E

∥∥
L +



∥∥(∂xx)α(∂t)kE

∥∥
L + C +

∥∥(∂t)kn
∥∥

L‖E‖
L∞

+
∑

i+j=k,<i<k,<j<k

∥∥(∂t)in
∥∥

L∞
∥∥(∂t)jE

∥∥
L + ‖n‖

L∞
∥∥(∂t)kE

∥∥
L

≤ C
∥
∥(∂t)k+E

∥
∥

L +


∥
∥(∂xx)α(∂t)kE

∥
∥

L +
∑

i+j=k,<i<k,<j<k

∥
∥�β (∂t)in

∥
∥

L

∥
∥(∂t)jE

∥
∥

L + C

≤ C
∥∥(∂t)k+E

∥∥
L +



∥∥(∂xx)α(∂t)kE

∥∥
L + C,
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i.e.

∥∥�α(∂t)kE
∥∥

L ≤ C
∥∥(∂t)k+E

∥∥
L + C.

Therefore

∥
∥∂xx(∂t)kE

∥
∥

L ≤ C
∥
∥�α(∂t)kE

∥
∥


α

L

∥
∥(∂t)kE

∥
∥– 

α

L ≤ C
(∥∥�α(∂t)kE

∥
∥

L + 
)

≤ C
(∥∥(∂t)k+E

∥
∥

L + 
)
.

Substituting it into (), we have

d
dt

(∥∥(∂t)k+n
∥
∥

L +
∥
∥∂x(∂t)kn

∥
∥

L + H∥∥�β (∂t)kn
∥
∥

L
)

≤ C
(∥∥(∂t)k+n

∥∥
L +

∥∥(∂t)k+E
∥∥

L + 
)
. ()

From () and (), we have

d
dt

(∥∥(∂t)k+E
∥
∥

L +
∥
∥(∂t)k+n

∥
∥

L +
∥
∥∂x(∂t)kn

∥
∥

L + H∥∥�β (∂t)kn
∥
∥

L
)

≤ C
(∥∥(∂t)k+n

∥∥
L +

∥∥(∂t)k+E
∥∥

L + 
)
.

Thus the Gronwall inequality yields

∥∥(∂t)k+E
∥∥

L +
∥∥(∂t)k+n

∥∥
L +

∥∥∂x(∂t)kn
∥∥

L + H∥∥�β (∂t)kn
∥∥

L ≤ C.

Then from (), we can deduce that

∥
∥∂xx(∂t)kφ

∥
∥

L ≤ C.

Since

(∂t)k+φ – (∂t)kn – H�(β–)(∂t)kn – (∂t)k(|E|) = ,

we have

∥∥(∂t)k+φ
∥∥

L ≤ C
(∥∥(∂t)kn

∥∥
L +

∥∥�(β–)(∂t)kn
∥∥

L +
∥∥(∂t)k(|E|)∥∥

L
) ≤ C,

where we have used the fact β –  < β

 . The proof is complete. �

3 The existence result of the solution
Now we state our main result as follows.

Theorem  Assume that  < α ≤ β < , and E(x) ∈ Hα(�), n(x) ∈ Hβ (�), φ(x) ∈
H(�). Then there exists a unique global solution to problem ()-(),

E ∈ L∞(
, T ; Hα

)
, n ∈ L∞(

, T ; Hβ
)
, φ ∈ L∞(

, T ; H),

Et ∈ L∞(
, T ; L), nt ∈ L∞(

, T ; L), φt ∈ L∞(
, T ; L).



