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Abstract
In the present paper, by using the theory of semigroup operators and the Schauder
fixed point theorem, we define the mild solution of a fractional partial differential
equation and obtain the existence and uniqueness of the mild solution. Then we
study the approximate controllability of fractional partial differential equation and
give an example to illustrate the theory.
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1 Introduction
Fractional partial differential systems have recently been proved to be valuable tools in the
modeling of many phenomena in various fields of science and engineering, such as diffu-
sion process, electrical science, electrochemistry, viscoelasticity, control science, electro
magnetic theory, etc. (see [–]). For example, fractional diffusion equations are abstract
partial differential equations that involve fractional derivatives in space and time. They
are more accurate to model anomalous diffusion, where a plume of particles spreads in a
different manner from what the classical diffusion equation predicts. Therefore, it is very
necessary for us to consider the anomalous diffusion equation which is obtained from the
standard diffusion equation by replacing the integer derivative with a fractional derivative
of order q ∈ (, ).

As is well known there has been a great deal of interest in the solution of fractional dif-
ferential equations in the analytic and numerical sense [–]. In order to study the frac-
tional systems in the infinite dimensional space, the first important step is to introduce
the concept of mild solutions. Some pioneering work has been reported by El-Borai []
and Zhou and Jiao []. On the basis of the well posedness of mild solutions, controllabil-
ity problems for various types of nonlinear fractional dynamical systems have also been
considered in many publications (see [–]). The main tool used in these papers is to
convert the controllability problem into a fixed point problem with the assumption that
the controllability operator has an induced inverse on a quotient space. But Hernández
et al. [], Sukavanam and Tomar [] pointed out that some papers on the controllabil-
ity of abstract control systems contain a similar technical error when the compactness of
semigroup and other hypotheses are satisfied, more precisely, in this case the applications
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of controllability results are restricted to a finite dimensional space. Thus, the concept
of exact controllability is too strong in infinite dimensional spaces and the approximate
controllability is more appropriate.

The approximate controllability of the systems with integer order has been proved in
[, ] among others. However, there are only few papers concerned with the approxi-
mate controllability of a fractional partial differential equation system. Russell and Zhang
[] discussed the controllability and stabilizability of the following third-order linear dis-
persion equation of (.) on a periodic domain. In [], George et al. proved the exact
controllability of

⎧
⎪⎨

⎪⎩

∂w
∂t (x, t) + ∂w

∂x (x, t) = (Gu)(x, t) + f (t, w(x, t)), t ∈ [, b], x ∈ [, π ],
∂k w
∂xk (, t) = ∂k w

∂xk (π , t), k = , , ,
w(x, ) = ,

(.)

on a periodic domain by using two standard types of nonlinearities and the approach of
integral contractors. In [], Sakthivel et al. proved the approximate controllability of (.)
with the initial and periodic boundary condition by the assumption that the C semigroup
T(t) is a compact and nonlinear function and is uniformly bounded. All these conclu-
sions have provided the better theory analysis for the mild solution of the (.). In order
to describe the physical process more precisely, we use the theory of semigroups of op-
erators to prove the approximate controllability of the fractional diffusion equation. The
fractional diffusion differential equation in the present paper generalizes the third-order
diffusion equation (.) appearing in []. Compared to [], we use the different method
and discuss the unique solution of fractional diffusion equations with the weaker condi-
tions. So the conclusion in the present paper is a continuation of the conclusions in []
and [].

2 Preliminaries
We consider the following fractional partial differential equation:

{
cDq

t w(x, t) + Aw(x, t) = Gu(x, t) + f (t, w(x, t)), t ∈ [, b], x ∈ [, π ],
w(x, ) = ,

(.)

where cDq
t is the Caputo fractional derivative of order  < q < . The state function w(·, t)

takes its value in the space X = L(, π ) with the norm ‖ · ‖ and the control function
u(·, t) takes its value in the space L(, π ). Define an operator –A to be the infinitesimal
generator of the analytic semigroup T(t) of operators on X, G is a bounded linear operator
from X to X.

