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Abstract
To solve the stiff stochastic differential equations, we propose an improved Milstein
method, which is constructed by adding an error correction term to the Milstein
scheme. The correction term is derived from an approximation of the difference
between the exact solution of stochastic differential equations and the Milstein
continuous-time extension. The scheme is proved to be strongly convergent with
order one and is as easy to implement as standard explicit schemes but much more
efficient for solving stiff stochastic problems. The efficiency and the advantage of the
method lie in its very large stability region. For a linear scalar test equation, it is shown
that the mean-square stability domain of the method is much bigger than that of the
Milstein method. Finally, numerical examples are reported to highlight the accuracy
and effectiveness of the method.
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1 Introduction
Stochastic differential equations (SDEs) play a prominent role in a range of scientific ar-
eas like biology, chemistry, epidemiology, mechanics, microelectronics, and finance [–].
Since explicit solutions are rarely available for nonlinear SDEs, numerical approximations
become increasingly important in many applications. To make the implementation viable,
effective numerical methods are clearly the key ingredient and deserve much investigation.
In the present work we make efforts in this direction and propose a new efficient scheme,
which enjoys cheap computational costs in a strong approximation of stiff SDEs.

As the considered problem, we look at the following d-dimensional SDEs driven by mul-
tiplicative noise:

{
dX(t) = f (X(t)) dt +

∑m
j= gj(X(t)) dW j(t), t ∈ (, T],

X() = X,
(.)

where T is a positive constant, f : Rd → R
d is the drift coefficient and gj, j = , , . . . , m :

R
d → R

d are the diffusion coefficients. Moreover, W j(t), j = , , . . . , m, are independent
scalar Wiener processes defined on the complete probability space (�,F , P) with a filtra-
tion {Ft}t≥ satisfying the usual conditions (that is, it is increasing and right continuous
while F contains all P-null sets). Furthermore, the initial data X is assumed to be inde-
pendent of the Wiener process satisfying E|X| < ∞.
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Over the last decades, much progress has been made in construction and analysis of
various numerical schemes for (.) from different numerical points of view; see, e.g., [–
]. Roughly speaking, there are two major types of numerical methods, called explicit
numerical methods and implicit numerical methods in the existing literature. As for the
deterministic case, explicit methods [–] are easy to implement and are advocated to
solve non-stiff problems. For stiff problems, however, the standard explicit methods with
poor stability properties suffer a lot from step-size reduction and turn out to be ineffi-
cient in terms of overall computational costs. In order to address this issue, a number of
implicit methods including drift-implicit methods [, ] and fully implicit methods [,
–, , ] have been introduced, which possess better stability properties than the ex-
plicit methods and thus are well adapted for stiff problems. Although implicit methods
can usually ease the difficulty arising from stiffness in SDEs, one needs to solve (possi-
bly large) nonlinear algebraic equations at each time step. This might lead to traditional
implicit methods still being costly when they are used to approximate large stiff systems,
for instance, SDEs produced from spatially discretization of stochastic partial differen-
tial equations. In this paper, an improved Milstein (IM) method is developed, which suc-
cessfully avoids solving nonlinear algebra equations encountered with implicit methods
as mentioned above. More importantly, the proposed scheme admits good mean-square
stability (MS-stability) properties and therefore serves as a good candidate to treat stiff
SDEs.

For simplicity of presentation, here we restrict ourselves to the special case d = m =  in
(.) and refer to Section  for the general case. In this setting we introduce the IM method
for equation (.) as follows:

{
Yn+ = Ȳn+ + ( – hf ′(Ȳn+))–h(f (Ȳn+) – f (Yn)),
Ȳn+ = Yn + hf (Yn) + g(Yn)�Wn + 

 g ′(Yn)g(Yn)(�W 
n – h),

(.)

where Yn is the approximation of the exact solution X(t) of (.) at time tn = nh with h being
the time step size. Apparently, scheme (.) can be regarded as a modification of the classi-
cal Milstein scheme by adding the error correction term ( – hf ′(Ȳn+))–h(f (Ȳn+) – f (Yn)),
where Ȳn+ is produced by the classical Milstein method. The benefits of this error cor-
rection term are twofold. On the one hand, the MS-stability property of the new scheme
shows much better than that of the classical Milstein method and no nonlinear algebra
problems are encountered during implementation. On the other hand, the computational
accuracy of the IM method is, to a certain extent, improved even for the non-stiff prob-
lem (see Table  in Section ), despite the fact that the strong convergence rate of IM
method remains the same as that of the classical Milstein method. We shall elaborate the
derivation of the IM method in the forthcoming section. In short, the derivation of (.)
is based on the local truncated error analysis and the error correction term comes from
a certain approximation of the difference between the true solution of SDEs and one-step
explicit Milstein approximation. Further, the proposed method (.) is justified by prov-
ing its strong convergence of order one under standard assumptions (see Theorem .).
Also, the linear MS-stability of the numerical scheme is examined and it turns out that
the proposed scheme possesses a much larger stability domain than the classical Milstein
method.

