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Abstract

We study linear g-difference-differential equations under the action of a perturbation
parameter €. This work deals with a g-analog of the research made in (Lastra and
Malek in Adv. Differ. Equ. 2015:200, 2015) giving rise to a generalization of the work
(Malek in Funkc. Ekvacioj, 2015, to appear). This generalization is related to the nature
of the forcing term which suggests the use of a g-analog of an acceleration procedure.

The proof leans on a g-analog of the so-called Ramis-Sibuya theorem which entails
two distinct g-Gevrey orders. The work concludes with an application of the main
result when the forcing term solves a related problem.

MSC: 35C10;35C20

Keywords: asymptotic expansion; Borel-Laplace transform; Fourier transform; formal
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1 Introduction
The present work deals with the study of the solution u(t,z,€) of a family of inhomoge-
neous linear g-difference-differential equations of the form

ap

QB)ogult 2 €) = ()0, Rp(@)ult, 2, €)

D-1
+ Z(Z e et o;’f ez, €)Re(3,)ult, z, e)) +0.f(t,z,€). )

£=1 “rely

Here, D, k,, dp are positive integers with D > 3, g is a real number with g > 1 and for every
1 <€ <D-1,1, is a finite nonempty subset of nonnegative integers whilst §, is a positive
integer. Foreach1 <¢ <D -1and A € I;, we take d; y > 1 and A, > 0.

The elements Q and Ry, for 1 < £ < D, are polynomials with deg(Q) > deg(Rp) > deg(R,)
for all1 <€ <D —1. The details on the properties satisfied by the previous constants and
polynomials involved in the equation under study are carefully described at the beginning
of Section 5. We also give an example of a problem under study in the present work at the
end of Section 5.

The variable € acts as a perturbation parameter in the problem. We describe an asymp-
totic meaning of the solutions and provide the existence of a formal solution to the main
problem with respect to this parameter (see Theorem 3).
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For every y € R, the operator o, appearing in (1) stands for the generalization of the
dilation operator on the ¢ variable, with y = 1. More precisely, for any function g given in
aset H, o, is defined by

o) (g(®) =g(q"t),

whenever the right-hand side makes sense, i.e., if "t € H for all t € H. We will also con-
sider the natural extension of this definition to the formal framework in the following way:
given a formal power series f(z) = 3 102" with coefficients in a set which is closed under
multiplication by real numbers (in our concerns, this set would turn out to be a complex
Banach space), the formal power series o f is given by Yo d” fiz"

For every 1 <¢ <D -1 and A € I, the function ¢, ¢(z,€) is constructed as the inverse
Fourier transform with respect to z of a continuous function (m, €) — C; ;(m, €) defined
in R x B, where B is a neighborhood of the origin. As a matter of fact, ¢, is a bounded
holomorphic function defined in a horizontal strip in the variable z, say Hg (see (20)),
times B.

The forcing term f (¢, z, €) turns out to be a holomorphic function defined in 7 x Hg x &,
where 7 and £ stand for finite sector with vertex at the origin. In the sequel, we provide
more details on this function which is crucial in order to understand the interest of this
work.

We choose 1 < k; < k; and put

1 1 1

K:kl kz'

The construction of (¢, z, €) regards as follows. Let m +— F,(m, €) be a continuous func-
tion for m € R and holomorphic with respect to € € B for every n > 0. We assume the
formal power series F(T,m,¢€) = ano F,(m,e)T" is such that its formal g-Borel trans-
form of order k; (see Definition 4)

F, "
Vi, (T, m,€) = Bai (F(T, z,e))(t) = Z —— T
n=>0 (ql/kl) 2

is convergent in a neighborhood of the origin, D;, with respect to t variable. Moreover,
we assume there exists a finite family of directions (9,)0<,<c_1 such that v, extends holo-
morphically to an infinite sector U,, with vertex at 0 and bisecting direction 0,, with
g-exponential growth of order k; at infinity, uniformly with respect to € € B. We write
1/1,?1" for this extension. This last assertion states there exists an appropriate Suyy (m)>0
such that

kilog? || ) ©)

Op
su T,m,€)| < cy, (m)ex
Eegh/fkl( )| < sy, (m) p( 21og(@)

for every v € Uy, with T ¢ Dy (see (74)).

One may apply the g-Laplace transform of order k; to 1//,?1’7 (see Lemma 5). Also, the
dependence on m lying in Sy (m) allows us to take the inverse Fourier transform on this
variable and define f°» as the result of both transformations. Finally, regarding assumption
(3) in Definition 7, one may apply the change of variable 7 > ¢f to define f%(¢,z,¢€) :=
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f”l’(te,z, €) as a holomorphic and bounded function defined in 7 x Hg x &,. Here, &, is
a finite sector with vertex at the origin in the perturbation parameter, where the family
(Ep)o<p=c-1 is chosen to determine a good covering in C* (see Definition 6). For a more
detailed construction of these elements, we refer to Section 5.

More precisely, we aim to study the solution ©® (¢,z,¢) for 0 < p < ¢ — 1 of a family of
related problems regarding each direction of extendability associated to the forcing term
rather than (1). We write

i—D+1
Q(az)aquap (t,z,€) = (et)dDGq : RD(az)uap (t,z,€)

D-1
+ Z (Z e Bt 0;‘5 ez, €)Ry (8,)u’(t,z, e))

=1 “rely

+ crqfol’(t, Z,€) (3)

for each 0 < p < ¢ —1 for the different equations under study.

Let us take a brief look at equation (1) (or equation (3)) and describe some concerns
which are important to understand the nature of the problem studied. Regarding the vari-
able z in equation (3), we have decided to split the right-hand side in two terms: a first
term related to Rp(9d,) in which the degree of the operator exceeds those of the remaining
terms, associated to R;(d;), 0 < £ < D —1. It is at this point where one of the g-Gevrey
growth phenomena regulating the equation arises. Indeed, the dilation operator of this
term causes a g-Gevrey phenomenon of type k; to appear.

As a first attempt one is tempted to study an auxiliary problem in the Borel plane
directly, following the classical method of summability of formal solutions of different
types of equations. In this direction, regarding Proposition 7, one might try to: apply the
q-Borel transform of order k; at both sides of equation (1), study the resulting g-difference-
convolution problem (46) and obtain a solution to this problem having an adequate
growth in t variable in order to provide a solution to (1) via the analytic inverse opera-
tor, the g-Laplace transform of order k,. However, this procedure, followed in the recent
work [1], is not fruitful because of the growth nature of the forcing term. Indeed, the ap-
plication of g-Borel transform of order k, on the forcing term gives rise to a formal power
series which might have null radius of convergence.

The alternative procedure followed in this work is to split the summation procedure in
two steps. Firstly, we proceed with a g-analog of the Borel-Laplace summation method of
a lower type « and attain the solution by means of an acceleration-like action. It is worth
mentioning that this idea is an adaptation of that in [2] to the g-Gevrey case. Also, the idea
of concatenating formal and analytic g-analogs of Borel and Laplace operators in order to
solve g-difference equations appears in [3].

The present work continues a series of works dedicated to the asymptotic behavior of
holomorphic solutions to different kinds of g-difference-differential problems involving
irregular singularities investigated in [4—7]. These works can be classified in the branch of
studies devoted to study from an analytic point of view of g-difference equations and their
formal/analytic classification in [8-12]. It is worth pointing out another approach in the
construction of a g-analog of summability for formal solutions to inhomogeneous linear
q-difference-differential equations based on Newton polygon methods, see [13], and also
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the contribution in the framework of nonlinear g-analogs of Briot-Bouquet type partial
differential equations, see [14].

Let us exhibit the plan of the work.

We first state the definitions and some properties of the Banach spaces of functions
involved in the construction of the solution of equation (3). The elements of these spaces
consist of holomorphic functions defined in an infinite sector with vertex at 0 (resp. an
infinite sector with vertex at infinity and a disc at 0) subjected to a g-exponential growth
at infinity, with respect to the first variable. Also an exponential decay at +00 is assumed in
the real-valued variable m (see Section 2). In Section 3, we recall some formal and analytic
transformations such as the formal g-Borel transform of a positive order and the analytic
g-Laplace transform of a positive order. These transformations were introduced in the
work [3] to construct meromorphic solutions to linear g-difference equations from formal
ones. In this section we also give a review on the properties satisfied by inverse Fourier
transform F 1.

In Section 4.1, we consider the auxiliary equation

Q(im)o,U(T, m, €)

dp

d % +1
=T%o0,* Rp(im)U(T,m,e¢)

D-1
1 o0
+ Z (Z Tohtehne=the _— / Cye(m—my, e)Rg(iml)LI(q‘sz T,my, e) dm1>

12
=1 “xely (27[)

+0,F(T,m,€) (4)

and study the resulting equation after the action of formal g-Borel transformation of order

ki on an equation coming from (4):

k
Q(lm)(ql/,q)kwwkl(f,m,f)

TdD+k1
= o ~9plk
(ql/kl)(dD+/q)(dD+k171)/2 q

RD(im)Wkl (f, m, 6)

D-1 Ay p—ds g —ds s+k dig
AW R WA DL T 1 .
PETT ) ¢
' Z<Z (ql/kl)(d;\,z+k1)(d)\,z+k1—1)/2 Oq Qm)”? (C)L,g(m,e) *Rwy (z, I’ﬂ,e))
£=1 “rely
rh
+ gyt Ve (® ) o

For every 0 < p < ¢ — 1, we come to a novel auxiliary problem fixing ¥, := w:lp , and by
means of Proposition 10 we get the existence of a solution w,? (t,m, €) of (5), which satisfies
that

fclog2 [T + 4|

+alog|t + 8|>
2log(q)

o L pm
sup ’wk (T,Wl,é)‘ <C op——e exp
tellp,UD ! Yiq (L+ [m|)H

meR

uniformly with respect to € € B for some Cwap, 8,0, 1, B> 0.
St
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In Section 4.2, we study the action of formal g-Borel transform of order k, on an equa-
tion obtained from (4). As it was pointed out above, one can not guarantee convergence
of the resulting element in a neighborhood of the origin, arriving at the formal problem

