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Abstract
This paper investigates the second order nonlinear neutral delay difference equation

�
[
an�(xn + bxn–τ – dn)

]
+�f (n, xf1(n), xf2(n), . . . , xfk (n))

+ g(n, xg1(n), xg2(n), . . . , xgk (n)) = cn, n ≥ n0.

By using the Banach fixed point theorem and some new techniques, we establish the
existence results of uncountably many bounded nonoscillatory solutions for the
above equation, propose a few Mann type iterative approximation schemes with
errors and obtain several errors estimates between the iterative approximations and
the nonoscillatory solutions. Examples that cannot be solved by known results are
given to illustrate our theorems.
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Keywords: Second order nonlinear neutral delay difference equation; uncountably
many bounded nonoscillatory solutions; Banach fixed point theorem; Mann iterative
sequence with errors

1 Introduction
In recent years there has been much research activity concerning the oscillation, nonoscil-
lation and existence of solutions for various second order difference equations, for exam-
ple, see [–] and the references therein.

By using the Zp geometrical index theory, Guo and Yu [] obtained some sufficient con-
ditions on the multiplicity results of periodic solutions to the second order difference
equation

�xn– + f (xn) = , n ∈ Z. (.)

Thandapani et al. [] gave sufficient conditions for the oscillation of bounded solutions
for the second order neutral difference equation

�(xn – pxn–k) – qnf (xn–l) = , n ≥ . (.)
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By applying the contraction principle, Jinfa [] discussed the existence of a nonoscillatory
solution for the second order neutral delay difference equation with positive and negative
coefficients

�(xn + pxn–m) + pnxn–k – qnxn–l = , n ≥ n, (.)

where p ∈R \ {–}. Thandapani et al. [] studied the asymptotic behavior of solutions of
the second order neutral difference equations of the form

�(xn + pxn–k) + f (n, xn–l) = , n ≥ , (.)

and

�(xn + pxn–k) + f (n, xn–l,�xn–l) = , n ≥ , (.)

in terms of some difference inequalities. González and Jiménez-Melado [] used a fixed-
point theorem derived from the theory of measures of noncompactness to investigate the
existence of solutions for the second order difference equation

�(qn�xn) + fn(xn) = , n ≥ . (.)

Ma and Guo [] proved the existence of a nontrivial homoclinic solution for the second
order difference equations

�(pn�un–) + qnun = f (n, un), n ∈ Z (.)

in terms of the Mountain Pass theorem relying on Ekeland’s variational principle and the
diagonal method. Yu et al. [] established the existence of a periodic solution for equation
(.) by means of the critical point theory. Utilizing the contraction principle, Liu et al. []
investigated the global existence of solutions for the second order nonlinear neutral delay
difference equation

�
[
an�(xn + bxn–τ )

]
+ f (n, xn–dn , xn–dn , . . . , xn–dkn ) = cn, n ≥ n, (.)

relative to all b ∈R.
Inspired and motivated by the work in [–], we introduce and study the following

more general second order nonlinear neutral difference equation:

�
[
an�(xn + bxn–τ – dn)

]
+ �f (n, xf(n), xf(n), . . . , xfk (n))

+ g(n, xg(n), xg(n), . . . , xgk (n)) = cn, n ≥ n, (.)

where b ∈ R, τ , k ∈ N, n ∈ N, {an}n∈Nn
and {cn}n∈Nn

are real sequences with an �=  for
n ∈Nn , {dn}n∈Nn

is a bounded sequence, f , g : Nn ×R
k → R and fl, gl : Nn → Z with

lim
n→∞ fl(n) = lim

n→∞ gl(n) = +∞, l ∈ {, , . . . , k}.
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Using the Banach fixed point theorem, we obtain sufficient conditions of the existence
of uncountably many bounded nonoscillatory solutions for equation (.) relative to b ∈
R \ {±}, suggest a few Mann type iterative approximation methods with errors for these
bounded nonoscillatory solutions and study error estimates between the approximation
sequences and the bounded nonoscillatory solutions. The results obtained in this paper
extend and improve the corresponding results in [, ]. Four nontrivial examples are given
to demonstrate the effectiveness of our results.

2 Preliminaries
Throughout this paper, we assume that � is the forward difference operator defined by
�xn = xn+ – xn, �xn = �(�xn), A and B are positive constants with B > A, R = (–∞, +∞),
Z, N and N stand for the sets of all integers, positive integers and nonnegative integers,
respectively,

Nn = {n : n ∈N with n ≥ n}, n ∈ N,

α = inf
{

fl(n), gl(n) :  ≤ l ≤ k, n ∈Nn

}
,

β = min{n – τ ,α}, Zβ = {n : n ∈ Z with n ≥ β},
An = dn + A > , Bn = dn + B, n ∈ Zβ ,

dn = dn , β ≤ n ≤ n – ,

and d and d are two constants with

d ≤ inf
n∈Zβ

dn, d ≥ sup
n∈Zβ

dn.