In addition, it is worthwhile to point out that the proposed scheme is close to the Rosen-
brock type methods in the literature [, ] due to the presence of the inverse Jacobian
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matrices. Despite the similarity, the scheme we develop here does not coincide with any
Rosenbrock type method formulated in [, ]. Indeed, the new scheme can be regarded
as a modified version of the predictor-corrector method. Based on the classical Milstein
method as a predictor, a corrector term involved with the inverse Jacobian matrices is de-
termined following the way in Section  of the manuscript. This approach is different from
the idea of obtaining Rosenbrock type methods in the literature. Similarly to Rosenbrock
methods, the proposed scheme is well suited for stiff problems with the stiffness itself ap-
pearing in linear terms from the drift coefficients, and may lose efficiency in the case of
stiff nonlinear terms. Finally, we would like to mention that the idea of error correction
methods based on Chebyshev collocation was previously employed in [] to construct
methods for stiff deterministic ordinary differential equations.

The remainder of the paper is organized as follows. In the next section, how to construct
the IM scheme based on the local truncated error analysis is presented. In Section , the
strong convergence order in mean-square sense is analyzed. Section  is devoted to the
MS-stability of the IM method. Numerical experiments are reported to confirm the accu-
racy and effectiveness of the method in Section . At the end of this article, conclusions
are made briefly.

2 Derivation of the IM method
In this section, to illuminate the derivation of the IM method, we first restrict our attention
to a scalar SDE driven by a scalar Wiener process, i.e.,

{
dX(t) = f (X(t)) dt + g(X(t)) dW (t),  < t ≤ T ,
X() = X.

(.)

The extension to a general multi-dimensional case will be presented at the end of this
section. For SDE (.), we define a uniform mesh on the finite time interval [, T] with
step size h = T

N , N ∈N
+ by

T N :  = t < t < t < · · · < tN = T .

Based on a local truncation error analysis, we are to devise a one-step approximation of
X(t), denoted by Y, starting with the initial value Y = X. To this end, we introduce an
auxiliary one-step approximation Ȳ defined by

Ȳ = Y + f (Y)h + g(Y)�W +



g ′(Y)g(Y)
(
�W 

 – h
)
, (.)

where �W := W (t) – W (t). Note that Ȳ can be viewed as a one-step approximation
generated by the classical Milstein method [, ] starting with the initial value Y = X.
Moreover, we define the continuous-time extension Ỹ (t) on the interval [t, t] such that

Ỹ (t) = Y + f (Y)(t – t) + g(Y)
(
W (t) – W (t)

)
+ g ′(Y)g(Y)

∫ t

t

(
W (s) – W (t)

)
dW (s). (.)
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Note that Ỹ (t) = Y and Ỹ (t) = Ȳ. Now let us examine the difference between X(t) and
Ỹ (t) defined by

ϕ(t) = X(t) – Ỹ (t), t ∈ [t, t]. (.)

Further, we attempt to find a proper approximation of ϕ(t), denoted by ϕ̄, based on which
we introduce a new one-step approximation Y given by

Y = Ỹ (t) + ϕ̄ = Ȳ + ϕ̄. (.)

Such a scheme can be regarded as an improved Milstein method, which is expected to re-
duce the local truncation error compared with the original Milstein scheme (.). Bearing
this idea in mind, we carry out the following analysis. Recall that X(t) = X = Y = Ỹ (t)
and therefore ϕ(t) = . For t ∈ (t, t], it follows from (.) and (.) that

dϕ(t) =
(
f
(
X(t)

)
– f (Y)

)
dt +

(
g
(
X(t)

)
– g(Y)

)
dW (t)

– g ′(Y)g(Y)
(
W (t) – W (t)

)
dW (t)

=
(
f
(
X(t)

)
– f

(
Ỹ (t)

))
dt +

(
f
(
Ỹ (t)

)
– f (Y)