19)
Q(im) (qVk2)lalla—D)72 Wiy (T, 11, €)
TdD+k2
= Rp(im) (qVk2) bk dpia—1)72 ke (r,m,€)
D-1 Ay o—dy g +dy g +k e
Moo gtk S=tt 1 q
2 - Ry »
* Z(Z (%2 )i ) 172 7 @2m )12 (Crelm, €)% W’Q(T’m’e)))
=1 ‘el
ke N
+ WB%UIQ (F(T, Wl;é))o (6)

We substitute the formal power series B A/ky (F(T, m, €)) with the acceleration of 1//,?1” for
each 0 < p < ¢ — 1 and study the resulting equation for each p. The role of the accel-
eration operator is being played by g-Laplace transform of an adequate order. Indeed, we
substitute l’;’q;l/kz (F(T,m,e€)) with Ly (h — Ip:lp(h, m, €))(t), constructed in Lemma 5, for
every 0 < p < ¢ — 1. By Proposition 11, we obtain a solution wa of the previous problem
by means of a fixed point result in appropriate Banach spaces. This solution is defined in
(Rgp USs,) x R x B, where Ré’p (resp. Sp,) stands for a finite wide sector (resp. an infinite
sector) of bisecting direction ?,. Indeed, one has

kylog? |7|

Tg(q)+vlog|‘t|> (7)

0 1 pm
sup  |wl(r,me)| <C o0y ————ePMexp
‘[G(R%pusap) 2 Wiy (1 + |m|)h

meR

for some C 2psv>0.
Ky

We prove (Proposition 12) that w,?f and £.”

au (T w,?f’(r, m, €)) coincide in the intersec-
tion of their domains of definition. Consequently, EZf/K (t—~ wa (t,m,€)) can be extended
to Rgp U So,- Inview of (7) and the choice of the domains associated to the good covering

(&p)o<p=<c-1 (see Definition 7), one can define the function

1 wap(u m,€) d
u®(t,z,€):= F (m — / ko 70 M)(z)
L

T 1k ®q”k2 (i) u

P

for every (¢,z,€) € T x Hg x &y, forall 0 <p < ¢ — 1. Here Ly, stands for a ray from 0 to
infinity contained in S;, see Theorem 1. The function u®»(t,z, €) solves (3) (see Theorem 1).

In the spirit of [3], the procedure we have followed can be summarized in some sense
by the composition of these operators:

Lgaiky © L © Bije 0 Bijky = Lygaiky © Ly © Bukg-
In the second part of Section 5 we study the difference of two solutions and obtain two dif-

ferent results, depending on the geometry of the problem (see Proposition 13 and Propo-
sition 14). The previous results are applied in Section 6 to attain the main result of the
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work (Theorem 4) by means of a novel two-level version of a g-analog of Ramis-Sibuya
theorem (see Theorem 3), namely the existence of a formal power series

i:l(t,Z,E) = th(t’z)% € ]F[[E]]’

m=>0

with coefficients in the Banach space F of bounded holomorphic functions defined on
T x Hg with the supremum norm. This formal power series is a formal solution of

dp

ot

QB)oyiilt,z.€) = (€)™, Rp(@.)ilt,zr€)

D-1
+ Z(Z thte® ol s 4 (z,€)Ry(9,)illt, 2, e)) +0,f(t,z€),

=1 ‘el

where f is the common asymptotic representation of f°» with respect to the perturbation
parameter €, as described in Lemma 9. The sense in which i(t, z, €) represents u° (¢, z, €)
for all 0 < p < ¢ —1is detailed in Theorem 4.

The work concludes in Section 7 with an application of the main result when the formal
power series F(T,m, €) is a solution of another related problem (see Theorem 5).

2 Banach spaces of functions and related results

Throughout the whole section we fix real numbers 8, 1 > 0, ¢ > 1 and «. Some conditions
on these elements may be described when needed in the following constructions and re-
sults.

Throughout this section we assume that U; € C* := C\ {0} is a sector with vertex at the
origin and bisecting direction d € R. We also choose p > 0 and consider the disc centered
at 0 € C with radius p, notated by D(0, p) := {t € C: |t| < p}. Let § > 0 and assume that
the distance from U,; U D(0, p) to the real number —§ is positive. We also take k > 0.

We denote by D(0, p) the closure of D(0, p).

Definition 1 We denote by Expé'ﬂ, g

functions (t,m) > h(t,m) on U, UD(0, p) x R, holomorphic with respect to  on UJ; U
D(0, p) such that

) the vector space of continuous complex-valued

klog? |t + 8|

i

|z, m) H(k,ﬂ,u,a,m = reusgg(o p)(l + |m])" e’ CXP(—Tg(q) —alog|t +4|
d )
meR

X ‘h(r,m)’ <00,

The set Expfk‘ﬁ%aym turns out to be a Banach space when endowed with the norm

I N8 -

The previous norm is a modified version of that used in the previous work [4] and by
the first author in [1]. Here, a shift on the variable 7 is needed in such a way that the
elements belonging to Expé' 6,0,p) F€mMain holomorphic and bounded in a neighborhood

of the origin, whilst g-exponential behavior at infinity is preserved.

Lemma 1 Let (t,m) — a(t,m) be a bounded continuous function defined on (U; U
D(0, p)) x R, holomorphic with respect to T on U;UD(0, p). Forevery h(t, m) € Expfk,ﬂ,u,a’p),
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the function a(t, m)h(t, m) € Expflk,ﬁ’ﬂ’a’p) and
”“ h(z, m H o) = G Hh(T’m)H(k,ﬁ,u,a,p)’

where Ci = Sup, ¢, Up(0,p)),mer |a(T, m)|.

Proposition 1 Let y1,y, > 0 such that

< kys. (8)
Then there exists Cy > 0 (depending on k, q, a, 1, v», 8) with

|70 f Com) 4oy = CIF @My

Sor every f(t,m) € Exp?k,ﬂ,u,a,p)’

Proof Let f € Exp (k. pa,p) One can write

||Ty1 sz(.[ m)”kﬂ;uxp

klog*|t +6
= sup (1+|m])e " exp —M—aloghﬂﬂ [T
21
TellyUD(0,p) og(q)
meR
klog* | -5 &+ 0| r
x |[f(t/q"?, m exp( — —alog—+8D
4 ) 2log(q) q”

klog? |- + 8]
x exp| ———— + alog| —
2log(q) q”

=)

We observe that G;n(Ud U D(0, p)) € U, UD(0, p). As a consequence, the previous ex-
pression is upper bounded by

Hf('lf, m) H (k,B,14,0,0) SU'E €xp
telyUD(0,p)

72 4 51\ ¢
Xmm(M) , 9)
|T + 8]

For every t € U; UD(0, p), one has

(k(log2 |qu’2 +8| —log? |t + 8|)>
2log(q)

log? —log® |7 + 8]

=log?|t +8¢7*| +1og®(q7*) — 212 log(q) log|t + 8¢"| —log?|T +§|. (10)
Let p; = 2p. For every t € S; with |t| > p, standard calculations yield

logz‘r +8q”2’ —log? |t + 8|

T +6q"
T+0

=log|(t +384")(t + 8)|log




Lastra and Malek Advances in Difference Equations (2015) 2015:344 Page 8 of 52

8(g” -1
< C2110g|r|log(1+ M)

|T + 6|

Sgn-1) _ . a1
T

)
< Cy 1 <
< Cxlog|t| Taol S
for some Cy1, Cyy, Cy3 > 0 (depending on g, ¥, §). On the other hand, the function
T log2|1: + 8q7’2| —log* |t + 4|

is continuous in the compact set D(0, p) U {t € Uy : |t| < p1}. This and (11) provide the
existence of Cy4 > 0 (depending on &, g, ¥», §) such that (10) is estimated from above by
Cas — 295 log(g)log |t + 84*|. Taking into account these estimates, one derives the exis-
tence of Cys > 0 (depending on &, §, g, y2) such that

|| ™o, f (v, m) “ ()

547 1\* _
= G|t m)], sup e (L) g

k,B,10,0) -
Tel;UD(0,p)

It is straightforward to check that

7 +8q7 |\ _ _
sup |t|“<ﬂ) |t +8q7| kre < sup Coe” (x + 847?) kre
ell;UD(0,p) T + 9| x>0

for some Cy¢ > 0. The result follows from here in view of (8). O

Definition 2 We denote by Eg ,,) the vector space of continuous functions /2 : R — C such
that

| 2(m) ”(ﬂ,u) = su%(l +|m|)" exp(Blml)|h(m)] < co.

The pair (Egg,p.), || - ll(8,.)) is a Banach space.

Lemma2 Let h;: R — C be a continuous function for j = 1,2. Assume that sup,, . |1 (m)|
is finite and hy € Eg ). Then the product hihy € Eg .y and

i) 5, = (sup o)) [,

Proof It follows from the definition of the norm || - [l(s,,,). O
Let i : R — C be a continuous function for j = 1,2. Let Q € C[X]. One can define the
convolution product
I(om) 4 o) = [~ om = ) QUi m) s, m € R,

—00

whenever the integral converges, extending the classical convolution product for Q =1.
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Proposition 2 Let Q,R € C[x] such that deg(R) > deg(Q), R(im) # 0 for every m € R.
Assume, moreover, that u > deg(Q) + 1. Given a continuous function b : R — C with

Sup,,cr |1b(m)R(im)| <1, the space (Eg ), || - l8,n)) turns out to be a Banach algebra when
endowed with the product x*2 defined by hy(m) %*2 hy(m) := b(m)hy(m) 2 hy(m) for every
meR.

We refer to [15] for a proof of the previous result.