It is suitable to rewrite (.) in the equivalent integral equation

⎧
⎪⎨

⎪⎩

w(x, t) = 
�(q)

∫ t
 (t – s)q–(–Aw(x, s) + Gu(x, s) + f (s, w(x, s))) ds,

t ∈ [, b], x ∈ [, π ],
w(x, ) = ,

(.)

provided that the integral in (.) exists.
Before giving the definition of mild solution of (.), we first prove the following lemma.
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Lemma . If (.) holds, then we have

⎧
⎪⎨

⎪⎩

w(x, t) = q
∫ t


∫ ∞

 (t – s)q–θ�q(θ )T(tqθ )(Gu(x, s) + f (s, w(x, s))) dθ ds,
t ∈ [, b], x ∈ [, π ],

w(x, ) = .
(.)

Proof Let λ > . Applying the Laplace transforms

W (λ, x) =
∫ ∞


e–λsw(x, s) ds,

U(λ, x) =
∫ ∞


e–λsu(x, s) ds,

F(λ, x) =
∫ ∞


e–λsf

(
x, w(x, s)

)
ds

to (.), we have

W (λ, x) = –
A
λq W (λ, x) +


λq GU(λ, x) +


λq F(λ, x),

λqW (λ, x) = –AW (λ, x) + GU(λ, x) + F(λ, x),
(
λqI + A

)
W (λ, x) = GU(λ, x) + F(λ, x),

W (λ, x) =
(
λqI + A

)–[GU(λ, x) + F(λ, x)
]

=
∫ ∞


e–λqsT(s)

(
GU(λ, x) + F(λ, x)

)
ds.

Since
∫ ∞

 e–λqsT(s) ds = 
λqI+A , we may consider the one-side stable probability density [],

�q(θ ) =

π

∞∑

n=

(–)n–ϑ–qn– �(nq + )
n!

sin(nπq), θ ∈ (,∞),

whose Laplace transform is given by

∫ ∞


e–λθ�q(θ ) dθ = e–λq

, q ∈ (, ). (.)

Using (.), we get

∫ ∞


e–λqsT(s)GU(λ, x) ds

=
∫ ∞



∫ ∞


e–λqtT(t)e–λsGu(x, s) ds dt

=
∫ ∞



∫ ∞


qtq–e(–λt)q

T
(
tq)e–λsGu(x, s) ds dt

=
∫ ∞



∫ ∞


qtq–

(∫ ∞


e–λtθ�q(θ ) dθ

)

T
(
tq)e–λsGu(x, s) ds dt

=
∫ ∞



∫ ∞



∫ ∞



[
qtq–(e–λtθ�q(θ )

)
T

(
tq)e–λsGu(x, s)

]
dθ ds dt
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=
∫ ∞



∫ ∞



∫ ∞



[

qe–λ(t+s)�q

(
t
θ

)
tq–

θq T
(

tq

θq

)

Gu(x, s)
]

dθ ds dt

=
∫ ∞



∫ ∞



∫ ∞

s

[

q�q

(
t – s
θ

)

e–λtT
(

(t – s)q

θq

)
(t – s)q

θq Gu(x, s)
]

dt dθ ds

=
∫ ∞



∫ ∞



∫ t



[

q�q(θ )e–λtT
(

(t – s)q

θq

)
(t – s)q

θq Gu(x, s)
]

ds dt dθ

=
∫ ∞


e–λt

[

q
∫ t



∫ ∞



(

�q(θ )T
(

(t – s)q

θq

)
(t – s)q

θq Gu(x, s)
)

dθ ds
]

dt,
∫ ∞


e–λqsT(s)F(λ, x) ds

=
∫ ∞


e–λt

[

q
∫ t



∫ ∞



(

�q(θ )T
(

(t – s)q

θq

)
(t – s)q

θq f
(
s, w(x, s)

)
)

dθ ds
]

dt.

Then we have

U(x,λ)

=
∫ ∞


e–λt

[

q
∫ t



∫ ∞


�q(θ )T

(
(t – s)q

θq

)
(t – s)q

θq

(
Gu(x, s) + f

(
s, w(x, s)

))
dθ ds

]

dt.