Let l∞β denote the Banach space of all bounded sequences in Zβ with norm

‖x‖ = sup
n∈Zβ

|xn| for x = {xn}n∈Zβ
∈ l∞β

and

�
({An}n∈Zβ

, {Bn}n∈Zβ

)
=

{
x = {xn}n∈Zβ

∈ l∞β : An ≤ xn ≤ Bn, n ∈ Zβ

}
.

It is easy to see that �({An}n∈Zβ
, {Bn}n∈Zβ

) is a bounded closed and convex subset of l∞β .
By a solution of equation (.), we mean a sequence {xn}n∈Zβ

with a positive integer
T ≥ n +τ + |β| such that equation (.) is satisfied for all n ≥ T . As is customary, a solution
of equation (.) is said to be oscillatory if it is neither eventually positive nor eventually
negative. Otherwise, it is said to be nonoscillatory.

Lemma . ([]) Let {αn}n∈N , {βn}n∈N , {γn}n∈N and {tn}n∈N be four nonnegative se-
quences satisfying the inequality

αn+ ≤ ( – tn)αn + tnβn + γn, n ∈ N,

where {tn}n∈N ⊂ [, ],
∑∞

n= tn = +∞, limn→∞ βn =  and
∑∞

n= γn < +∞. Then
limn→∞ αn = .
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3 Existence of uncountably many bounded nonoscillatory solutions
Now we study the existence of uncountably bounded nonoscillatory solutions for equation
(.) with respect to b ∈ R \ {±}, suggest a few Mann iterative approximation schemes
with errors for these bounded nonoscillatory solutions and discuss the errors estimates
between the iterative approximations and the bounded nonoscillatory solutions.

Theorem . Let b ∈ [, ), A and B be two positive constants with B > A + b
–b (d – d).

Assume that there exist four real sequences {Pn}n∈Nn
, {Qn}n∈Nn

, {Rn}n∈Nn
and {Wn}n∈Nn

satisfying

∣
∣f (n, u, u, . . . , uk) – f (n, ū, ū, . . . , ūk)

∣
∣ ≤ Pn max

{|ul – ūl| :  ≤ l ≤ k
}

,
∣
∣g(n, u, u, . . . , uk) – g(n, ū, ū, . . . , ūk)

∣
∣ ≤ Rn max

{|ul – ūl| :  ≤ l ≤ k
}

,

n ∈Nn , ul, ūl ∈ [d + A, d + B],  ≤ l ≤ k;

(.)

∣∣f (n, u, u, . . . , uk)
∣∣ ≤ Qn,

∣∣g(n, u, u, . . . , uk)
∣∣ ≤ Wn,

n ∈Nn , ul ∈ [d + A, d + B],  ≤ l ≤ k;
(.)

max

{ ∞∑

i=n


|ai| max{Pi, Qi},

∞∑

i=n

∞∑

j=i


|ai| max

{
Rj, Wj, |cj|

}
}

< +∞. (.)

Then
(a) for each L ∈ (A + b(d + B), B + b(d + A)), there exist θ ∈ (, ) and T ≥ n + τ + |β|

such that for any z = {z,n}n∈Zβ
∈ �({An}n∈Zβ

, {Bn}n∈Zβ
), the Mann iterative sequence with

errors {zm}m∈N , where zm = {zm,n}n∈Zβ
∈ �({An}n∈Zβ

, {Bn}n∈Zβ
) for all m ∈ N, generated

by the scheme:

zm+,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( – αm – βm)zm,n + αm{L + dn – bzm,n–τ

+
∑∞

i=n

ai

[f (i, zm,f(i), zm,f(i), . . . , zm,fk (i))

–
∑∞

j=i(g(j, zm,g(j), zm,g(j), . . . , zm,gk (j)) – cj)]}
+ βmγm,n, n ≥ T , m ∈N,

( – αm – βm)zm,T + αm{L + dT – bzm,T–τ

+
∑∞

i=T

ai

[f (i, zm,f(i), zm,f(i), . . . , zm,fk (i))

–
∑∞

j=i(g(j, zm,g(j), zm,g(j), . . . , zm,gk (j)) – cj)]}
+ βmγm,T , β ≤ n < T , m ∈N

(.)

converges to a bounded nonoscillatory solution x = {xn}n∈Zβ
∈ �({An}n∈Zβ

, {Bn}n∈Zβ
) of

equation (.) and has the following errors estimate:

‖zm+ – x‖ ≤ (
 – ( – θ )αm

)‖zm – x‖ + (d + B)βm, m ∈N, (.)

where {γm}m∈N is an arbitrary sequence in �({An}n∈Zβ
, {Bn}n∈Zβ

) with γm = {γm,n}n∈Zβ
for

each m ∈N, {αm}m∈N and {βm}m∈N are any sequences in [, ] such that

∞∑

m=

αm = +∞ (.)
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and

∞∑

m=

βm < +∞ or there exists a sequence {ξm}m∈N ⊂ [, +∞)

satisfying βm = ξmαm, m ≥  and lim
m→∞ ξm = ;

(.)