Proposition 3 Let Q, R, b be as in Proposition 2. We assume c(m) € Eg ). Then, for every

d . b, d
fe Exp(k,ﬂ,u,a,p)’ the function c * Qf € Exp(k,ﬁ,u.,a,p) and

Jelm) 2 e, gy = Co ] 5, 2 0], 12)

ks Bts0t, 0 kB0, 0)

for some Cs > 0 (depending on 1, q, o, k, Q(X), R(X)).

Proof Let f € Expfkﬂ’“,a’ ,)- Regarding Proposition 2, it is direct to check that c(m) x0Q

f(z,m) defines a continuous function in I; UD(0, p) x R and holomorphic in U; UD(0, p)

d

with respect to the variable 7. From the definition of the space Exp{; 4 , ., ,, one has

[ctm) " @ f@,m)| s

klog? |t + 8|

< sup (1+|m|)”eﬂm|exp(— 2 10g(@)

TellyUD(0,p)
meR

—alog|t +8|>

R . b o]
L [ (0 = e o — ) Q)|
e Blm=-ml g=Blm|

X lf(T,WI1)|(1 + |m1|)ﬂeﬁ|m1|) (1 + |Wl _ Wlﬂ)“(l + |W11|)M

dml.

From the hypotheses made on Q and R, there exist Cs;, Csy > 0 such that
. de, . deg(R
|QUrm)| < Car(1+ 1)) P, |RGm)| = Ca (1 + |m])**® (13)

for every m € R. The triangle inequality, the estimates in (13), and Lemma 4 in [16] (or
Lemma 2.2 in [17]) yield the existence of Cs > 0 such that

A+ |m)* [ |Q(imy)|ePUmi=lm=rml=lm])
s / d}’ﬂl
IR(im)| J oo (L4 |m—ma ) (1 + [ |)*
Ca ji-deg(Q) / * 1
<sup —(1+|m dm; < C. 14
h me]% Cs (L+ 1) o (U [ = g )P(1 + [y [des(@ 771 = 3 (14)

for every m € R provided that p > deg(Q) + 1. This proves (12). O

Let S, be an infinite sector of bisecting direction d and R}, be a finite sector of bisecting
direction d. We take v € R.

We define another space of functions which will be useful in the sequel. It corresponds
to that of Definition 1 in [1].
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Definition 3 Exp(k 5, Stands for the vector space of continuous complex-valued func-

tions (t, m) — h(t, m) on (S; U RE ) X R, holomorphic with respect to T on S; U Rb such
that

klog*|z|

”h(T m)H(k/S;w = sup (1+ |m|)“e‘3‘m| EXp(— 2log(q)

re(SduRZ),meR

—vlog|t|)|h(t,m)|

< OQ.

The space Exp? turns out to be a Banach space when endowed with the norm
p Pk, 8,11,v) p

I Nl ey

The growth behavior of the elements in the space Expflk’ p,,v) differs at 0 when compared
to the growth rate of the elements in Exp?, (kpuv,p) at the origin with respect to 7 variable.
However, both spaces share functions with the same growth at infinity.

We state some auxiliary lemmas in the shape as those enunciated for the space
Exp? (k,pju.p)- The proofs for these results are omitted, and they can be found in [1].

Lemma 3 Let (t,m) — a(t,m) be a bounded continuous function in Sy U R_Z x R,

holomorphic with respect to Tt on S; U RZ. For every h(t,m) € Expfkyﬂ,w), the function
d

a(t,m)h(t,m) € Exp(k,ﬁ,u,v) and

”“(T’m)h(f’m)”(k,,s,u,u) =C Hh(T m)H (k,B.v)’

where C; = sup_ la(t, m)|.

(S, URb) meR

Proposition 4 Let y1,y»,ys > 0 such that
va=kys,  n+kys=n. (15)

Let ay,(t) be a holomorphic function on Sy U RZ, continuous on Sy U R_Z with (1 +
[T, (t)| < 1 for every T € (S U RY). Then, for every f € Expkﬂu . the function
a,, (t)t20,f(t, m) belongs to Exp(k’ﬂ,#‘v), and there exists Cy > 0, depending on k, q, v,
Y1» V2, V3, such that

||al’l (T)Tyzat;ysf(T’m)“(k,ﬂ,u,v S ”f(T m)H (k,B,p,v)°

Proposition5 Let Q(X), R(X) and b be as in Proposition 2. We assume c(m) € E(g ). Then,
f~0r every f(t,m) € Expflk‘ﬁ’ﬂju), the function c(m) x> f(t,m) e Expfk’ﬁ%v), and there exists
Cs > 0, depending on Q(X), R(X), i, g, v, k, such that

||c(m) P f(z, m) ”(k,ﬁ,u,u) <G HC(W‘) ”(ﬁ,ﬂ) ”f(f’ ) ”(k,ﬂ,u,u)'

3 Review of some formal and analytic transforms

In the present section, we recall the definitions and main properties of some formal and
analytic transforms. More precisely, we will be concerned with g-Borel, g-Laplace and
Fourier transforms. Throughout this section, E stands for a complex Banach space.
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Let g > 1 be a real number and k > 1 be an integer. The next definition and result can

both be found in [3] and also in the previous work [18].

Definition 4 Let a(T)=)_,.,a,1" € E[T]. We define the formal g-Borel transform of
order k of a(T) as the formal power series

n>0

By @(D)(®) = 3oy € Bl

n>0

We recall that for every y € R, the operator o, , acting on E[ 7, stands for the general-
ized dilation operator on T variable, o, (a(T)) = a(q” T) for every a(T) € E[T].
The proof of this result can be found in [1], Proposition 5.

Proposition 6 Let o € Nand j € Q. Then the following formal identity holds:

.L.U s

[;’q;l/k(Tgaé&(T))(f) = WU«; . (Bq;l/k(&(T))(r))

foreverya(T) e E[T].

At this point, we can recall the definition of a g-Laplace transform of order k, extending
that used in [4] for k = 1, and introduced in the work [19]. It provides a continuous g-analog
for the formal inverse of éq;l/k developed in [3]. The associated kernel of the g-Laplace

operator is the Jacobi theta function of order k defined by

n(n-1)
®ql/k (x) = Zq_ w %"

nez

for x € C*, m € Z. This function solves the g-difference equation

m(m+1)

O ik (q% x) =q % x"Oai(x) (16)

for every x € C*. As a direct consequence of Lemma 4.1 in [4], extended for any value of
k, a Jacobi theta function of order k satisfies that for every § > 0 there exists a positive

constant C,x not depending on 8 such that

< (klog® x|\ ip
|®ql/l< (x)| > Cq,k(s exp(iw |x| (17)

for every x € C* verifying |1 + xq% | > & for all m € Z. This last property is crucial in order

for the g-Laplace transform of order k to be well defined.

Definition 5 Let p > 0 and U, be an unbounded sector with vertex at 0 and bisecting
directiond € R. Let f : D(0, p) UlU; — E be a holomorphic function continuous on D(0, p)
such that there exist constants K > 0 and « € R with

k log? |x|
K — 1 1
], < Kexp(5 7y +atogi 18)
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for every x € Uy, |x| > p and

@ <& 19)

for all x € D(0, p). Take y € R such that ¢ e U;. We put Tk = 1"%((") [T0(- ﬁ)‘l and
define the g-Laplace transform of order k of f in direction y as !

1 fw) du

wai Ji, Oun(5) u ’

‘C;;l/k (f(x))(T) =

where L, stands for the set R, e” := {te” : ¢ € (0,00)}.

The following results are stated without proof which can be found in [1], Lemma 4 and
Proposition 6. The first result studies the domain of definition of the g-Laplace transform
of order k whilst the second states a commutation formula of the g-Laplace operator of
order k with respect to some other operators.

Lemma4 Let§ > 0. Under the hypotheses of Definition 5, E;;l W F)NT) defines a bounded

and holomorphic function on the domain ’Ry’g N D(0,r) forany 0 <r, < q(%’“)/kﬂ, where

err
1+

RW§= {TEC*:

>5forallr20}.

The value ofl:;’;uk(f(x))(T) does not depend on the choice of y under the condition e’ € S,
due to the Cauchy formula.

Proposition7 Let f be a function satisfying the properties in Definition 5, and § > 0. Then,
for every o >0, one has

xG

T o) (L0 f () (T) = ﬁg;l,k<WU; F f(x)> (T)

forevery T € R, 5N D(0,r1), where 0 <1 < q(%‘“)/k/l

We are also making use of Fourier transform and some of its properties in the spirit of
[1,15].

Proposition 8 Take i >1, 8 >0 and letf € Eg ). The inverse Fourier transform is defined
by

[e¢]

FHf)x) = ﬁ ‘/_Oof(m)exp(ixm) dm
for x € R, which can be extended to an analytic function on the strip

Hg={zeC:|3(2)| < B}. (20)
Let ¢(m) = imf (m) € Eg,-1). Then we have

0.7 (@) = F(#)2) (21)

forevery z e Hg.
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Let g € Eg ) and let y(m) = W(f x g)(m), the convolution product of f and g, for
all m € R. A direct application of Proposition 2 when choosing b= R = Q =1 allow us to
affirm that the function s is an element of E(g ;). Moreover, we have

FHN@F @) = F (¥ (22)
forevery z e Hg.

4 Formal and analytic solutions to an auxiliary convolution problem
Let 1 < ki < ko and D > 3 be integer numbers. Let k > 0 be defined by
1 1 1
= 23
K /(1 k2 ( )
We also take g € R, g > 1 and assume that for every 1 < ¢ < D — 1, I; stands for a finite
nonempty set of nonnegative integers.
Let dp > 1 be an integer. For every 1 < ¢ < D — 1, we consider an integer §; > 1 and
for each A € I, we choose integers d; ¢ > 1, A, > 0. In addition to that, we make the
assumption that

4 =1, 8¢ < Bg41

foreveryl <{<D-1.