)
dt

+
(
g
(
X(t)

)
– g

(
Ỹ (t)

))
dW (t) +

(
g
(
Ỹ (t)

)
– g(Y)

– g ′(Y)g(Y)
(
W (t) – W (t)

))
dW (t)

= m(t)ϕ(t) dt + h(t)ϕ(t) dW (t) + F(t) dt + G(t) dW (t), (.)

where we denote

m(t) =
∫ 


f ′(Ỹ (t) + ξϕ(t)

)
dξ , (.)

h(t) =
∫ 


g ′(Ỹ (t) + ζϕ(t)

)
dζ , (.)

and

F(t) = f
(
Ỹ (t)

)
– f (Y), (.)

G(t) = g
(
Ỹ (t)

)
– g(Y) – g ′(Y)g(Y)

(
W (t) – W (t)

)
(.)

for t ∈ (t, t]. To sum up, ϕ(t) is governed by the following SDE:

{
dϕ(t) = (m(t)ϕ(t) + F(t)) dt + (h(t)ϕ(t) + G(t)) dW (t), t ∈ (t, t],
ϕ(t) = .

(.)

With m(t) and h(t) being approximated by

m(t) ≈ f ′(Ỹ (t)
)
, h(t) ≈ g ′(Ỹ (t)

)
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for t ∈ (t, t], we can get the following approximation equation of (.):

{
dϕ(t) = (f ′(Ỹ (t))ϕ(t) + F(t)) dt + (g ′(Ỹ (t))ϕ(t) + G(t)) dW (t),
ϕ(t) = .

(.)

Here the process ϕ̄(t) is an approximation to the exact solution ϕ(t) of (.) for t ∈ (t, t].
As mentioned earlier, we are interested in the approximation ϕ to ϕ̄(t), which is used
to construct a new scheme. To this aim, we apply the semi-implicit Milstein method []
with θ =  to the linear SDE (.) to obtain

ϕ =
(
 – hf ′(Ỹ (t)

))–
(

ϕ + hF(t) +
(
g ′(Ỹ (t)

)
ϕ + G(t)

)

× �W +



g ′(Ỹ (t)
)(

g ′(Ỹ (t)
)
ϕ + G(t)

)(
�W 

 – h
))

=
(
 – hf ′(Ȳ)

)–h
(
f (Ȳ) – f (Y)

)
, (.)

where the second equality holds since Ỹ (t) = Ȳ, ϕ = ϕ(t) = , and

G(t) = g
(
Ỹ (t)

)
– g(Y) – g ′(Y)g(Y)

(
W (t) – W (t)

)
= .

According to (.) we construct the following local improved Milstein method:

Y = Ȳ + ϕ = Ȳ +
(
 – hf ′(Ȳ)

)–h
(
f (Ȳ) – f (Y)

)
, (.)

where Ȳ is given by (.). As a result, we propose the following global scheme for (.):

{
Yn+ = Ȳn+ + ( – hf ′(Ȳn+))–h(f (Ȳn+) – f (Yn)),
Ȳn+ = Yn + hf (Yn) + g(Yn)�Wn + 

 g ′(Yn)g(Yn)(�W 
n – h),

(.)

where �Wn = W (tn+) – W (tn).
For the general system (.) with d, m > , the above analysis can be adapted without any

difficulty. Recall that the classical Milstein method in multi-dimensional setting is given
by

Yn+ = Yn + f (Yn)h +
m∑
j=

gj(Yn)�W j
n +

m∑
j=

m∑
j=

Lj gj (Yn)I(j,j), (.)

where for j, j = , , . . . , m we denote

Lj =
d∑

i=

gi,j ∂

∂xi , I(j,j) =
∫ tn+

tn

∫ s

tn

dW j (s) dW j (s)

with xi and gi,j being the ith element of the vector functions x and gj , respectively. Along
the same lines as above, we derive the IM method for general system (.)

{
Yn+ = Ȳn+ + (I – hf ′(Ȳn+))–h(f (Ȳn+) – f (Yn)),
Ȳn+ = Yn + f (Yn)h +

∑m
j= gj(Yn)�W j

n +
∑m

j=
∑m

j= Lj gj (Yn)I(j,j),
(.)
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where I is the d-dimensional identity matrix and f ′ stands for Jacobian matrix of the
vector-valued function f .

3 Mean-square convergence analysis
In this section, we will justify the proposed method by proving its strong convergence or-
der of one in mean-square sense. To this end, we make the following standard assumptions
[].