(b) equation (.) possesses uncountably many bounded nonoscillatory solutions in
�({An}n∈Zβ

, {Bn}n∈Zβ
).

Proof Set L ∈ (A + b(d + B), B + b(d + A)). It follows from (.) and b ∈ [, ) that there exist
θ ∈ (, ) and T ≥ n + τ + |β| satisfying

θ = b +
∞∑

i=T


|ai|

(

Pi +
∞∑

j=i

Rj

)

(.)

and

∞∑

i=T


|ai|

[

Qi +
∞∑

j=i

(
Wj + |cj|

)
]

≤ min
{

L – A – b(d + B), B + b(d + A) – L
}

. (.)

In order to prove (i), we now define a mapping SL : �({An}n∈Zβ
, {Bn}n∈Zβ

) → l∞β by

(SLx)n =

⎧
⎪⎪⎨

⎪⎪⎩

L + dn – bxn–τ +
∑∞

i=n

ai

[f (i, xf(i), xf(i), . . . , xfk (i))

–
∑∞

j=i(g(j, xg(j), xg(j), . . . , xgk (j)) – cj)], n ≥ T ,

(SLx)T , β ≤ n < T ,

(.)

for any x = {xn}n∈Zβ
∈ �({An}n∈Zβ

, {Bn}n∈Zβ
), and show that SL has a fixed point, which is

also a bounded nonoscillatory solution of equation (.).
Let x = {xn}n∈Zβ

, y = {yn}n∈Zβ
∈ �({An}n∈Zβ

, {Bn}n∈Zβ
). In view of (.), (.), and (.),

we get for any n ≥ T

∣∣(SLx)n – (SLy)n
∣∣

=

∣∣
∣∣
∣
bxn–τ – byn–τ +

∞∑

i=n


ai

[

f (i, xf(i), xf(i), . . . , xfk (i)) – f (i, yf(i), yf(i), . . . , yfk (i))

–
∞∑

j=i

(
g(j, xg(j), xg(j), . . . , xgk (j)) – g(j, yg(j), yg(j), . . . , ygk (j))

)
]∣
∣∣
∣∣

≤ b|xn–τ – yn–τ | +
∞∑

i=n


|ai|

[

Pi max
{|xfl(i) – yfl(i)| :  ≤ l ≤ k

}

+
∞∑

j=i

Rj max
{|xgl(j) – ygl(j)| :  ≤ l ≤ k

}
]

≤ b‖x – y‖ +
∞∑

i=n


|ai|

(

Pi +
∞∑

j=i

Rj

)

‖x – y‖

≤ θ‖x – y‖,
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which leads that

‖SLx – SLy‖ ≤ θ‖x – y‖, x, y ∈ �
({An}n∈Zβ

, {Bn}n∈Zβ

)
. (.)

By (.), (.), and (.), we infer that for each n ≥ T

(SLx)n = L + dn – bxn–τ +
∞∑

i=n


ai

[

f (i, xf(i), xf(i), . . . , xfk (i))

–
∞∑

j=i

(
g(j, xg(j), xg(j), . . . , xgk (j)) – cj

)
]

≤ L + dn – b(d + A) +
∞∑

i=T


|ai|

[

Qi +
∞∑

j=i

(
Wj + |cj|

)
]

≤ L + dn – b(d + A) + min
{

L – A – b(d + B), B + b(d + A) – L
}

≤ Bn

and

(SLx)n = L + dn – bxn–τ +
∞∑

i=n


ai

[

f (i, xf(i), xf(i), . . . , xfk (i))

–
∞∑

j=i

(
g(j, xg(j), xg(j), . . . , xgk (j)) – cj

)
]

≥ L + dn – b(d + B) –
∞∑

i=T


|ai|

[

Qi +
∞∑

j=i

(
Wj + |cj|

)
]

≥ L + dn – b(d + B) – min
{

L – A – b(d + B), B + b(d + A) – L
}

≥ An,

which yield

SL
(
�

({An}n∈Zβ
, {Bn}n∈Zβ

)) ⊆ �
({An}n∈Zβ

, {Bn}n∈Zβ

)
. (.)