We make the hypotheses
d dp-1
Ase > doe, L L Y (24)
ks ks

foreveryl <¢{ <D-1landall X € I,. Let Q,R; € C[X],1 < £ < D, with

deg(Q) = deg(Rp) = deg(Ry), Q(im) #0,  Rp(im) #0 (25)

foralll1<¢ <D-1and m € R. For every 1 <¢ <D -1 and all 1 € I;, we choose the
function m — C, ¢(m, €) in the space Eg, ;) for some B > 0 and p > deg(Rp) + 1. In addition
to that, we assume all these functions depend holomorphically on € € D(0, ¢y) for some
€0 > 0 and also the existence of a positive constant é,\,g such that

|Cre(m,€)|| B = Cie (26)

for every € € D(0, €).

Let F(T,m,e) =Y, ., F.(m,€)T" be a formal power series in T with coefficients in Eg
which depend holom(_)rphically on € € D(0, ).

We assume the formal power series Bq,l/kl (F(T,m,e€))(t) € Eg,[r], which depends
holomorphically on € € D(0,€). Moreover, we assume uniform bounds on the pertur-
bation parameter in the domain of convergence. More precisely, we assume there exists
Cr > 0, which does not depend on € € D(0, €), such that

n(n-1)

|En(m, €) | g = Cro™"q (27)
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The nature of qul/lq (F(T,m,€))(t) allow us to affirm that this function can be extended to
an unbounded sector of bisecting direction d, say U, under g-exponential bounds of k;
type. Again, we assume uniformity on the bounds for the perturbation parameter in the
sense that, if we denote this extension by v, then one has that

Bl kilog? |t + 8]
’wkl(r,m,e)’ =< Cl/fkl A + |m|)" < 2log(q)

+alog|r+8|) (28)

for some C‘”h >0, 7 € U; UD(0, p) and m € R, valid for all € € D(0, €g).
We consider the equation

QUm)o,U(T, m,€)

ap

+1
= T%o,>  Rp(im)U(T,m,€)

D-1
1 0 ,
+ Z (Z Tt Bre=th W [m Cye(m—my, e)Rg(lml)U(q‘;‘ T,m, e) a’m1>

=1 “rely

+0,F(T,m,€). (29)
Proposition 9 Let Uj, € Eg,, for

he{O,l,.‘.,max{ max du,dg}}

1<t<D-1,r€ly

depending holomorphically on € € D(0,€p). Then there exists a unique formal power se-
ries U(T,m, €) = > nz0 Un(m, €)T" € E(g,,,) [ T]| which solves (29). The elements U, depend
holomorphically on € € D(0, €).

Proof A formal power series i (T,m,e) =Y ., U,(m,e)T" provides a formal solution of

n>0

(29) if its coefficients satisfy the recursion formula

Qim)Uy(m, €)q"

ap _
— RD(l’Wl)Unde (m’ 6)6]( ) +1)(Vl dD)
D-1 1 00
+ Z Zem,z—dx,eq(n—dx,z)ﬁz T / Coe(m — my, €)Re(im)U,_g, , (1, €) drmy
0=1 rely B
+ F,(m, €)q" (30)
q

for every € € D(0,¢p), and m € R. Holomorphicity of U,(m,e) for every n > 0 comes
from the previous recursion formula and assumption (24). Moreover, regarding Propo-
sition 2 together with assumption (25) and Lemma 2, one derives U,(m,€) € Eg, ) for
everyn > 0. O

As it was explained in the Introduction, a procedure of Borel-Laplace summation on the
perturbation parameter is not valid in this framework from the growth nature of the source
and the nature of the singularities associated to the equation in €. This phenomenon is
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treated in two steps: the first step in which Borel-Laplace summation procedure provides
a holomorphic solution with too large growth at infinity so that Laplace transform is not
available; and the second step solving this difficulty by means of an acceleration opera-
tor.

4.1 Analytic solutions for an auxiliary problem arising from the action of the
formal g-Borel transform of order k;

We commence with the first step in the procedure to follow. For that purpose, we multiply

both sides of equation (29) by T% to get

Q(im)Th o, U(T, m,€)

d—D+l
= T2 Rp(im)U(T, m, €)

+

D-1 1 00
<Z de,ulqem,rd‘mz (27[)1/2 / CA,E (Wl —my, G)R;{ (im1)
1

=1 “rely -

x U(q" T,my,e€) dml) + Tho,F(T, m,€). (31)

By applying the formal g-Borel transform of order k; at both sides of equation (31) and
bearing in mind the identity described in Proposition 6, we arrive at

. Tkl
Q(ll’}’l) (qllkl)/q(/q—l)/Z Wk] (tr m, 6)

dp+ky
_ TP o,—dD/K
- (ql//q)(dD+k])(dD+k1—1)/2 q

Rp(im)wy, (T, m, €)

D-1 , d
(30 S L ) 18w (2, 0)
+ (qllkl)(dk,g+k1)(dk,g+k]—l)/2Gq Q)2 \h m,e)x " Wiy (T, m, €
=1 el

rh

+ Ryt Vi (7€), o)

Here, we have put
Wiy (t,m, €) := By (U(T,m,€))(x), iy (v, m,€) = By (F(T,m, €))(z).  (33)

The main aim of this section is to prove that wy, is indeed a holomorphic function in a
neighborhood of the origin in the variable 7, with values in E(g ), and holomorphic with
respect to the perturbation parameter €. Moreover, wy, can be extended in 7 variable to
an infinite sector under g-exponential growth of « type.

A fix point theorem in an appropriate Banach space is studied.

Proposition 10 Let w > 0. Under the hypotheses made at the beginning of Section 4 on
the functions involved in the construction of equation (32), if Rp and Q are chosen so that
SUp,,cr 'f&%)ll is small enough, and there exist small enough positive constants ¢y, and &,

foreveryl <t <D-1andall ) € I, with

Coe < Ot Cyyy =y (34)
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then equation (32) admits a unique solution wk (t,m, €) in the space Exp (B a,p) SUCh that
IIWfl(r,m,e)H (eBap) < @ for every € € D(0,€o). Moreover, this function is holomorphic

with respect to € in D(0, €).

Proof Let € € D(0,¢p).
Let % be the map defined by

1/ky \ki (k1 —=1)/2 :
ki (g"™) dp ——dplk (im)
He (w(t,m)) = (qVk1)dp k) dp ki —1)72 T Qlim) w(z,m)
Au—d“(qllkl)kl (k-1)/2 p 5€—d2—f—1
AL

X(x:

=1 “xely

1 1
X G Qlam) |

(ql/kl d)\i+k1)(du+k1 1)/2
C)L,E (m; 6) *R[ Wiq (T’ m, E)))

(5 me)
+ ——— Y (T, m, €).
Q(im) "™
Let w >0 and w(t,m) € Exp (. po,p) With Iw(z, M)l c.8,m0.0) < @ -
Taking into account (25), one can apply Lemma 2, and from Proposition 1 one gets

< Gy Crpol it m) || < GCrpow  (35)

(ic,B, 10,00, )

w(t, m)

H Rp(im) 9 —dD/K
(k,B,10,0)

Q(im)

for some C, > 0, and where Cgj, = sup,,.g |Rp(im)|/|Q(im)|. Let 1 < ¢ <D-1and X € I,.
Bearing in mind (24) and from Proposition 1 and Proposition 3, we have

e
ky -1

s p—d 2
eBrthtrhig, Cie(m, €) x8 wy (v, m, €))

Q(im) (

|Coelm, )] [ iz,

(16,8, 14,0,0)

A o—d,
<C2C3€ ML

(1,B,1,0,0)

INWE A Agg—d
< CCiey MM Crym < CoCaey M G (36)

foreveryl <f <D -1andall X € I,. We recall CM is defined in (26).

The polynomial Q satisfies that Q(im) # 0 for all m € R. This entails that |Q(im)| >
Cq for every m € R, for some Cq > 0. We depart from y, € Exp ) S Exp (. Botsp)?
where the inclusion is a continuous map. Then

1
oneme) < Gl = gy = Gy )

Co

(K, B,11,00,0)

[
Regarding (35), (36) and (37), we get

‘ (ql/k])kl(klfl)/z
1
”Hs (W(T’m)) H(mﬁmmp) — (ql/lq)(dD+k1)(dD+k1—1)/2

CZCRDQw

A)L( dx[(ql/kl)/q k1-1)/2 1

ZZ (ql//q d)Lg+k1 d)Lg+/<1 )2 (27-[)1/2

£=1 rely

@16 YoWi

+ C—Q{wkl .
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Now, we choose Cg,, o, Sy and ¢, ¢ for every1 < ¢ <D —1and A € [, such that

(ql//q )/q(klfl 2

(ql/kl )(dD+k1)(dD+k1—1)/2

CZCRDQw

§Z GA)J dk@(ql/kl)kl(kl 1 C C
(V) R0 (2 )12 2 3CuZU+ kal <

=1 )\EI@

One derives that the operator H* maps D(0, @) € Expff(, f.ua,p) INtO itself. Let wil, w,z(1 €

Exp{, s With [|W) [l .00 < @ forj=1,2.