Now we can invert the last Laplace transform to get

w(x, t) = q
∫ t



∫ ∞


θ (t – s)q–�q(θ )T

(
(t – s)qθ

)(
Gu(x, s) + f

(
s, w(x, s)

))
dθ ds,

where �q(θ ) = 
q θ

–– 
q �q(θ– 

q ) is the probability density function defined on (,∞). This
completes the proof. �

For any x ∈ X, define operators {Sq(t)}t≥ and {Tq(t)}t≥ by

Sq(t)x =
∫ ∞


�q(θ )T

(
tqθ

)
x dθ ,

Tq(t)x = q
∫ ∞


θ�q(θ )T

(
tqθ

)
x dθ .

Due to Lemma ., we give the following definition of the mild solution of (.).

Definition . By the mild solution of fractional partial differential equation (.), we
mean that the function w(x, t) ∈ L([, b], L[, π ]) satisfies

w(x, t) =
∫ t


(t – s)q–Tq(t – s)

(
Gu(x, s) + f

(
s, w(x, s)

))
ds.

Lemma . ([]) For any fixed t ≥ , Sq(t) and Tq(t) are bounded linear operators. Hence
∥
∥Sq(t)x

∥
∥ ≤ M‖x‖

and
∥
∥Tq(t)x

∥
∥ ≤ Mq

�( + q)
‖x‖

for all x ∈ X, where M is a constant such that ‖T(t)‖ ≤ M for all t ∈ [, b].
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3 Existence and uniqueness of mild solution
In this section we prove the existence and uniqueness of the mild solution of (.). To
prove the result let us assume the following conditions:

(H) For each t ∈ [, b], f (t, ·) is continuous and f (t, x) satisfy the generalized Lipschitz
condition, i.e. there exists a function H(t) ∈ L


l ([, b]; X),  < l < q, such that

∥
∥f (t, x) – f (t, y)

∥
∥ ≤ H(t)‖x – y‖.

(H) We have

Mq
�( + q)

‖H‖ 
l

(
 – l
q – l

)–l

bq–l < ,

where ‖H‖ 
l

= (
∫ b

 (H(s))

l ds)l .

Theorem . If the conditions (H)-(H) hold, the system (.) admits a unique mild solu-
tion in X for each control function u(x, t) ∈ L([, b], L[, π ]).

Proof Define the operator N : X → X by

Nw(x, t) =
∫ t


(t – s)q–Tq(t – s)

(
Gu(x, s) + f

(
s, w(x, s)

))
ds.

Let

Br =
{

w(x, t) ∈ L([, b], L(, π )
)
; w(x, ) = ,

∥
∥w(x, t)

∥
∥ ≤ r

}

which is a bounded and closed subset of L([, b], L[, π ]), and

Hg = max
≤t≤b

∥
∥f (t, )

∥
∥.

For any w(x, t) ∈ Br , we have

∥
∥Nw(x, t)

∥
∥

=
∥
∥
∥
∥

∫ t


(t – s)q–Tq(t – s)

(
Gu(x, s) + f (s, w)

)
ds

∥
∥
∥
∥

≤ Mq
�( + q)

∥
∥
∥
∥

∫ t


(t – s)q–(Gu(x, s) + f (s, w)

)
ds

∥
∥
∥
∥

≤ Mq
�( + q)

∫ t


(t – s)q–∥∥

(
Gu(x, s) + f (s, w)

)∥
∥ds

≤ Mq
�( + q)

‖G‖
∫ t


(t – s)q–‖u‖ds

+
Mq

�( + q)

∫ t


(t – s)q–∥∥f (s, w) – f (s, ) + f (s, )

∥
∥ds

≤ Mq
�( + q)

‖G‖
√

bq–

q – 
‖u‖L
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+
Mq

�( + q)
‖w‖L‖H‖ 

l

(
 – l
q – l

)–l

bq–l +
bqMq

�( + q)
Hg

≤ Mq
�( + q)

‖G‖
√

bq–

q – 
‖u‖L

+
Mq

�( + q)
‖H‖ 

l

(
 – l
q – l

)–l

bq–lr +
bqMq

�( + q)
Hg .