Hence (.) and (.) mean that SL is a contraction mapping in �({An}n∈Zβ
, {Bn}n∈Zβ

)
and it has a unique fixed point x = {xn}n∈Zβ

∈ �({An}n∈Zβ
, {Bn}n∈Zβ

). It follows from (.)
that

xn = L + dn – bxn–τ +
∞∑

i=n


ai

[

f (i, xf(i), xf(i), . . . , xfk (i))

–
∞∑

j=i

(
g(j, xg(j), xg(j), . . . , xgk (j)) – cj

)
]

, n ≥ T ,
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which gives

�(xn + bxn–τ – dn) = –


an

[

f (n, xf(n), xf(n), . . . , xfk (n))

–
∞∑

j=n

(
g(j, xg(j), xg(j), . . . , xgk (j)) – cj

)
]

, n ≥ T ,

and

�
(
an�(xn + bxn–τ – dn)

)
+ �f (n, xf(n), xf(n), . . . , xfk (n))

+ g(n, xg(n), xg(n), . . . , xgk (n)) = cn, n ≥ T .

That is, the fixed point x = {xn}n∈Zβ
of SL in �({An}n∈Zβ

, {Bn}n∈Zβ
) is a bounded nonoscil-

latory solution of equation (.).
In light of (.), (.), (.), and (.), we deduce that for all n ≥ T and m ∈N

|zm+,n – xn|

=

∣∣
∣∣
∣
( – αm – βm)zm,n + αm

{

L + dn – bzm,n–τ

+
∞∑

i=n


ai

[

f (i, zm,f(i), zm,f(i), . . . , zm,fk (i))

–
∞∑

j=i

(
g(j, zm,g(j), zm,g(j), . . . , zm,gk (j)) – cj

)
]}

+ βmγm,n – xn

∣
∣∣
∣∣

≤ ( – αm – βm)|zm,n – xn| + αm
∣
∣(SLzm)n – (SLx)n

∣
∣ + βm|γm,n – xn|

≤ ( – αm – βm)‖zm – x‖ + αmθ‖zm – x‖ + (d + B)βm

≤ (
 – ( – θ )αm

)‖zm – x‖ + (d + B)βm,

which implies that (.) holds. It follows from (.), (.), and Lemma . that
limm→∞ zm = x.

Next we prove (ii). It follows from (i) that for any distinct L, L ∈ (A + b(d + B), B + b(d +
A)), there exist θ, θ ∈ (, ) and T, T ≥ n + τ + |β| satisfying (.)-(.), where θ , T , L
and SL are replaced by θj, Tj, Lj and STj , j ∈ {, }, respectively. In view of (.) there exists
T > max{T, T} satisfying

∞∑

i=T


|ai|

(

Pi +
∞∑

j=i

Rj

)

<
|L – L|
(d + B)

. (.)

Obviously, the contraction mappings SL and SL have the unique fixed points x =
{xn}n∈Zβ

, y = {yn}n∈Zβ
∈ �({An}n∈Zβ

, {Bn}n∈Zβ
), respectively. That is, x and y are bounded

nonoscillatory solutions of equation (.) in �({An}n∈Zβ
, {Bn}n∈Zβ

). In the following, we
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show only that x �= y. In view of (.), we arrive at

xn = L + dn – bxn–τ +
∞∑

i=n


ai

[

f (i, xf(i), xf(i), . . . , xfk (i))

–
∞∑

j=i

(
g(j, xg(j), xg(j), . . . , xgk (j)) – cj

)
]

, n ≥ T

and

yn = L + dn – byn–τ +
∞∑

i=n


ai

[

f (i, yf(i), yf(i), . . . , yfk (i))

–
∞∑

j=i

(
g(j, yg(j), yg(j), . . . , ygk (j)) – cj

)
]

, n ≥ T,

which together with (.) yield

∣
∣(xn – yn) + b(xn–τ – yn–τ )

∣
∣

=

∣∣∣
∣∣
L – L +

∞∑

i=n


ai

{

f (i, xf(i), xf(i), . . . , xfk (i)) – f (i, yf(i), yf(i), . . . , yfk (i))

–
∞∑

j=i

[
g(j, xg(j), xg(j), . . . , xgk (j)) – g(j, yg(j), yg(j), . . . , ygk (j))

]
}∣

∣∣∣
∣

≥ |L – L| –
∞∑

i=n


|ai|

[

Pi max
{|xfl(i) – yfl(i)| :  ≤ l ≤ k

}

+
∞∑

j=i

Rj max
{|xgl(j) – ygl(j)| :  ≤ l ≤ k

}
]

≥ |L – L| –
∞∑

i=n


|ai|

(

Pi +
∞∑

j=i

Rj

)

‖x – y‖

≥ |L – L| – (d + B)
∞∑

i=T


|ai|

(

Pi +
+∞∑

j=i

Rj

)

≥ |L – L|


> , n ≥ T,

that is, x �= y. This completes the proof. �

Theorem . Let b ∈ (–, ], A and B be two positive constants with B > A + b
+b (d – d).