(,B1.00,0)?
Analogous estimates as before allow us to prove that

| e (wiy m)) =M (Wi, (mm) |

(gh )k C2CRDQ
(ql//q )(dD+k1)(dD+k1

Bt p)

= H Wi (zv,m) - Wi1(t’m)”

(1, B,1,0,0)

Au dw( ki yk (k=172

+ ZZ o
1/k1 (dy. e +k1)(dy g +k1-1)/2

=1 er@

C2 CSé-)»,Z ” Wllq (T’ m) - Wil (Tr I’I’l) ” (k. Botp)”

1
X _
(27)12
We choose Cr,,q and ¢, ¢ for every1 < £ <D —1and A € I; such that

1/ky )k1 (k1-1)/2 1

Ay o—d
( 1/k1)k1 k1-1 /2C2CR Q ZZ € 0= u(q
1//(1

1
(qVk)@p+h)dphi—1)/2 k) D2 (2 )12 GGl =5

=1 )\elg

and conclude that

1
— |w,1q(r,m) —w,zq(r,m) ||(Kﬁ

||,;L[/€(1 (W11<1 ('L’, Wl)) - Hléq (W?q (T’ Wl)) “(K,ﬁ,u,a,p) = 2 |

0, 0) "

The closed disc D(0,w) C EXpI(ﬁ/LOl,O
Il - l¢c,p,e0)- Then the operator HX is a contractive map from D(0, ) into itself. The

is a complete metric space for the norm

classical contractive mapping theorem states the existence of a unique fixed point, say
w,”(ll(r, m, €). Holomorphy of wfl(r, m, €) with respect to € is guaranteed by construction,
and also one has wfl(r, m, €) is a solution of (32). a

The next step consists of studying the solutions of a second auxiliary problem, derived
from (29). Its solution is linked to that of (32) by means of some appropriate g-Laplace
transform which plays the role of an acceleration operator. The main aim of the following
results is to conclude that the acceleration of the function wfl obtained in Proposition 10
coincides with the analytic solution of the novel auxiliary equation under study.

We first establish an accelerator-like result on the function v, defined in (33).

Lemma5 Let§ > 0. The function

T Yy (Tm€) = L (B> Yy, €)) (2) = — ‘”h(“’m’e)d—: (38)

7qu/K Ly ®q1/K(¥)
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is analytic in the set R ;5. Moreover, the function (t,m) — Y, (t,m,€) is continuous for
m € R and © € R ;5 and depends holomorphically on € € D(0,¢€). Moreover, there exist
kaz >0 and v € R such that

kylog? ||

[V, (T, m,€)| < kaze—ﬁ\MI (L+ lm])™ cxp(Tg(q)

+ vlog|r|> (39)

Joreveryt € R, 5, meR and € € D(0, €).

Proof We first rewrite (28).
Direct calculations allow us to affirm the existence of a constant Cy;, only depending on

8, such that
k 1 2 3 k 1 2
kilog” | + 9] +alog|t+4| =< falog I} +alog|r|+Cy

for every t € S;. This entails (28) can be rewritten in the form

e Pl (/q log? |7|

el <o, o enn( ey vatoate) 4o

for some constant C',/,kl > 0. We recall that k; < « (see (23)) so that

. Bl ilog” |7
|1/fk1(r,m,6)| = Y (1 + |m|)~ % 210g(CI)

+a10g|1’|>. (41)
This remains valid for all € € D(0, €), T € U, and m € R. Moreover, for every t € D(0, p),
the functions log? |t + 8| and log |t + 8| are bounded from above. As a consequence, there
exists (Vf% > 0 such that

[k, (x,m,€)| < Cy (42)

for every € € D(0,€), T € D(0, p) and m € R. In view of (42) and (41) one can follow
the construction described in Definition 5 in order to affirm that i, is well defined as
considered in (38). More precisely, given 5§>0, (t,m,e) > Yk, (T, m, €) turns out to be a
continuous and bounded function defined in (R, 5 N D(0,r1)) x R x D(0, &) for any 0 <
r1 < g2~/ /2 and holomorphic with respect to 7 variable in R ;5 N D(0,r1). In addition
to that, from (40) and (17) one has

| Lo (= Yy (U, ©)) (7)|
1 Yk, (u,m, €) du

qul/K Ly ®q1/K (%) u

Cx//kl e Plml|g |12 0 ki log?(r)
< = exp| ——=—— + alog(r)
(L + |m|) Cyudmp Jo 2log(q)
1 dr
X loe2( L - (43)
exp(K 0g’ (m))rlﬂ r

2log(q)
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for every t such that |1 + 4| > & forall > 0, m € R and € € D(0, &). One has

Ja-312 oy <k1 log? r ~ Klng(}"/|‘L'|)>
2log(q) 2log(q)
w—3/24 Klogltl ( (k — k) log*(r)  «log? |‘L’|)
=r log(q) exp| — — .
2log(q) 2log(q)

This last equality and (43) allow us to write

|8 (Y (1, €)) (7))

C%e—ﬁlm”ﬂl/z ( Klog2|r|>
exp| —————

T 1+ |m|)H Cq,,(gnqm 2log(q)
oo «log|z| —_ 2
o / P TR e (_ (k — ki) log (r)> dr. (44)
0 2log(q)
Let T be chosen as above. We put m; = o —3/2 + K]L‘;g(;‘ , mi =y +1/2, myy = my + 2 and
my = ﬁo_—gk(lq), and study

e 2 1 2 *1 2
M2 log”(n) . p g=malog™(r) g pimz g=m2log”(n) .
P12 )
0 0 1

For j = 1,2, the function x — /;(x) = ™V exp(—m, log?(x)) attains its maximum value
2
for x € [0,00) at %o = exp(zn%’z). One has h(xj) = exp(%’z). Direct calculations show the
existence of real constants Cyy, Cs3, with Cyy > 0, only depending on ki, k3, g, such that

oo 2 2
f rml e—mg l()g2 (r) dr < C42 | T |C43 exp( K log |T | )
0

2log(q)(k — k1)

Hence, (44) is estimated from above by

44

6'wkle_mr"l|T|1/2+C43 ( « log? |r|> ( k?log? || )
xp( — X
A+ [m)* 2log(q) 2log(q)(x — ki)

for some Cy4 > 0 only depending on ki, &z, g.
Then (39) follows from the fact that

K2

—K + =k2
K-k

and by taking v =1/2 + Cys. O

4.2 Analytic solutions for an auxiliary problem arising from the action of the
formal g-Borel transform of order k,

In the previous section, we have studied the problem arising from the application of the

formal g-Borel transform of order k; to equation (29). As a second step, we study a second

auxiliary equation coming from the application of the formal g-Borel transform of order

ky to equation (29).
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For that purpose, we multiply both sides of equality (29) by T*2 to get

Q(im) T o, U(T, m, €)

dp

+1
= TG, Rpy(im)U(T, m, €)

D
Cd 1 *© ,
R Z(Z Thitedhe / Coam — my, )Ry (irmy)

-1
=1 “ely i

X U(CI‘SZ T, my,€) dWll) + TkzaqF(T,m,e). (45)

We take formal g-Borel transform of order k, at both sides of the previous equation. By

means of the property held by formal g-Borel transform described in Proposition 6, we

get
ky
Q(lm) (qllkz)kz(kz—l)/Z wkz (T, m, 6)
.[dD+k2
= Rp(im) (g2 )k dp+ha—1)72 Wiy (T, m, €)
D-1 Ay p—dy g +dy g +k: e
eMne=dre etk -t 1 o ~
- l
+ Z(Z (qV2) e k) 412 9q (27)172 (Crelm, €) vy (z,m, €))
£=1 “Aely
ke ~
+ gayata s Ve (T ©) (46)
where

Wi, (T,m,€) := éq;l/kz (L[(T, m, e))(r), 1&;{2(1, m, €)= [;’q;l/kg (F(T, m, e))(r).

It is worth mentioning that we have assumed a g-Gevrey growth of order k; related
to the elements (F,(m,€)),>0 (see (27)). From the fact that k; > k;, one can only affirm
that 9, (t, m,€) is a formal power series in 7, with coefficients in the space E(,). This
point is crucial to understand the cause of coming up to two different g-Borel-Laplace
transformations to attain our aims.

We now proceed to substitute this formal element with an acceleration of ¥, , named
Y, , constructed in Lemma 5 and solve the equation arising from this substitution. Heuris-
tically speaking, an excessive type of growth in the transformation of length k; is reduced
in two steps: the first one related to k; (k; < k;) and the second step accelerating up to k.
The splitting of the problem will help us to attain convergence.

Following this plan, we now consider equation (46) in which 1ka2 is substituted with 1,

constructed in Lemma 5. Namely, we study the equation

ko
Q(lm)(ql/kz)kwwb(f, M, €)

TdD+k2

= Rp(im) (ql/k2)(dD+k2)(dD+k271)/2

Wiy (T’ m, E)
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! Ape—d, d; ¢ +k; de
€2t Tar TR BZ_F_I 1 .
—_— f
* Z (Z (ql/kz)(ﬂlx,wkz)(dk,wkz—l)/z Oq 27)172 (CA,g(m, €) * Wi, (t,m, E))
=1 ‘el
ke
* Tyt Ve (el -

We now make these assumptions on Rp and Q. Let ngr, > 0 and dgr,, € R such that

Q(im)
W S SQ,RD’ m e R, (4'8)

where Sz, is the unbounded set

Sorp ={z€C:lzl > rory, |argz) — dor, | < 1oy }-

We consider the polynomial

Q(im) Rp(im) d
P'”(T) = (ql/kz )kz(szl)/z - (q]/kz)(dD+k2)(ZD+k2‘l) ° (49)
and factorize it
. dp-1
Rp(im)
Py (t) = - o @D dp Ry 1) H (r - qz(m)),
(g*) 2 1=0

with

|Q(im)| ( ks (dD+k2)(dD+k22—1)—k2(k2—1))UdD

ailm) = (|RD(im)|
1 Qum)\ 27l
y exp(«/—_l<% arg(RD (im)) N %»

for every 0 <! < dp — 1. Moreover, we establish some conditions on Sq g, with respect to
Sz and ’RZ. Indeed, let p; > 0 such that RZ C D(0, p) and assume the following.
(1) There exists M; > 0 such that

o aqum)| = My (1 + 2] (50)

for every 0 </ <dp—1,allm e R and T € S; UD(0, p;). Indeed, in view of (48) and the
shape of g, one may choose rqr,, so that |g;(m)| > 2p; foreverym e R,0 </ <dp—-1.In
addition to that, g,(m) is a root of P,,(t). This entails

Q(lm) ( Vky (dD+k2)(dD+k22—1)—k2(k2—1)

dp _
qe(m)P = Rotim)

€ Sorp

for every m € R, in view of (48). As a matter of fact, one can choose small enough 7¢z,,

so that every g,(m) lies in a finite family of infinite sectors with vertex at the origin and

Page 21 of 52



Lastra and Malek Advances in Difference Equations (2015) 2015:344 Page 22 of 52

such that there exists d € R so that S; does have empty intersection with all such infinite
sectors.