Li et al. Advances in Difference Equations  (2015) 2015:377 Page 11 of 15

Proof By using the Galerkin method, we find the approximate solution as follows

Em(t) =
m∑

j=

gjm(t)ωj, nm(t) =
m∑

j=

hjm(t)ωj, φm(t) =
m∑

j=

ljm(t)ωj,

where ωj = eijx,  ≤ j ≤ m. According to the Galerkin method, these undetermined coeffi-
cients gjm(t), hjm(t), ljm(t) need to satisfy the following initial boundary value problem of
the system of ordinary differential equations

(
i∂tEm + ∂xxEm – H�αEm – nmEm,ωj

)
= , ()

(∂tnm – ∂xxφm,ωj) = , ()
(
∂tφm – nm + H(–∂xx)β–nm – |Em|,ωj

)
= , ()

Em(x + π , t) = Em(x, t), nm(x + π , t) = nm(x, t),

φm(x + π , t) = φm(x, t),
()

Em(x, ) = Em(x) ∈ span{ωj,  ≤ j ≤ m}, ()

nm(x, ) = nm(x) ∈ span{ωj,  ≤ j ≤ m}, ()

φm(x, ) = φm(x) ∈ span{ωj,  ≤ j ≤ m}, ()

where Em(x)
Hα

−→ E(x), nm(x)
Hβ

−→ n(x), and φm(x)
H

−→ φ(x) as m → ∞. Simi-
lar to the proof of Lemma , we can deduce that the sequence {Em}∞m= is bounded
in L∞(, T ; Hα(�)), {nm}∞m= is bounded in L∞(, T ; Hβ (�)), {φm}∞m= is bounded in
L∞(, T ; H(�)), {Emt}∞m= is bounded in L∞(, T ; L(�)), {nmt}∞m= is bounded in L∞(, T ;
L(�)), {φmt}∞m= is bounded in L∞(, T ; L(�)).

By a compactness argument, we can choose subsequences, still denoted by Em(x, t),
nm(x, t), φm(x, t), such that

Em(x, t) → E(x, t) in L∞(
, T ; Hα(�)

)
star weakly,

nm(x, t) → n(x, t) in L∞(
, T ; Hβ (�)

)
star weakly,

φm(x, t) → φ(x, t) in L∞(
, T ; H(�)

)
star weakly,

Emt(x, t) → Et(x, t) in L∞(
, T ; L(�)

)
star weakly,

nmt(x, t) → nt(x, t) in L∞(
, T ; L(�)

)
star weakly,

φmt(x, t) → φt(x, t) in L∞(
, T ; L(�)

)
star weakly,

Em(x, t) → E(x, t) in L(, T ; L(�)
)

strongly and a.e.,

nm(x, t) → n(x, t) in L(, T ; L(�)
)

strongly and a.e.,

nm(x, t)Em(x, t) → n(x, t)E(x, t) in L∞(
, T ; L(�)

)
star weakly,

∣∣Em(x, t)
∣∣ → |E(x, t)| in L∞(

, T ; L(�)
)

star weakly.

By using the density of ωj in L, we obtain the existence of a local solution for the problem
()-(). By the continuous extension principle, from the conditions of the theorem and
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a priori estimates in Section , we can get the existence of the global solution for the
problem ()-().

Next, we will show the uniqueness of the solution.
Suppose that there are two solutions (E, n,φ) and (E, n,φ). Let

Ẽ = E – E, ñ = n – n, φ̃ = φ – φ,

then we have

i∂t Ẽ + ∂xxẼ – H�αẼ = nẼ + ñE, ()

∂t ñ – ∂xxφ̃ = , ()

∂tφ̃ – ñ + H�β–ñ = |E| – |E|, ()

with initial data

Ẽ|t= = , ñ|t= = , φ̃|t= = ,

and periodic boundary conditions

Ẽ(x + π , t) = Ẽ(x, t), ñ(x + π , t) = ñ(x, t), φ̃(x + π , t) = φ̃(x, t).

Multiplying () by Ẽ, integrating over �, and then taking the imaginary part, we have

d
dt

‖Ẽ‖
L =  Im

∫

�

ñEẼ dx

≤ C‖E‖L∞‖̃n‖L‖Ẽ‖L

≤ C
(‖̃n‖

L + ‖Ẽ‖
L

)
. ()

Differentiating () with respect to t, then multiplying it by ∂t ñ, integrating over �, we
have




d
dt

(‖∂t ñ‖
L + ‖∂xñ‖

L + H∥∥�β ñ
∥∥

L
)

=
∫

�

(∂xx)(EẼ + ẼE)∂t ñ dx.