Assume that there exist four real sequences {Pn}n∈Nn
, {Qn}n∈Nn

, {Rn}n∈Nn
and {Wn}n∈Nn

satisfying (.)-(.). Then
(a) for any L ∈ (A + b(d + A), B + b(d + B)), there exist θ ∈ (, ) and T ≥ n + τ + |β|

such that for each z = {z,n}n∈Zβ
∈ �({An}n∈Zβ

, {Bn}n∈Zβ
), the Mann iterative sequence with

errors {zm}m∈N generated by (.) with zm = {zm,n}n∈Zβ
∈ �({An}n∈Zβ

, {Bn}n∈Zβ
) for all m ∈
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N converges to a bounded nonoscillatory solution x = {xn}n∈Zβ
∈ �({An}n∈Zβ

, {Bn}n∈Zβ
) of

equation (.) and satisfies (.), where {γm}m∈N is an arbitrary sequence in �({An}n∈Zβ
,

{Bn}n∈Zβ
) with γm = {γm,n}n∈Zβ

for each m ∈N, {αm}m∈N and {βm}m∈N are any sequences
in [, ] satisfying (.) and (.);

(b) equation (.) possesses uncountably many bounded nonoscillatory solutions in
�({An}n∈Zβ

, {Bn}n∈Zβ
).

Proof Let L ∈ (A + b(d + A), B + b(d + B)). On account of (.) and b ∈ (–, ], there exist
θ ∈ (, ) and T ≥ n + τ + |β| satisfying

θ = –b +
∞∑

i=T


|ai|

(

Pi +
∞∑

j=i

Rj

)

(.)

and

∞∑

i=T


|ai|

[

Qi +
∞∑

j=i

(
Wj + |cj|

)
]

≤ min
{

L – A – b(d + A), B + b(d + B) – L
}

. (.)

Let the mapping SL : �({An}n∈Zβ
, {Bn}n∈Zβ

) → l∞β be defined by (.). The rest of the proof
is similar to that of Theorem . and is omitted. This completes the proof. �

Theorem . Let b ∈ (, +∞), A and B be two positive constants with B > A + b+
b– (d – d).

Assume that there exist four real sequences {Pn}n∈Nn
, {Qn}n∈Nn

, {Rn}n∈Nn
and {Wn}n∈Nn

satisfying (.)-(.). Then
(a) for any L ∈ (B + b(d + A) + d – d, A + b(d + B) + d – d), there exist θ ∈ (, ) and T ≥

n + τ + |β| such that for each z = {z,n}n∈Zβ
∈ �({An}n∈Zβ

, {Bn}n∈Zβ
), the Mann iterative

sequence with errors {zm}m∈N , where zm = {zm,n}n∈Zβ
∈ �({An}n∈Zβ

, {Bn}n∈Zβ
) for all m ∈

N, generated by the schemes:

zm+,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( – αm – βm)zm,n + αm{ L
b + dn+τ

b – zm,n+τ

b

+ 
b
∑∞

i=n+τ

ai

[f (i, zm,f(i), zm,f(i), . . . , zm,fk (i))

–
∑∞

j=i(g(j, zm,g(j), zm,g(j), . . . , zm,gk (j)) – cj)]}
+ βmγm,n, n ≥ T , m ∈N,

( – αm – βm)zm,T + αm{ L
b + dT+τ

b – zm,T+τ

b

+ 
b
∑+∞

i=T+τ

ai

[f (i, zm,f(i), zm,f(i), . . . , zm,fk (i))

–
∑∞

j=i(g(j, zm,g(j), zm,g(j), . . . , zm,gk (j)) – cj)]}
+ βmγm,T , β ≤ n < T , m ∈N,

(.)

converges to a bounded nonoscillatory solution x = {xn}n∈Zβ
∈ �({An}n∈Zβ

, {Bn}n∈Zβ
) of

equation (.) and satisfies (.), where {γm}m∈N is an arbitrary sequence in �({An}n∈Zβ
,

{Bn}n∈Zβ
) with γm = {γm,n}n∈Zβ

for each m ∈N, {αm}m∈N and {βm}m∈N are any sequences
in [, ] satisfying (.) and (.);

(b) equation (.) possesses uncountably many bounded nonoscillatory solutions in
�({An}n∈Zβ

, {Bn}n∈Zβ
).
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Proof Set L ∈ (B + b(d + A) + d – d, A + b(d + B) + d – d). In view of (.) and b ∈ (, +∞),
there exist θ ∈ (, ) and T ≥ n + τ + |β| such that

θ =

b

+

b

∞∑

i=T


|ai|

(

Pi +
∞∑

j=i

Rj

)

(.)

and

∞∑

i=T


|ai|

[

Qi +
∞∑

j=i

(
Wj + |cj|

)
]

≤ min
{

b(d + B) + d + A – d – L, L – b(d + A) – d – B + d
}

. (.)

Define a mapping SL : �({An}n∈Zβ
, {Bn}n∈Zβ

) → l∞β by

(SLx)n =

⎧
⎪⎪⎨

⎪⎪⎩

L
b + dn+τ

b – xn+τ

b + 
b
∑∞

i=n+τ

ai

[f (i, xf(i), xf(i), . . . , xfk (i))

–
∑∞

j=i(g(j, xg(j), xg(j), . . . , xgk (j)) – cj)], n ≥ T ,

(SLx)T , β ≤ n < T ,

(.)

for any x = {xn}n∈Zβ
∈ �({An}n∈Zβ

, {Bn}n∈Zβ
).