Now let ‖Nw(x, t)‖ < r, then

Mq
�( + q)

‖G‖
√

bq–

q – 
‖u‖L +

Mq
�( + q)

‖H‖ 
l

(
 – l
q – l

)–l

bq–lr +
bqMq

�( + q)
Hg < r.

Since we have the condition (H), we can obtain

Mq
�( + q)

‖H‖ 
l

(
 – l
q – l

)–l

bq–l < .

So we obtain this result: N maps the ball Br of radius r into itself.
Next we show that N is a contraction on Br . To this aim, let us take w, w ∈ Br , we get

∥
∥Nw(t) – Nw(t)

∥
∥

≤
∥
∥
∥
∥

∫ t


(t – s)q–Tq(t – s)

(
f (s, w) – f (s, w)

)
ds

∥
∥
∥
∥

≤
∫ t


(t – s)q–Tq(t – s)H(s)


l ‖w – w‖ds

≤ Mq
�( + q)

‖H‖ 
l

(
 – l
q – l

)–l

bq–l‖w – w‖

< ‖w – w‖,

then N has a unique fixed point in Br . According to the extension theorem of a solution,
Theorem . is proved. �

4 Approximate controllability of system (2.1)
Let w(x, t) be the state value of system (.) at time t and space X corresponding to the con-
trol function u(x, t). The system (.) is said be approximately controllable on the interval
[, b], if for any given w ∈ L(, π ) the solution w(·, t) of (.) satisfies ‖w(·, b) – w‖ < ε.

We introduce two relevant operators and the basic assumption on these operators

�b
 =

∫ b


(b – s)q–Tq(b – s)GG∗T∗

q (b – s) ds

and

R
(
λ,�b


)

=
(
λI + �b


)–,

where G∗ is the adjoint of G and T∗
q (t) is the adjoint of Tq(t). It is straightforward that the

operator �b
 is a linear bounded operator.
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Lemma . ([]) Let Z be a separable reflexive Banach space and let Z∗ stands for its
dual space. Assume that � : Z∗ → Z is symmetric. Then the following two conditions are
equivalent:

(i) � : Z∗ → Z is positive, that is, (z∗,�z∗) >  for all nonzero z∗ ∈ Z∗.
(ii) For all h ∈ Z, zλ(h) = λ(λI + �J)–(h) strongly converges to zero as λ → +. Here J is

the duality mapping of Z into Z∗.

Lemma . ([]) The linear fractional control system (.) is approximately controllable
on [, b] if and only if λR(λ,�b

) →  as λ → + in the strong operator topology.

Before proving the approximate controllability of (.), we impose the following condi-
tions on the data of the problem:

(H) T(t) is a compact analytic semigroup in X .
(H) λR(λ,�b

) →  as λ → + in the strong operator topology.

In this section, we will prove that the system (.) is approximately controllable, if for
any λ >  there exists a continuous function w(x, t) ∈ X such that

w(x, t) =
∫ t


(t – s)q–Tq(t – s)

(
Gu(x, s) + f

(
s, w(x, s)

))
ds, (.)

where

u(x, t) = G∗T∗
q (b – t)R

(
λ,�b


)
(

w –
∫ b


(b – s)q–Tq(b – s)f

(
s, w(x, s)

)
ds

)

. (.)

Theorem . Assume that the conditions (H)-(H) are satisfied and f (t, w) is bounded
in X. Then the system (.) is approximate controllable.

Proof Let wλ(x, t) be a fixed point of N in Br . Any fixed point of N is a mild solution of
(.) under the control uλ(x, t) = G∗T∗

q (b – t)R(λ,�b
)p(wλ) and satisfies

wλ(x, b) = w – λR
(
λ,�b


)
p(wλ),

where p(wλ(x, b)) = w –
∫ b

 (b – s)q–Tq(b – s)f (s, w(x, s)) ds.
In fact, we know

wλ(x, b) =
∫ b


(b – s)q–Tq(b – s)

(
Gu(x, s) + f

(
s, w(x, s)

))
ds

=
∫ b


(b – s)q–Tq(b – s)G

(

G∗T∗
q (b – s)R

(
λ,�b


)

×
(

w –
∫ b


(b – s)q–Tq(b – s)f

(
s, w(x, s)