Under these assumptions, one can choose S; under the property that ¢;(m)/t does not
belong to some open disc centered at 1 for every 0 </ <dp -1, T € S; and m € R. This
configuration guarantees (50) is fulfilled.

(2) There exist M, >0 and [y € {0,...,dp — 1} such that

T = qeo (m)| = Mo qu, (m)| (51)

for every m € R and t € S; U D(0, p;). Under assumption (1), we notice that for any fixed
0 <y <dp -1, the quotient t/q;, (m) has positive distance to 1 for every 7 € D(0, p1) US,,
and m € R. This implies (51) for some small enough M,.

Under the previous situation, one derives

|Rp(im)|

dp+kg)(dp+ko—1)
2

(gV%2) :

; _1)- _ 1/d,
o (JQUL (g o2 s N T o
R (irm)|

|P,()| = M{PT M,

> Cplrory) P |Rp(im)| (1 + 1)

(52)
for some positive constant Cp, valid for every T € D(0, p;) U S, and m € R.

Let R% be a bounded sector with vertex at 0 and bisecting direction d. We assume R}, C
5(0) 101)'

Proposition 11 Let w > 0. Under the hypotheses made at the beginning of Section 4 on
the elements involved in the construction of equation (47), under assumptions (1) and (2)
above, if there exist small enough positive constants {y, , §¢ for1 <€ <D —1and i €I,
such that

Cot <ot Cyry = Ly (53)

then, for every € € D(0, €g), equation (47) admits a unique solution wjfz (t,m, €) in the space
Eszq,ﬁ,u,v) for v € R determined in (39). Moreover, ||WZ2(1:,m,e)||(k2,ﬂ’M’v) < w, and this

function is holomorphic with respect to € in D(0, €).

Proof We recall that CM and C‘sz are stated in (26) and (39), respectively.
Let € € D(0, €p). We consider the map ’Hfz defined by

d
So— Mt 1

D-1 %
1 Mg 2
HE (w(t, m)) := 1
€ ( ( )) P,,(7) ; % (ql/kz)(dx,z+k2)(d;\,e+k2*1)/2

1
1 R
X W(C,\,g(m,e) " w(t, m))
1 1
T @R ye® D2 B, (7)

Y, (T, m, €). (54)
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Let w > 0, and take w(z,m) € Expflkﬁ,ﬂ,v) with ||[w(z, )|l (k,,8,uv) < @.Foreveryl < <
D—1and A € I, we write

Aje 7d)hg e
d

]
GPmTT ”G; k2 (C)\,(g(m,e) e w(t,m))

B eDne=dre CP(rQRD)I/dDRD(lm) duaalfﬁfl
" Cplrgrp)Vin P, (7) 1
1
* Rolim)

Co(m,€) #Rw(z, m)). (55)
(

In view of the properties described at the beginning of Section 4, one can apply Propo-
sition 5 to obtain that

(Cie(m, €) ™ w(t,m))

H Rp(im) )

< Gl Cellgu W m) | 4 5.0y < C3Crem (56)

for some C; > 0, valid for everyl <¢ <D-1andall A € I,. Let y, in Proposition 4 be the

CP(’Q,RD) DRD im)

value dp — 1 and put a,,(7) := — From (52) one has |a,, (7) ldD ;- for

< b
F = @+
everyt € S;U RZ and m € R. In addition to this, and bearing in mind (24), one can apply
Proposition 4 to conclude that

c VdpR (i =Tt g q
H rlromy) P Rp(im) g, — (Cy(m, €) * w(z, m))
P, (7) Rp(im) (ka,o1av)
is bounded above by
. 1 S s - .
Co|| =———(Crelm, €) 8 w(z, m)) = GGG = GGh .
Rp(im) (K3, opia0)

We observe that, without loss of generality, one can assume that S; € R, 5.
Furthermore, as a consequence of (52) and (53), and taking into account that v, €
EXpZQ,ﬂ,u,v) in view of (39), one has

Vi, (T,m,€) < Vi, (T, m,€)
” m( ) : (ka,B,11,v) Cp(rQ’RD)I/dD mE]R |RD( )| || 2 ||(k2rﬂ,ll«,|))
= sup -
Co(rorp)V0 ez |Rp(im)| "
1

< su .
Co(rory) V40 et IRp(im)| ~ "%

The previous estimates allow us to affirm that

Aje—die

C,C L€
k: 243 ML€Q
|4 (w(z,m)) ”(kz,ﬂ,uu Co(rory) 1/dD(2n)1/2 ZZ (qV/%2 )+ kD)2
£=1 2el,
1 1

+ sup —Cy,. -
(q"*2)l2k2=D/2 Cp(rqr, )V ek |Rp(im)| Viz
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We choose ;‘wkz , & foreveryl < £ < D—1and X € [, such that

A o—d,
C2C3 ZZ O e l
C (rQR l/dD(ZJT 1/2 =g (ql/kz) dy,0+ko)(dy, 0 +ko— 1)/2 2

1 1 1 ¢ ZD'
sup ; =
(g/*2 Yo k2=D/2 Cp(r pp )V i |Rp(im)| o = 27

This yields ||’H’€‘2(w(r,m))||(k2,5yuyv) < w. The operator Hfz(w(r,m)) maps D(0, ) C
d L d . j .
EXP{,, 4.0 Into itself. Let wi ,wp € Exp, 4, ), With W) ll(cpun) < @ forj=1,2.
Following analogous calculations as before, we arrive at

” Hle(z (Wiz (T, m)) - Hle(z (W12<2 (t, m)) ” (kg Boit,v)

Aje—die
O o o) = 2, (5 )l )

G,C Onee
= C (r 2l/di 27-[ 1/2 ZZ . ( 1/k2) (dy g +ko)(dy g +ko-1)/2
r(rorp) =1 rel, 9

We choose ¢ ¢ for every1 < ¢ <D —1and X € I; such that

Aje=die

GG ZZ $re€o 21
Cp(rory) V40 (27)12 (gV/k2)drerko)drerha-DI2 = 9

(=1 rely

and conclude
1
|He (Wiz(f’m)) - H (Wl%z(f’m)) ”(kz,ﬂ,u W=7 ”sz(f m) - sz(f m)” (ko Bopn)’

The closed disc D(0,z) C Expflkz, gy 18 @ complete metric space for the norm
Il - | (k8,110 - The previous reasoning leads to the conclusion that the operator H*? is a con-
tractive map from D(0, =) into itself. The classical contractive mapping theorem states
the existence of a unique fixed point, say w;fz(r, m, €). Moreover, w,‘fz(r, m, €) is a solution
of (47), and also the holomorphy of wzz (t,m, €) with respect to € is attained by construc-
tion. O

The next result provides the link between the acceleration of wfl, obtained in Proposi-
tion 10, and w,‘fz determined in Proposition 11. Indeed, we prove they coincide as elements

in an appropriate Banach space.

Proposition 12 Let us consider the function wfl(t,m,e), constructed in Proposition 10,

solving (32). For every § > 0, the function

1
T L:ql//( (W/q(r m, E)) ’C’ql//( (h Wfl(h”'n’e))(f) = /;
d

T ql/l(

wi, (h,m, €) du

O (%) u

defines a bounded holomorphic function in R ;5 N D(0,r1), with 0 < r; < q(%“")/"/2 (we
recall o € R is fixed at the beginning of Section 4). Moreover, for every € € D(0,¢), the
identity

Lo (W) (T, m,€) = W (z,m, €) (57)
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holds for T € Sb, m € R and € € D(0,€), where p > 0 and S, is a finite sector of bisecting
direction d.

d

Proof We recall wfl € EXP{ 5,100

,» which implies there exists C‘bkl > 0 such that
K log2 |T + 6|

+oalog|t + 8|>
210g(g) £

ot e = € 0

for every t € D(0,p) U Uy, € € D(0,€). Direct calculations entail the existence of
2 3
Cwlq, CW’q > 0 such that

”WZI(‘L',m,G)”(ﬁ,#) < Cf,kl

for every t € D(0, p) and

K10g2|r|

+ o log |r|>
2log(q)

||WZI(T,m,e)||(ﬁ‘#) < Cf,kl exp(

for every T € U, with |t]| > p. Definition 5 and Lemma 4 guarantee that for everyg > 0 the
function Eg;l e (wf1 (r,m,€)) defines a bounded holomorphic function in R ; 5 N D(0, r1) for
0<n < q(%“")/" /2 and values in the space Eg ;).