Therefore

d
dt

(‖∂t ñ‖
L + ‖∂xñ‖

L + H∥∥�β ñ
∥∥

L
)

≤ C
(‖Ẽ‖L + ‖∂xxẼ‖L

)‖∂t ñ‖L

≤ C
(‖Ẽ‖

L + ‖∂xxẼ‖
L + ‖∂t ñ‖

L
)
. ()

Since

∥
∥�αẼ

∥
∥

L ≤ ‖∂t Ẽ‖L + ‖∂xxẼ‖L + ‖̃n‖L‖E‖L∞ + ‖n‖L∞‖Ẽ‖L

≤ ‖∂t Ẽ‖L +


∥∥�αẼ

∥∥
L + C‖̃n‖L + C‖Ẽ‖L ,
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we have

∥
∥�αẼ

∥
∥

L ≤ C
(‖∂t Ẽ‖L + ‖Ẽ‖L + ‖̃n‖L

)
.

Furthermore,

‖∂xxẼ‖
L ≤ C

(∥∥�αẼ
∥∥

L + ‖Ẽ‖
L

)

≤ C
(‖∂t Ẽ‖

L + ‖Ẽ‖
L + ‖̃n‖

L
)
.

Substituting it into (), we have




d
dt

(‖∂t ñ‖
L + ‖∂xñ‖

L + H∥∥�β ñ
∥
∥

L
)

≤ C
(‖∂t Ẽ‖

L + ‖Ẽ‖
L + ‖̃n‖

L + ‖∂t ñ‖
L

)
. ()

Differentiating () with respect to t, we have

i∂tt Ẽ + ∂xx∂t Ẽ – H�α∂t Ẽ = ∂tnẼ + n∂t Ẽ + ∂t ñE + ñ∂tE. ()

Multiplying () by ∂t Ẽ, integrating over �, and taking the imaginary part, we have




d
dt

‖∂t Ẽ‖
L ≤ ‖∂tn‖L∞‖Ẽ‖L‖∂t Ẽ‖L

+ ‖∂t ñ‖L‖E‖L∞‖∂t Ẽ‖L + ‖̃n‖L‖∂tE‖L∞‖‖∂t Ẽ‖L

≤ C
(‖Ẽ‖

L + ‖∂t Ẽ‖
L + ‖̃n‖

L + ‖∂t ñ‖
L

)
. ()

Recall the inequality




d
dt

‖̃n‖
L ≤ ‖̃n‖L‖∂t ñ‖L ≤ C

(‖̃n‖
L + ‖∂t ñ‖

L
)
. ()

Combining (), (), () and (), we have

d
dt

(‖Ẽ‖
L + ‖∂t Ẽ‖

L + ‖̃n‖
L + ‖∂t ñ‖

L + ‖∂xñ‖
L + H∥∥�β ñ

∥
∥

L
)

≤ C
(‖Ẽ‖

L + ‖∂t Ẽ‖
L + ‖̃n‖

L + ‖∂t ñ‖
L + ‖∂xñ‖

L + H∥∥�β ñ
∥∥

L
)
.

Using the Gronwall inequality and initial data, we deduce

ñ = , Ẽ = , φ̃ = . �

Theorem  Assume that  < α ≤ β < , and E(x) ∈ Hkα(�), n(x) ∈ Hkβ (�), φ(x) ∈
H+(k–)β (�), k ≥ . Then there exists a unique global solution to ()-().

Proof Using Lemma  and the embedding theory of Sobolev spaces, we can prove the
theorem above. Since the proof is similar to the proof of Theorem , we omit it. �
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4 Conclusions
In the past decades, quantum plasmas have been attracting considerable attention, both
from the physical and mathematical viewpoints. In this paper, we have considered the
global existence of the smooth solutions to the fractional modified Zakharov system, when
the quantum correction was taken into account. For the other mathematical property of
the fractional modified Zakharov system, it is a subject which is still very open to new de-
velopments. We will consider the numerical solutions to the fractional modified Zakharov
system in a coming study.
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