Let x = {xn}n∈Zβ
, y = {yn}n∈Zβ

∈ �({An}n∈Zβ
, {Bn}n∈Zβ

). Using (.), (.), and (.), we
deduce that for any n ≥ T

∣
∣(SLx)n – (SLy)n

∣
∣ ≤ 

b
|xn+τ – yn+τ |

+

b

∞∑

i=n+τ


|ai|

[
∣
∣f (i, xf(i), xf(i), . . . , xfk (i)) – f (i, yf(i), yf(i), . . . , yfk (i))

∣
∣

+
∞∑

j=i

∣∣g(j, xg(j), xg(j), . . . , xgk (j)) – g(j, yg(j), yg(j), . . . , ygk (j))
∣∣
]

≤ 
b
‖x – y‖ +


b

∞∑

i=n+τ


|ai|

(

Pi +
∞∑

j=i

Rj

)

‖x – y‖

≤ θ‖x – y‖,

which means (.).
By (.), (.), and (.), we infer that for each n ≥ T

(SLx)n =
L
b

+
dn+τ

b
–

xn+τ

b
+


b

∞∑

i=n+τ


ai

[

f (i, xf(i), xf(i), . . . , xfk (i))

–
∞∑

j=i

(
g(j, xg(j), xg(j), . . . , xgk (j)) – cj

)
]

≤ L
b

+
d
b

–
d + A

b
+


b

∞∑

i=n+τ


|ai|

[

Qi +
∞∑

j=i

(
Wj + |cj|

)
]
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≤ L
b

+
d
b

–
d + A

b

+

b

min
{

b(d + B) + d + A – d – L, L – b(d + A) – d – B + d
}

≤ Bn

and

(SLx)n =
L
b

+
dn+τ

b
–

xn+τ

b
+


b

∞∑

i=n+τ


ai

[

f (i, xf(i), xf(i), . . . , xfk (i))

–
∞∑

j=i

(
g(j, xg(j), xg(j), . . . , xgk (j)) – cj

)
]

≥ L
b

+
d
b

–
d + B

b
–


b

∞∑

i=T


|ai|

[

Qi +
∞∑

j=i

(
Wj + |cj|

)
]

≥ L
b

+
d
b

–
d + B

b

–

b

min
{

b(d + B) + d + A – d – L, L – b(d + A) – d – B + d
}

≥ An,

which imply (.). Consequently SL is a contraction mapping in �({An}n∈Zβ
, {Bn}n∈Zβ

)
and it has a unique fixed point x = {xn}n∈Zβ

∈ �({An}n∈Zβ
, {Bn}n∈Zβ

). It follows from (.)
that

xn =
L
b

+
dn+τ

b
–

xn+τ

b
+


b

∞∑

i=n+τ


ai

[

f (i, xf(i), xf(i), . . . , xfk (i))

–
∞∑

j=i

(
g(j, xg(j), xg(j), . . . , xgk (j)) – cj

)
]

, n ≥ T ,

which gives

�(xn + bxn–τ – dn) = –


an

[

f (n, xf(n), xf(n), . . . , xfk (n))

–
∞∑

j=n

(
g(j, xg(j), xg(j), . . . , xgk (j)) – cj

)
]

, n ≥ T + τ

and

�
(
an�(xn + bxn–τ – dn)

)
+ �f (n, xf(n), xf(n), . . . , xfk (n))

+ g(n, xg(n), xg(n), . . . , xgk (n)) = cn, n ≥ T + τ .

That is, x = {xn}n∈Zβ
∈ �({An}n∈Zβ

, {Bn}n∈Zβ
) is a bounded nonoscillatory solution of equa-

tion (.).
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It follows from (.), (.), (.), and (.) that for any n ≥ T and m ∈N

|zm+ – xn| =

∣
∣∣
∣∣
( – αm – βm)zm,n + αm

{
L
b

+
dn+τ

b
–

zm,n+τ

b

+

b

∞∑

i=n+τ


ai

[

f (i, zm,f(i), zm,f(i), . . . , zm,fk (i))

–
∞∑

j=i

(
g(j, zm,g(j), zm,g(j), . . . , zm,gk (j)) – cj

)
]}

+ βmγm,n – xn

∣∣∣
∣∣

≤ ( – αm – βm)|zm,n – xn| + αm
∣∣(SLzm)n – (SLx)n

∣∣ + βm|γm,n – xn|
≤ ( – αm – βm)‖zm – x‖ + αmθ‖zm – x‖ + (d + B)βm

≤ (
 – ( – θ )αm

)‖zm – x‖ + (d + B)βm,

which yields (.). Thus Lemma ., (.), and (.) ensure that limm→∞ zm = x. The rest
of the proof is similar to that of Theorem . and is omitted. This completes the proof.