)
ds

))

ds

+
∫ b


(b – s)q–Tq(b – s)f

(
s, w(x, s)

)
ds

= �b
R

(
λ,�b


)
w – �b

R
(
λ,�b


)
∫ b


(b – s)q–Tq(b – s)f

(
s, w(x, s)

)
ds
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+
∫ b


(b – s)q–Tq(b – s)f

(
s, w(x, s)

)
ds

= w – λR
(
λ,�b


)
w + λR

(
λ,�b


)
∫ b


(b – s)q–Tq(b – s)f

(
s, w(x, s)

)
ds

= w – λR
(
λ,�b


)
(

w –
∫ b


(b – s)q–Tq(b – s)f

(
s, w(x, s)

)
ds

)

= w – λR
(
λ,�b


)
p(wλ).

Since f (t, w) is bounded in L([, b], L[, π ]), there exists a subsequence, denoted by
f (t, w), that weakly converges to, say, f (s) in L([, b], L[, π ]). Define v = w –

∫ b
 (b –

s)q–Tq(b – s)f (s) ds. It follows that

∥
∥P

(
wλ(x, b)

)
– v

∥
∥

=
∥
∥
∥
∥

∫ b


(b – s)q–Tq(b – s)f

(
s, w(x, s)

)
ds –

∫ b


(b – s)q–Tq(b – s)f (s) ds

∥
∥
∥
∥

≤
∫ b


(b – s)q–Tq(b – s)

∥
∥f

(
s, w(x, s)

)
– f (s)

∥
∥ds.

Now, by the compactness of an operator l(·) → ∫ ·
(· – s)q–Tq(· – s)l(s) ds : L([, b], L[,

π ]) → C([, b], L[, π ]), the right-hand side of the above inequality tends to zero as
λ → +.

Then we obtain

∥
∥wλ(x, b) – w

∥
∥

=
∥
∥w – λR

(
λ,�b


)
p(wλ) – w

∥
∥

=
∥
∥λR

(
λ,�b


)
p(wλ)

∥
∥

≤ ∥
∥λR

(
λ,�b


)(

p(wλ) – v
)∥
∥ +

∥
∥λR

(
λ,�b


)
v
∥
∥

→ ,

as λ → +. So the approximate controllability of (.) is proved. �

5 Example
As an application of Theorem ., we consider the following system:

⎧
⎪⎪⎨

⎪⎪⎩

∂



∂t



w(x, t) + ∂

∂x w(x, t) = Gw(x, t) + f (t, w(x, t)),

w(x, ) = ,
w(, t) = w(π , t) = .

(.)

To write system (.) in the form of (.), let X = L(, π ) and A be defined by Aw = w′′

with domain D(A) = {w(·) ∈ X : w, w′ absolutely continuous, w′′ ∈ X, w() = w(π ) = }.
Then A generates a uniformly bounded analytic semigroup which satisfies the condi-

tion (H). Furthermore, A has a discrete spectrum, the eigenvalues are –n, n ∈ N , with
the corresponding normalized eigenvectors wn(x) = (/π )/ sin(nx). Then the following
properties hold:
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(i) If w ∈ D(A), then

Aw =
∞∑

n=

n〈w, wn〉wn.

(ii) For each w ∈ X ,

A– 
 w =

∞∑

n=


n

〈w, wn〉wn.

Moreover, ‖A– 
 ‖ = .

(iii) The operator A 
 is given by

A

 w =

∞∑

n=

n〈w, wn〉wn

on the space D(A 
 ) = {w(·) ∈ X, A 

 w ∈ X}.
First of all, if the conditions (H) and (H) are satisfied, the system (.) admits a unique

mild solution in X for each control function u(x, t) from Theorem .. Second, if the con-
ditions (H)-(H) are satisfied and f (t, w) is bounded in X, then the approximate control-
lability of the system (.) follows from Theorem ..

6 Future outlook
The results developed in the present paper can be extended to the case of stochas-
tic fractional partial differential equations with time-delay. We will pay attention to the
well posedness and approximate controllability of stochastic fractional partial differential
equation with time-delay in the future.
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