Assumption . Assume that f (x) and g(x) in (.) satisfy globally Lipschitz condition
and linear growth condition, that is, there exist positive constants L and K such that

() (globally Lipschitz condition) for all x, y ∈R

∣∣f (x) – f (y)
∣∣ ∨ ∣∣g(x) – g(y)

∣∣ ≤ L|x – y|, (.)

() (linear growth condition) for all x ∈R

∣∣f (x)
∣∣ ∨ ∣∣g(x)

∣∣ ≤ K
(
 + |x|). (.)

Here and throughout this work, we use the convention that K represents a generic pos-
itive constant independent of h, whose value may be different for different appearances.
This assumption guarantees the existence and uniqueness of the exact solution X(t) of
equation (.), and, moreover, the solution X(t) satisfies sup≤t≤T E|X(t)| < ∞; see, e.g.,
[] for more details. In addition, we require the following assumption.

Assumption . Assume that the functions f (x) and g(x) in (.) have continuously
bounded derivatives up to the required order for the following analysis, and the coeffi-
cient functions in Itô-Taylor expansions (up to a sufficient order) are globally Lipschitz
and satisfy the linear growth conditions.

Subsequently, we present the fundamental strong convergence theorem [, ], which
was frequently used in the literature to establish the mean-square convergence orders of
various numerical schemes.

Theorem . ([, ]) Suppose that a one-step approximation X̄t,x(t + h) has order of
accuracy p for the mathematical expectation of the deviation and order of accuracy p for
the mean-square deviation. More precisely, for arbitrary  ≤ t ≤ T – h, x ∈R

d the following
inequalities hold:

∣∣E(
Xt,x(t + h) – X̄t,x(t + h)

)∣∣ ≤ K
(
 + |x|) 

 hp , (.)
(
E

∣∣Xt,x(t + h) – X̄t,x(t + h)
∣∣) 

 ≤ K
(
 + |x|) 

 hp . (.)

Also let p ≥ 
 , p ≥ p + 

 . Then for all N ∈N
+ and k = , , . . . , N the following inequality

holds:

(
E

(∣∣X(tk) – Yk
∣∣)) 

 ≤ K
(
 + E|X|

) 
 hp– 

 , (.)

i.e., the method is mean-square convergent with order p = p – 
 .
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The notations used in Theorem . are explained as follows: Yk generated by the one-
step method is an approximation to the exact solution X(tk) of (.) with tk = kh, Xt,x(t + h)
denotes the exact solution of (.) with initial value x at time t and X̄t,x(t + h) denotes a
numerical solution generated by the one-step method with initial value x at time t.

After the above preparations, we start to prove rigorously that the IM method is mean-
square convergent with order one under Assumption . and Assumption .. For simplic-
ity of presentation, we focus on the scalar SDE and the extension to multi-dimensional case
is an easy work and hence omitted here.

Theorem . Assume that all conditions in Assumption . and Assumption . are ful-
filled. Then there exists a step size h < √

L
such that, for any h = T/N ≤ h, N ∈ N

+ the
method (.) applied to SDE (.) is mean-square convergent with order one, i.e., for all
N ∈ N

+ and k = , , . . . , N , the following inequality holds:

(
E

∣∣(X(tk) – Yk
)∣∣) 

 ≤ K
(
 + E|X|

) 
 h. (.)

Proof The proof is divided into two steps.
Step . We shall prove that the inequality (.) holds for the IM method with p = . Let

X̄M
t,x(t + h) denote the one-step Milstein approximation defined by

X̄M
t,x(t + h) = x + f (x)h + g(x)�Wh +




g ′(x)g(x)
(
�W 

h – h
)
, (.)

and let X̄t,x(t + h) denote the one-step version of the proposed scheme (.):

X̄t,x(t + h) = X̄M
t,x(t + h) + h

(
 – hf ′(X̄M

t,x(t + h)
))–(f

(
X̄M

t,x(t + h)
)

– f (x)
)
, (.)

where x ∈ R and �Wh = W (t + h) – W (t). Analogously, let Xt,x(t + h) denote the one-step
exact solution of (.). Therefore, one can get

Xt,x(t + h) – X̄t,x(t + h)

=
∫ t+h

t
f
(
Xt,x(s)

)
ds – hf

(
X̄M

t,x(t + h)
)

+
∫ t+h

t
g
(
Xt,x(s)

)
dW (s) – g(x)�Wh –




g ′(x)g(x)
(
�W 

h – h
)