We now give the proof of identity (57). For this purpose, we consider equation (32) sat-
isfied by w,‘fl(r, m, €) and divide both sides by 7%. One has

, 1 4
Q(im) (qkykatki-D72 Wi, (T, €)

d,
_ TP o,—dD/K
- (ql//q)(dD+k])(dD+k1—1)/2 q

RD(in)wZl (t,m,€)

b1 Ajo=di g s e
eBMnt= AL Tt 5€_T_1 1 R p
' Z<Z (gVh) ek e +ha-1)/2 % W(C)"E(Wl’e) - W/q(f’m’e))
=1 “ier,
1
+ (qUk Yk (a-1)72 Vi (T,m, €). (58)

We now take g-Laplace transform of order « and direction d at both sides of (58). In
view of Proposition 7, one has

L:d

- (.L,dDo,de/K Wzl (‘L', m, E)) _ (ql/K)dD(dD_l)/Z‘L'dD,Cd (Wzl (T, m, 6)) (59)

q q;1/x

Also, for every1 <{¢{ <D-1and X € I, one has

d,
5@—,’(”71'[—1

EZ;I/K (e (Coelm, ) 5 Wi (t,m,€)))

dy o(ds =1)/2 *dl—’zwrl
_ (L \%neldye— dy e ko d
= (q ) %ta, L

p_ye (C,\,g(m,e) Rt wfl(t,m,e)). (60)

We now proceed to justify the change in the order of integration in the expression

d d
Lo/ (Ck,e(m, €) ke wh, (T, m, e)).
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For every m; € R and r > 0, we define the function

Co,e(m — my)Ry(imy)w§, (ré, my, €)

(mlxr)H E(Wll,}") = id
(H)qw(%)r

fort € R,;5 N D(0,r1), m € Rand € € D(0, €).
Taking into account (26), Proposition 10 and (17), one has

C loa? reid +5 )
S < ot " Rl P e exp i+ aloglret + 81
E(my,r)| < - r
1 Coe U+ |m —my (A + [ ) 32§ (%)
2log(g)

form; e R, r>0.
Integrability follows from identical reasoning as that were applied at (14) regarding in-
tegrability with respect to variable 71, and the next estimates on the expression

1 5 ;
exp(% +alog|re + 8|)

)

(61)

«log?(177)

3/2
3 exp(15a9

On the one hand, if 7 > p, then (61) is bounded above by

2(r
732 4 ) ex (/clogz(r+ 5) K log (7))
2log(q) 2log(q)
Y Kzli?é;u(;ﬂ B2 4 5) ex (K(logz(r +8) —log?(r)) L log(r)log 7] )
2log(q) log(q)

There exists Cs; > 0 such that log?(r + §) — log?(r) < Cs; for every r > p, and under the
k log(r)log|z|

ieelq) is upper bounded by r?

assumption that |7| < r1, the term r=3/2(r + §)* exp(

This yields integrability of (61) with respect to r.
)

K10g2( Gl

On the other hand, if 0 < r < p, (61) is estimated from above by Cs,r~%/% exp(— SToal0) )

for some Csy > 0. This function is rewritten in the form

Copr ™ exp (_ « log2<r)) exp (_ «log? || ) exp (K log(p)log 7| )
2log(q) 2log(q) loglg) )

which is integrable with respect to r, for r € [0, p].

The function E(my, r) is integrable in R x [0,00) for € R ;5 N D(0,r1), m € R and
€ € D(0,€p). One can apply Fubini’s theorem to conclude that

L2 (Coplm, ) 5% wh (x,m,€)) = Cyo(m, €) 5°¢ L3, (Wi ) (T, m,€), (62)

T €R,;5ND(0,r1), m € Rand € € D(0, €).
By means of (59), (60), (62) and (38) one obtains that (58) is transformed from the ap-
plication of g-Laplace transform of order « along direction d into

(o S W)

(ql//q )/q k1-1)/2

(ql/K)dD(dD—l)/Z d p
DRD(Lm)Eq e (w,q)(r, M, €)

= (g¥/kr)dp+hn)dp +hi-1)72
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AL
= +8p-1
D-1 AAZ dll(ql/K)d)Ll e—1)/2 d)‘[O'q k2 ¢
+
(=1 “Aely

(gV/R) @ +hk) s e +ha-1)72 (2712

< (Cutlm) 5 £, () )

1
+ gyt V(T me) .

We multiply both sides of the equation by t*2 (g% )kti=D72(gl/k2)=ka(k2=D/2 6 obtain

Lt (wl)(t,m,e)
q;1/k Nk,
Q(lm) ( 1/ky )k2 1/(2 1)/2

= A(klx k2’ K, dD)TdD+k2RD(lm)£q ;1K (Wzl)(f, m, 6)

_%ut
+8¢-1
d)‘lO' Thy

. Z(ZEAM d”B (ki ko 6,y ) —— 17— (27)12

rely

x (Cye(m, €) x¢ qu/K(wZI)(r,m,e)))

rh

+ (qR2 Yo leD72 Yy (T, m, €), (64)

where

( 1//(1)/(1 (k-1 /Z(ql/K)dD(dD—l)/2
(ql/kz )/Q ko—1 /Z(ql/kl)(dD+k1)(dD+k171)/2

A(kb k21 K, dD) =

and

B(k1 k2 . d e) (ql/k])kl(kl—l)/Z(ql/K)dA,g(dA,g—l)/Z
yR2, K5 U},

(qI/kZ )kz(kz—l)/Z (ql/kl )(dk,[ +k1)(dk‘[ +k1-1)/2

foreveryl<{<D-1and X € ,.

Standard computations allow us to prove that

Alky, ko, i, dp) = (gVke) PN,

—(dy ¢ +ka)(d;, ¢ +ko—1)/2
Blky, ko, K,y ) = (‘Zl/kz) Gresl)lderia=i2,

Taking these values into (64), we observe that

Tk ﬁ;;l/K(WZI)(T; m,€)

Q(im) (qV%2 ko172

rdp+ky EZI/K(W%)(T, m,€)

= Rp(im) (q'/%2)dp+h)dp k172

8¢ _m_l
D-1 eDre=diepdipthag O R 1
(X -
gl/ke)dierka)d o tko-1)12 (27 )1/2
=1 ‘el
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X (Cuelmre) e L2 (Wl )z, m,e»)

ke

+ (qVk2)lalla—D) 72 ) (65)

d

recovering equation (47). This yields £7;,

(Rd,S ND(0,r;)) x R x D(0, €g).
Let SZ be a bounded sector of bisecting direction d such that % C (R45ND(0,71)) NSy
We recall this is always possible from the definition of R ;5. One firstly observes that both

(Wzl)(r, m, €) is a solution of (47) for (z,m,€) €

[IZ;I /K(wfl )(t,m,€) and wZz (t, m, €) are continuous complex functions defined on SZ x R x

D(0, €p) and holomorphic with respect to T (resp. €) on SZ (resp. D(0, €p)). This assertion

d

can be checked when regarding WZZ(T, m,€) in Proposition 11, and for £,

(le)(r,m,e)
from the properties which are endowed by this function from w,fl(t,m,e) which were
pointed out in Proposition 10.

Let € € D(0,¢p) and put 2 = min{e, v}, where v is stated in Lemma 5. We define the
auxiliary Banach space Hg 1, o) consisting of all continuous complex functions (z, m) —

h(t,m), defined on SZ x R, holomorphic with respect to t variable in S?, such that

ks log® ||

[z, m] 21og(@)

sup (1 + [m])" e/l exp(

reSZ,meR

—Qlog|t|>|h(r,m)|

Binko,2) '_

< OQ.

d

We observe that, for every € € D(0, €0), £33,

(wzl)(t, m, €) belongs to Hg . 1, o) because

d da
reR;;—PD(O,n) H ‘Cq;l/fc (Wkl)(t’ m,e) H (B,1) < 00

This implies the existence of positive constants Bz ,), Czw,) such that

L2 (W) (T, m,€)| < By (1+ |ml]) e P

ky log® ||

< Crgwy (L+ m]) e P! eXp( 21og(g)

+Qlog|t|>

for all T € SZ, m € R. Also, wfz(r, m, €) belongs to Hg, i, in view of (11), and also
Vi, (T, m, €) belongs to Hg , 1,,0) taking into account (39).

We conclude the proof of (57) by demonstrating that the operator Hj, defined in (54)
admits a unique fixed point when restricted to the elements in a certain closed disc in
Hg, 10,0, whilst EZ;UK (w,‘f])(t, m, €) and wfz (t,m, €) are both fixed points belonging to that
closed disc in Hg,, ky,0)-

For that purpose, one can state analogous results as Lemma 3, Proposition 4 and Propo-
sition 5 when considering the Banach space Hg,,, i,,). This result follows exact arguments
as there, so we omit the details. One can reproduce the same steps as in the proof of Propo-
sition 11 to conclude that if there exist small enough positive constants Sy, and ¢; ¢ for
1<£¢<D-1and A € I, such that (53) holds, then equation (47) admits a unique solution
in the space Hig . k,,0). Bearing in mind that E;’;UK (WZI)(‘C, m, €) and WZZ (t,m, €) both solve
(47) and belong to B(0, ) C Hg,1.k,,9), they both coincide in the domain Sz xR x D(0, €),

and the result follows. g
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Corollary 1 Under the hypotheses made on Proposition 12, for every m € R and € €
D(0, €p), the function T +—> EZ;I/K(WZI(T,m,e)), holomorphic and bounded on the domain
R ;5 N D(0,r1), can be analytically prolonged to an infinite sector of bisecting direction d,

Sy, and there exists kaz > 0 such that

kylog?|7|

|£Z;1/K (Wi (t,m,€))| < Cuy, (1 + [m]) e eXP( 2108(q)

+ vlog |‘C|> (66)

for every T € Sy. Here, v is obtained in Lemma 5. In addition to that, the extension is con-

tinuous for (m,€) € R x D(0, €g) and holomorphic with respect to € € D(0, ).

5 Analytic solutions of a linear g-difference-differential equation
Let ki, ky, D be positive integers such that k; < k, and D > 3. Let « > 0 be defined by (23).
Let g € R with g > 1 and assume that for every 1 < ¢ < D -1, I, is a finite nonempty subset
of nonnegative integers.

Let dp > 1 be an integer. For every 1 < £ < D — 1, we consider an integer §; > 1. In
addition, for each A € I;, we choose integers d; , > 1, A, > 0. We make the assumption
that

Si=1, 8¢ < 80n1 (67)
foreveryl <{<D-1.

We assume that

dye dp-1
Ao >doy, — +1>4,
M= Uyl k2 — 0¢ kz

+1>6 (68)

foreveryl <¢ <D-1landall 1 € I,. Let Q,R; € C[X] with

deg(Q) = deg(Rp) = deg(R¢),  Q(im) #0,  Rp(im) #0 (69)

foralll<f¢<D-1and meR.