�

Theorem . Let b ∈ (–∞, –), A and B be two positive constants with B > A + b–
b+ (d – d).

Assume that there exist four real sequences {Pn}n∈Nn
, {Qn}n∈Nn

, {Rn}n∈Nn
and {Wn}n∈Nn

satisfying (.)-(.). Then
(a) for each L ∈ (B + b(d + B) + d – d, A + b(d + A) + d – d), there exist θ ∈ (, ) and

T ≥ n + τ + |β| such that for each z = {z,n}n∈Zβ
∈ �({An}n∈Zβ

, {Bn}n∈Zβ
), the Mann iter-

ative sequence with errors {zm}m∈N generated by the schemes (.) with zm = {zm,n}n∈Zβ
∈

�({An}n∈Zβ
, {Bn}n∈Zβ

) for all m ∈ N converges to a bounded nonoscillatory solution x =
{xn}n∈Zβ

∈ �({An}n∈Zβ
, {Bn}n∈Zβ

) of equation (.) and satisfies (.), where {γm}m∈N is
an arbitrary sequence in �({An}n∈Zβ

, {Bn}n∈Zβ
) with γm = {γm,n}n∈Zβ

for each m ∈ N,
{αm}m∈N and {βm}m∈N are any sequences in [, ] satisfying (.) and (.);

(b) equation (.) possesses uncountably many bounded nonoscillatory solutions in
�({An}n∈Zβ

, {Bn}n∈Zβ
).

Proof Let L ∈ (B+b(d+B)+d–d, A+b(d+A)+d–d). It follows from (.) and b ∈ (–∞, –)
that there exist θ ∈ (, ) and T ≥ n + τ + |β| satisfying

θ = –

b

–

b

∞∑

i=T


|ai|

(

Pi +
∞∑

j=i

Rj

)

(.)

and

∞∑

i=T


|ai|

[

Qi +
∞∑

j=i

(
Wj + |cj|

)
]

≤ min
{

A + b(d + A) + d – d – L, L – B – b(d + B) – d + d
}

. (.)

Let the mapping SL be defined by (.). The rest of the proof is similar to that of Theo-
rem . and is omitted. This completes the proof. �
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Remark . Theorems .-. extend Theorem  in [] under p �= ±. Theorems .-.
improve Theorems .-. in [], respectively. The examples in the fourth section reveal
that Theorems .-. extend authentically the corresponding results in [, ].

4 Applications
In this section, we assume that {γm}m∈N is an arbitrary sequence in �({An}n∈Zβ

, {Bn}n∈Zβ
)

with γm = {γm,n}n∈Zβ
for each m ∈ N, {αm}m∈N and {βm}m∈N are any sequences in [, ]

satisfying (.) and (.).
Now we display four examples as applications of the results presented in Section .

Example . Consider the second order nonlinear neutral delay difference equation

�

[
(–)

n(n+)
 n�

(
xn +




xn–τ + (–)n
)]

+ �
(
nx

n+nx
n+(–)n

)

+
x

n+n+n–
n( + x

n+n+n–)
=

n(n – ) +
√

n – n + 
n + n ln( + n)

, n ≥ , (.)

where n =  and τ ∈ N is fixed. Let k = , b = 
 , A = , B = , α = , β =  – τ , d = –,

d =  and

an = (–)
n(n+)

 n, cn =
n(n – ) +

√
n – n + 

n + n ln( + n)
, dn = (–)n,

f (n, u, v) = nuv, g(n, u, v) =
u

n( + v)
,

f(n) = n + n, f(n) = n + (–)n,

g(n) = n + n + n – , g(n) = n + n + n – ,

Pn = n, Qn = n,

Rn =


n , Wn =


n , (n, u, v) ∈Nn × [d + A, d + B].

It is easy to show that the conditions (.)-(.) are satisfied. It follows from Theo-
rem . that equation (.) possesses uncountably bounded nonoscillatory solutions in
�({An}n∈Zβ

, {Bn}n∈Zβ
), and for any L ∈ (A + b(d + B), B + b(d + A)), there exist θ ∈ (, ) and

T ≥ n + τ + |β| such that the Mann iterative sequence with error {zm}m≥ generated by
(.) converges to a bounded nonoscillatory solution x = {xn}n∈Zβ

∈ �({An}n∈Zβ
, {Bn}n∈Zβ

)
of equation (.) and (.) holds. Obviously, Theorem  in [] and Theorem . in [] are
invalid for equation (.).