– h( – hf ′(X̄M
t,x(t + h)

))–f ′(X̄M
t,x(t + h)

)(
f
(
X̄M

t,x(t + h)
)

– f (x)
)
, (.)

and thus

∣∣E(
Xt,x(t + h) – X̄t,x(t + h)

)∣∣
≤

∣∣∣∣E
[∫ t+h

t
f
(
Xt,x(s)

)
ds – hf

(
X̄M

t,x(t + h)
)]∣∣∣∣

+ h∣∣E[(
 – hf ′(X̄M

t,x(t + h)
))–f ′(X̄M

t,x(t + h)
)(

f
(
X̄M

t,x(t + h)
)

– f (x)
)]∣∣

:= H + H. (.)
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Next, we address the estimates of H and H. First of all, H can be split into the following
two parts:

H ≤
∣∣∣∣E

[∫ t+h

t
f
(
Xt,x(s)

)
– f

(
Xt,x(t + h)

)
ds

]∣∣∣∣ + h
∣∣E[

f
(
Xt,x(t + h)

)
– f

(
X̄M

t,x(t + h)
)]∣∣

:= H + H. (.)

To handle the estimate of H, one can use Itô’s formula under conditions imposed on the
coefficient functions in Itô-Taylor expansions (see Assumption .) to get

H ≤ K
(
 + |x|) 

 h. (.)

The estimate of H relies on the mean-square deviation of the classical Milstein one-step
approximation []:

E
∣∣Xt,x(t + h) – X̄M

t,x(t + h)
∣∣ ≤ K

(
 + |x|)h. (.)

Armed with this, one can readily check that

H ≤ K
(
 + |x|) 

 h

 . (.)

Substituting (.) and (.) into (.) yields

H ≤ H + H ≤ K
(
 + |x|) 

 h. (.)

At this point, it remains to estimate H. Note first that

E
∣∣X̄M

t,x(t + h) – x
∣∣ ≤ K

(
 + |x|)h, (.)

where due to (.), Assumption . and Assumption .. To guarantee the denominator
| – hf ′(X̄M

t,x(t + h))| �=  in H, that is, |hf ′(X̄M
t,x(t + h))| �= , one can derive that h ≤ h < √

L
armed with |f ′(x)| ≤ √

L due to Assumption .. Therefore, using Assumption ., (.)
and (.) for h ≤ h < √

L
together shows that

H ≤ K
(
 + |x|) 

 h

 . (.)

Finally, inserting (.) and (.) into (.) implies that

∣∣E(
Xt,x(t + h) – X̄t,x(t + h)

)∣∣ ≤ K
(
 + |x|) 

 h. (.)

Therefore, the inequality (.) with p =  is satisfied for the IM method.
Step . We prove that the inequality (.) with p = 

 holds for the IM method. To this
aim, we divide (.) into two parts as follows:

E
∣∣Xt,x(t + h) – X̄t,x(t + h)

∣∣

≤ E
∣∣Xt,x(t + h) – X̄M

t,x(t + h)
∣∣ + E

∣∣X̄M
t,x(t + h) – X̄t,x(t + h)

∣∣. (.)
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For the second part on the right-hand side of the (.), due to (.), Assumption ., (.)
and (.), for h ≤ h < √

L
one can derive that

E
∣∣X̄M

t,x(t + h) – X̄t,x(t + h)
∣∣ ≤ KhE

∣∣X̄M
t,x(t + h) – x

∣∣ ≤ K
(
 + |x|)h. (.)

This together with (.) enables us to arrive at

E
∣∣Xt,x(t + h) – X̄t,x(t + h)

∣∣ ≤ K
(
 + |x|)h. (.)

Thus the inequality (.) with p = 
 holds for the IM method.

Now an application of Theorem . with p =  and p = 
 shows that the scheme is

mean-square convergent with order p – 
 = . �

In the same manner, it is not hard to establish the mean-square convergence of order
one for IM method (.) applied to general system (.).

4 Mean-square stability
For SDEs, two very natural, but distinct stability concepts are MS-stability and asymptoti-
cal stability. MS-stability is applied to measure the stability of moments, while the asymp-
totical stability is to measure the overall behavior of sample function. In this section, we
focus on the MS-stability of the IM method applied to a scalar linear test equation.

Consider the scalar linear test equation

{
dX(t) = λX(t) dt + μX(t) dW (t),  < t ≤ T ,
X() = X,

(.)

where λ,μ ∈ C are constants and X �=  with probability . The exact solution of (.) is
given by

X(t) = X exp

((
λ –



μ

)
t + μW (t)

)
. (.)

It is a classical result [] that the zero solution of (.) is MS-stable if and only if

 Re(λ) + |μ| < . (.)

Suppose that the parameters λ and μ are chosen so that the SDE (.) is stable in the
mean-square sense. A natural question is for what range of h the numerical solution is
stable in an analogous sense. We apply a one-step numerical scheme to equation (.) and
represent the resulting stochastic difference equation as

Yn+ = R(h,λ,μ, N̂n)Yn, (.)

where N̂n are independent standard Gaussian random variables N̂n = �Wn√
h

∼ N(, ).
Saito and Mitsui [] introduced the following definition of MS-stability for a numeri-
cal scheme.
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Definition . For fixed h, λ, μ, a numerical method is said to be MS-stable if

R(h,λ,μ) = E
(∣∣R(h,λ,μ, N̂n)

∣∣) < , (.)

where R(h,λ,μ) is called MS-stability function of the numerical method.

Theorem . For fixed h, λ, μ, the IM method is MS-stable if

 Re(λ) + |μ| +



h|μ| – h|λ| < . (.)

Proof Applying the IM method (.) to (.) results in

{
Yn+ = Ȳn+ + λh

–λh (Ȳn+ – Yn),
Ȳn+ = Yn + λhYn + μYn�Wn + 

μYn(�W 
n – h),

(.)

where N̂n = �Wn√
h

∼ N(, ) and  – λh �= . Substituting Ȳn+ into Yn+ in (.) yields

Yn+ =


 – λh

(
Yn + λhYn + μ�WnYn +



μ(�W 

n – h
)
Yn

)
–

λh
 – λh

Yn

=
 – 

μh + μ
√

hN̂n + 
μhN̂

n

 – λh
Yn. (.)

Therefore, the function R(h,λ,μ, N̂n) of the IM method is given by

R(h,λ,μ, N̂n) =
 – 

μh + μ
√

hN̂n + 
μhN̂

n

 – λh
,

and thus

∣∣R(h,λ,μ, N̂n)
∣∣

= R(h,λ,μ, N̂n) · R(h,λ,μ, N̂n)

=
 – 

μh + μ
√

hN̂n + 
μhN̂

n

 – λh
·  – 

 μ̄h + μ̄
√

hN̂n + 
 μ̄hN̂

n

 – λ̄h

=
 – h(Reμ) + h(Imμ) + 

 h|μ| + (
√

h Reμ – h
√

h|μ| Reμ)N̂n

 – h Reλ + h|λ|

+
(h(Reμ) – h(Imμ) + h|μ| – 

 h|μ|)N̂
n

 – h Reλ + h|λ|

+
h
√

h|μ| ReμN̂
n + 

 h|μ|N̂
n

 – h Reλ + h|λ| . (.)

Applying E(N̂n) = E(N̂
n ) = , E(N̂

n ) = , and E(N̂
n ) =  yields

R(h,λ,μ) = E
(∣∣R(h,λ,μ, N̂n)

∣∣) =
 + h|μ| + 

 h|μ|
 – h Reλ + h|λ| .
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This together with Definition . implies that the method is MS-stable if

 Reλ + |μ| +



h|μ| – h|λ| < . �

It turns out that the proposed scheme is not mean-square A-stable in the sense that its
mean-square stability domain does not contain the stability domain of the exact solution
(compare (.) and (.)). Thus, the stability condition of Theorem . is not very conve-
nient in practical applications. As immediate consequences of Theorem ., the following
corollaries provide convenient stability conditions.

Corollary . Let λ,μ ∈ R such that λ +
√

|μ| < . Then the test problem (.) is MS-
stable and the proposed method is MS-stable for any step size h > .

Proof The desired assertion follows from (.) and (.) directly. �

Based on the above observations, we believe that the new scheme is well suited for stiff
mean-square stable problems with moderate (small) stochastic noise intensity or additive
noise, where the drift coefficient plays an essential role in the dynamics.

Corollary . Suppose that  Reλ + |μ| <  and |Reλ| ≤ | Imλ|, then the IM method is
MS-stable for any step size h > .

Proof Applying the condition  Reλ + |μ| <  yields

|μ| < (Reλ). (.)