Example . Consider the second order nonlinear neutral delay difference equation

�

[
(
n + 

)
�

(
xn –




xn–τ +  sin
(
n + 

)
)]

+ �

(√
n – x

n–
n + x

n–

)

+
nx

n– – (–)nx
n–

n + n + n + n + 
=

√
n – n + 

n + n + n + 
, n ≥ , (.)
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where n =  and τ ∈N is fixed. Let k = , b = – 
 , A = , B = , α = –, β = min{–τ , –},

d = –, d = , and

an = n + , cn =
√

n – n + 
n + n + n + 

, dn =  sin
(
n + 

)
,

f (n, u, v) =
√

n – u

n + v , g(n, u, v) =
nu – (–)nv

n + n + n + n + 
,

f(n) = n – , f(n) = n – , g(n) = n – , g(n) = n – ,

Pn =
( + n)

√
n – 

n , Qn =


√
n – 

n ,

Rn =
n +  × 

n , Wn =
n +  × 

n + 
,

(n, u, v) ∈Nn × [d + A, d + B].

It is clear that the conditions (.)-(.) are fulfilled. It follows from Theorem . that
equation (.) possesses uncountably bounded nonoscillatory solutions in �({An}n∈Zβ

,
{Bn}n∈Zβ

), and for any L ∈ (A + b(d + A), B + b(d + B)), there exist θ ∈ (, ) and T ≥
n + τ + |β| such that the Mann iterative sequence with error {zm}m≥ generated by (.)
converges to a bounded nonoscillatory solution x = {xn}n∈Zβ

∈ �({An}n∈Zβ
, {Bn}n∈Zβ

) of
equation (.) and (.) holds. However, Theorem  in [] and Theorem . in [] are not
applicable for equation (.).

Example . Consider the second order nonlinear neutral delay difference equation

�

[
n( – n)�

(
xn + xn–τ +

n(n – )
n + 

)]
+ �

(
nxn+ sin (xn+xn–)

)

+
x

n–n+
n + x

n+n–
=

(–)n–n – 
n + n + n + 

, n ≥ , (.)

where n =  and τ ∈ N is fixed. Let k = , b = , A = , B = , α = –, β = min{ –τ , –},
d = 

 , d =  and

an = n( – n), cn =
(–)n–n – 

n + n + n + 
, dn =

n(n – )
n + 

,

f (n, u, v) = nu sin (uv), g(n, u, v) =
u

n + v , f(n) = n + , f(n) = n – ,

g(n) = n – n + , g(n) = n + n – , Pn = n, Qn = n,

Rn =
n + 

n , Wn =


n , (n, u, v) ∈Nn × [d + A, d + B].

Clearly, the conditions (.)-(.) hold. It follows from Theorem . that equation (.)
possesses uncountably bounded nonoscillatory solutions in �({An}n∈Zβ

, {Bn}n∈Zβ
), and for

any L ∈ (B + b(d + A) + d – d, A + b(d + B) + d – d), there exist θ ∈ (, ) and T ≥ n + τ + |β|
such that the Mann iterative sequence with error {zm}m≥ generated by (.) converges to
a bounded nonoscillatory solution x = {xn}n∈Zβ

∈ �({An}n∈Zβ
, {Bn}n∈Zβ

) of equation (.)
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and (.) holds. But Theorem  in [] and Theorem . in [] are not valid for equation
(.).

Example . Consider the second order nonlinear neutral delay difference equation

�
[
n�

(
xn – xn–τ + (–)

n(n+)(n+)


)]
+ �

(
(–)n+n–√n – xn+n–xn–

)

+
xn+n–

n + x
n–

=
(–)n–(n – ) + (–)n+(n + ) ln( + n)

n + n + n + n + 
, n ≥ , (.)

where n =  and τ ∈ N is fixed. Let k = , b = –, A = , B = , α = –, β = { – τ , –},
d = –, d =  and

an = n, cn =
(–)n–(n – ) + (–)n+(n + ) ln( + n)

n + n + n + n + 
,

dn = (–)
n(n+)(n+)

 , f (n, u, v) = (–)n+n–√n – uv,

g(n, u, v) =
u

n + v , f(n) = n + n – , f(n) = n – , g(n) = n – ,

g(n) = n + n – , Pn = 
√

n – , Qn = 
√

n – ,

Rn =
 + n

n , Wn =

n , (n, u, v) ∈ Nn × [d + A, d + B].

It is not difficult to verify that the conditions (.)-(.) are fulfilled. It follows from The-
orem . that equation (.) possesses uncountably bounded nonoscillatory solutions in
�({An}n∈Zβ

, {Bn}n∈Zβ
), and for any L ∈ (B + b(d + B) + d – d, A + b(d + A) + d – d), there

exist θ ∈ (, ) and T ≥ n + τ + |β| such that the Mann iterative sequence with error
{zm}m≥ generated by (.) converges to a bounded nonoscillatory solution x = {xn}n∈Zβ

∈
�({An}n∈Zβ

, {Bn}n∈Zβ
) of equation (.) and (.) holds. However, Theorem  in [] and

Theorem . in [] are unapplicable for equation (.).
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