Using (.) and the condition |Reλ| ≤ | Imλ|, one can obtain

 Reλ + |μ| + 
 h|μ| – h|λ| <  Reλ + |μ| + h(Reλ) – h|λ|

=  Reλ + |μ| + h
(
(Reλ) – (Imλ)) < . (.)

By Theorem ., the IM scheme is MS-stable. �

Remark . For fixed h, λ, μ, it is well known that [] the usual explicit Milstein method
is MS-stable if

 Reλ + |μ| +



h|μ| + h|λ| < . (.)

Clearly, (.) implies (.). In other words, the MS-stable region of the IM method con-
tains the domain of the Milstein method. From Figure , one can easily observe that the
stability domain of the proposed scheme is much larger than that of the explicit Milstein
method.

5 Numerical tests
In this section, three numerical experiments are reported to illustrate convergence prop-
erties and MS-stability properties of the IM method. In the following numerical experi-
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Figure 1 MS-stability regions of the IM and
Milstein methods.

Figure 2 Mean-square convergence order of the
IM method.

ments, to approximate the mean-square error at time T = Nh, given by

estrong
h :=

√
E

∣∣X(T) – YN
∣∣,

we use averages over , paths, i.e., estrong
h ≈

√


,
∑,

i= |Y (i)
N – X(i)(tN )|, where Y (i)

N
denotes the numerical approximation to X(i)(tN ) at the step point tN in the ith simulation
of all , paths.

Example  Consider the scalar test equation

{
dX(t) = λX(t) dt + μX(t) dW (t),  < t ≤ T ,
X() = ,

(.)

with two groups of parameters as follows:
• parameter I: λ = , μ = ,
• parameter II: λ = –, μ = .
As a test of mean-square convergence, we apply the IM method to equation (.) on

the interval [, ] with the parameter I. In order to visualize the strong convergence or-
der of the IM method, the resulting mean-square errors against h on a log-log scale is
plotted in Figure . This produces the blue asterisks connected with solid lines. For refer-
ence, a dashed red line of slope one is also added. There one can see that the slopes of the
two curves appear to match well. As expected, the IM method gives errors that decreases
proportional to h.
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Table 1 Mean-square errors for (5.1) with λ = 2, μ = 1

h h = 2–5 h = 2–6 h = 2–7 h = 2–8 h = 2–9

IM 0.8286 0.3975 0.1944 0.0979 0.0485
Milstein 1.4909 0.7991 0.4136 0.2082 0.1053

Table 2 Mean-square errors for (5.1), λ = –20, μ = 5

h 2–1 2–2 2–3 2–4

IM 0.71000 0.3733 0.0669 0.0004
Milstein 1.738e+002 1.709e+004 1.033e+004 3.347e+002

Figure 3 The mean-square errors of (5.1)
(λ = –20, μ = 5) of the IM method with various
time step sizes h.

Figure 4 MS-stability tests for the IM and
Milstein methods.

In Table , we list the mean-square errors of the IM and Milstein methods for equa-
tion (.) with the parameter I. Table  shows that the computational accuracy of the IM
method is, to some degree, improved even for the non-stiff problem. Table  highlights
that, for the stiff problem, the Milstein method works unreliably and has large errors for
not too small step sizes, whereas the IM method works very well. Figure  depicts the
mean-square error behavior of the IM method for equation (.) with the parameter II. It
is noted that the vertical axis in Figure  is logarithmically scaled.

To test the MS-stability of the IM method, we numerically solve (.) over [, ] with
the parameter II. The parameter II satisfies (.) and hence the problem is MS-stable. We
apply the IM and Milstein methods over , discrete Brownian paths for three different
step sizes h = , 

 , 
 . Figure  plots the sample average of Y 

j against tj for the IM method
and Milstein method. Note that the vertical axis is logarithmically scaled. In the upper
picture, curves decay toward to zero for all h = , 

 , 
 , which demonstrates that the IM
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Table 3 Mean-square errors of the numerical values for (5.2) and (5.3), u = 80, v = 1

h h = 2–3 h = 2–4 h = 2–5 h = 2–6

IM 0.1232 0.0616 0.0318 0.0164
Milstein 8.497e+009 9.307e+014 9.481e+018 1.141e+011

scheme is MS-stable for these three step sizes. On the contrary, the Milstein method for
h = , 

 , 
 gives unstable numerical solutions as shown in the lower picture in Figure .

In order to offer further insight into the above stability results, we restrict ourselves to
λ,μ ∈R in (.) and plot MS-stability regions of the IM and Milstein methods in Figure .
As shown there, the MS-stability region of the IM method is much larger than that of the
Milstein method.

Example  Consider a -dimensional stiff linear SDE system

dX(t) = UX(t) dt + VX(t) dW (t), X() = X, t ∈ [, ], (.)

where U and V are matrices defined by

U =

(
–u u
u –u

)
, V =

(
v 
 v

)
. (.)

The exact solution of this equation is given by []

X(t) = P

(
exp(ρ+(t)) 

 exp(ρ–(t))

)
P–X, P =

√


(
 
 –

)
,

where ρ±(t) = (–u – 
 v ± u)t + vW (t), P– = P, and we set X = (, )T . It is noticed that

the Lyapunov exponents of (.) are explicitly given by L = – v

 , L = – v

 – u. Therefore,
the stiffness is from its deterministic and stochastic components (u and v, respectively)
[]. We choose the parameters in the numerical experiment as u = , v = . Under this
condition, the Lyapunov exponents are L = –., L = –.. It is clear that the system
(.) is stiff for the great difference between the Lyapunov exponents L and L []. The
approximation errors by applying the IM and Milstein methods to solve (.) are shown in
Table . Clearly, the numerical results reported in Table  are in favor of the IM method,
which has higher accuracy and advantage of using larger step sizes.

Example  Consider the following nonlinear problem:

{
dX(t) = –λX(t)( – X(t)) dt – μX(t)( – X(t)) dW (t),  < t ≤ ,
X() = X,

(.)

which is a normalized version of a problem dynamics model (see []). A linearization
about the stationary solution X(t) ≡  leads to the linear test problem (.). In the ex-
periment, we choose parameters λ < –, μ = –

√
–( + λ), X() = .. We notice that in-

creasing the value |λ| will increase the stiffness both in drift and in diffusion term. At the
same time, the choice ensures that λ + μ

 = – < , which is required by (.). We choose
λ = – for non-stiff case and λ = – for stiff case with stiffness in both drift and diffusion
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Table 4 Mean-square errors of the numerical solutions for (5.4) with λ = –2

h h = 2–3 h = 2–4 h = 2–5 h = 2–6

IM 0.0073 0.0038 0.0020 0.0012
Milstein 0.0100 0.0048 0.0025 0.0014

Table 5 Relative errors of the numerical solutions for (5.4) with λ = –2

h h = 2–3 h = 2–4 h = 2–5 h = 2–6

IM 0.0037 0.0019 9.708e–004 5.567e–004
Milstein 0.0057 0.0027 0.0014 7.187e–004

Table 6 Mean-square errors of the numerical solutions for (5.4) with λ = –15

h h = 2–6 h = 2–7 h = 2–8 h = 2–9

IM 0.0117 0.0017 7.113e–004 7.424e–004
Milstein 0.0183 0.0126 0.0068 0.0016

Table 7 Relative errors of the numerical solutions for (5.4) with λ = –15

h h = 2–6 h = 2–7 h = 2–8 h = 2–9

IM 0.0056 0.0011 8.272e–004 0.0012
Milstein 0.1039 0.0148 0.0066 0.0024

coefficients. Because the analytic form of the exact solution X(t) of (.) is not available,
we solve (.) by Euler-Maruyama (EM) method with a sufficiently small mesh size (here
h = –) and identify their outcomes as the ‘exact solution’ X(t) for the error-comparison.
In Table  and Table , we give the mean-square errors and the relative errors of the nu-
merical solution for (.) with λ = –, respectively. Analogously, the approximation for
(.) with λ = – are listed in Table  and Table . Numerical results in Tables , , ,
and  indicate that, even for a nonlinear equation, the computational accuracy of the IM
method is improved for both a non-stiff problem and a stiff problem.

6 Conclusions
This work has proposed the IM method for solving stiff stochastic differential equations.
The method is derived by adding a correction term to the classical Milstein method and
is easy to implement. Further, the good MS-stability and strong convergence order of one
are obtained for the scheme. It turns out that the IM method has a larger MS-stability
region than the classical Milstein method. Numerical results also confirm that the IM
method is computationally effective and superior to the Milstein method for solving stiff
SDE systems.

In this work, we always assume that the drift and diffusion functions satisfy globally
Lipschitz conditions (cf. (.)), which excludes many important model equations in ap-
plications. Therefore, a future direction is to establish strong convergence rate of the IM
scheme for SDEs under a nonglobal Lipschitz condition as studied in [].
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