We require the existence of an unbounded sector

Sorp = {Z e C:|z| = rorp, |arg(z) - dQ,RD| < TIQ,RD}

for some rqr;,, ok, > 0 such that

Q(im)
———— € S0rp> eR. 70
Rp(im) = 2% ™ (70)
Definition 6 Let ¢ > 2 be an integer. Let £, be an open sector with vertex at the origin
and radius €, for every 0 < p < ¢ —1 and such that § N & # ¥ for every 0 <j,k < ¢ —1if
and only if |j — k| <1 (under the notation £ := &) and such that U;;é &, =U\ {0} for some
neighborhood of the origin Y. A family (£,)0<,<c-1 satisfying these properties is known

as a good covering in C*.
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Definition 7 Let (£,)o<p<.-1 be a good covering in C*. Let 7 be an open bounded sector

with vertex at 0 and radius 7 > 0. We make the assumption that

/(2
O<ep,rr<l, v+ Tog( )log(rT) <0,
o)
gq o
K
o+ log(eorr) <0, €ory < q(%*V)/kQ/Z
log(q)

for v constructed in Lemma 5.
We consider a family of unbounded sectors Uy, with bisecting direction 9, € R and a

family of open domains ’Rgp i=R,,5 ND(0, €orr), where

£l
1+

r

RDP,S:{TEC*:

><§f0reveryr20}.

We assume 0,0 < p < ¢ —1, are chosen so that some conditions are satisfied. In order to
enumerate them, we denote by g, () the roots of the polynomial P,,(7) defined in (49). We
take an unbounded sector with vertex at 0 and bisecting direction 9, S5,, 0 <p < ¢ -1;
and we choose p > 0 such that:

(1) There exists M; > 0 such that (50) holds forall m e R, 7 € S5, U D(0, p), all

O<p<g-landallO</<dp-1.
(2) There exist M, >0 and [y € {0,...,dp — 1} such that (51) holds for every m € R,
TES,, UD(0,p),andall0 <p <¢-1.
(3) Forevery 0 <p <g¢ -1, wehave Rgp N ’ngl #@,and forallz € T and € € &,, we
have that et € Rgp. Here we have put Rgg = Rgo.
The family {(Rapj)ogpgg—hD(O’ p), T} is said to be associated to the good covering

(511)05175;—1'

We consider a good covering (£,)0<p<c-1 and a family {(Rap,g)ospgg,l,D(O, 0), T} asso-

ciated to it. For every 0 < p < ¢ — 1, we study the next g-difference-differential equation

i,
QAo (t,2,€) = ()P0, Ro(d:)u™ (8,2, ¢)

D-1

oS (Detetaio e omantes )

e=1 “iely

+ 0,7 (t,2,€). (72)

The operator o, acts on variable ¢. The coefficients ¢, ¢(z,€) with1 < £ <D-1land A € I,
and the forcing term f°¢(¢,z,¢) are constructed as follows. For every 1 < ¢ < D —1 and
A € I and every integer n > 0, we consider the functions m — C; ,(m,€) and m +— F,(m, €)
belonging to the space Eg,,,) for some > 0 and p > deg(Rp) + 1. We assume that all these
functions depend holomorphically on € € D(0, €p). Moreover, we assume that there exist
CM, Cr > 0 such that (26) and (27) hold foralll1 < £ <D-1,A € I;, n > 0 and € € D(0, €p).
Then we put

ez €)= FH (me Cou(m,e€))(2), (73)
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which, for every 1 <{¢ <D -1, A € I;, defines a bounded holomorphic function on Hg X

D(0, €p) for any 0 < B’ < B. We assume that the formal power series

.L.}’l
1,h/q (T; m, E) = ZFH(W[}G) n(n=1) ’

n>0 (611/1(1 ) Tz

which is convergent on the disc D(0, p), can be analytically continued with respect to t
as a function 7 — 1/fk1” (r,m, €) on an infinite sector Uy, of bisecting direction 9,, and

0

glf:lp(r, m,€) € Exp, ) for some « > 0, and such that there exists Sy >0 with

p
k1,B,1.0,p
“1//:11’ (T’m’e)”(kl,ﬁ,u,a,p) = gwkl’ 74)

which does not depend on € € D(0, ¢p). Lemma 5 guarantees that the function
% Op Op
Vi, (Tm,€) =L, (h=> ¥ (hym, €))(7)

is an element of the space Exp(a,f’2 ) for some v € R.

By
Moreover, we get a constant Sy > 0 with

||‘ﬁ:f(f’m’e)||(k2,,s,u,u) = Sy, 75)

for every € € D(0,¢€p). Without loss of generality, one can reduce the opening of sector
Sb, so that it might be considered the corresponding one involved in the definition of the
space Exp(a,g - I view of the proof of Lemma 5, the constant Sy, depends on Ly, In
such a way that Sy, (;“1,,,(l ) = 0 when Sy, tends to 0. One can apply g-Laplace transform of

order k, to the function w,?; in 7 variable and in direction 0,, and obtain that the function
? ?
F° (T, m, €) := L, (t— Vit (t,m,€))(T), (76)

is a holomorphic function with respect to T variable in the set Rap,S N D(0,r) for any
O<n < q(%“’)/kZ/Z.
We define the forcing term f°7 (¢, z, €) by

for(tz,€) = F (m—> FP(et,m, €))(2), (77)

which turns out to be a bounded holomorphic function defined on 7" x Hg' x &, provided
that (71) holds.

The next results provide estimates of the difference of two consecutive solutions of equa-
tion (72) with respect to the perturbation parameter. They can be of two different natures
depending on the existence or not of singularities of some auxiliary equation in between
the integration lines where the solutions of (72) are constructed. This phenomenon, stud-
ied in the sequel, turns out to be the reason for different levels to appear on the asymptotic
behavior of the solution with respect to the perturbation parameter.

We first describe the procedure to solve equation (72) and the nature of its solution,
crucial in the asymptotic behavior to be described afterwards.
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Theorem 1 Under the construction made at the beginning of Section 5, assume that con-
ditions (67), (68), (69) and (70) hold. Let (£,)o<p<c-1 be a good covering in C*, for which a
family {(Rap,g)oipfg_l,D(O, p), T} associated to this covering is considered.

Then there exist large enough rqr,, and constants &y >0 and § >0 for 0 <€ <D -1
and )\ € I; such that if

Cr< Sy Cie <Gt

then, for every 0 < p < ¢ — 1, one can construct a solution u®# (t,z,€) of (72), which defines

a holomorphic function on T x Hg x &, for every 0 < ' < B.

Proof Let 0 < p < ¢ —1 and consider the equation

Q(im)aqLIDP(T, m,€)

D 4
= T%6,2 " Rp(im)UP (T, m, €)

D-1
1 o0 )
+ Z <Z de,i.eAx,e—dx,é (23)1/2 / CM(m —my, €)Ry(imy)

=1 “xely o

x U™P\qg™t T ,my,€)amy | +o,07P(1,m,e€).
uer (g d F° (T, m, €) (78)

Under an appropriate choice of the constants ¢, and ¢, forall 0 <¢ <D-1and A € I,
one can follow the constructions in Section 4 and the properties of g-Laplace transfor-
mation described in Proposition 7 in order to apply Proposition 11 and obtain a solution
U® (T, m,e) of (78). This function can be written as the g-Laplace transform of order k,

in the form

U (T, m,€) = —, (79)

1 / we? (u,m1,€) duy
L, Opn(f) u

TT 1/ky

q Yp

where L, = R,V C So, U {0} is a half-line with direction depending on T'. Here,
WZ’ (tr,m, €) defines a continuous function on (R’;p US,,) x R x D(0, €9), which is holomor-
phic with respect to (z,€) in (Ré’p U Ss,) x D(0, &) for every m € R. Moreover, it satisfies

the fact that there exists C >0 such that
ko

kylog?|t|

Tg(q)+v10g|f|> (80)

o L pim
w T,m,e€ <C — € ex
iy (rm, €)= vy (Lt || P

for some v € R. This is valid for t € Rgp USs,, m € Rand € € D(0, €). Taking into account
Proposition 12, the function w:;’ (t,m,€) is the analytic continuation with respect to ©

variable of the function given by

T =

Tl Ly}} ®ql/K(%) u’
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where LV} =R, eV C Sy, U{0} is a half-line with direction depending on 7, and analytic
in the set Rap,é ND(0,r) for0<r < q(%‘o‘)/’( /2, for some o € R. The function w:f(t, m,€)
is a continuous function defined on (D(0, p) U Us,) x R x D(0, €9) and holomorphic with
respect to (7, €) on (D(0, p) U Us,) x D(0, &) for every m € R. In addition to that, one has

’wk T, me)|<C 2

! mm|exp(fclog2|r +3

—(1+|m|) 2102@) +alog|r+8|) (82)

for some C ap,S > 0, valid for every 7 € (D(0, p) U Us,), m € R and € € D(0, €). Indeed,

wk is the extensmn of a function wy, (t,m, €), common for every 0 < p < ¢ — 1, which is
continuous on D(0, p) x R x D(0, €y) and holomorphic with respect to (t,€) on D(0, p) x
D(0, €p).

The bounds attained in (80) with respect to m variable are transmitted to the func-
tion U° (T,m,e) described in (79). This guarantees that one can define F'(m
U° (T, m, €))(z) in such a way that the function

%(t,z,€) 1= F ' (m—> U (et,m, €))(2)

sz (l/l, m, 6) du
d 83
(27‘[)1/2 TT g1k / /L ® 1/k2(6t) u ~, oxplizm) dm (83)

defines a bounded holomorphic function on 7 x Hg' x &, in view of (3) in Definition 7.
The properties held by inverse Fourier transform, described in Proposition 8, allow us
to conclude that u° (¢, z, €) is a solution of equation (72) defined on 7 x Hg x &,. O

Proposition 13 Let 0 < p < ¢ — 1. Under the hypotheses of Theorem 1, assume that the
unbounded sectors Uy, and U, are wide enough so that Uy, N U, contains the sector
={t € C*:arg(t) € [0),0p41]}. Then there exist K; > 0 and K, € R such that

uap;apﬂ
k
‘uapn(t,z,e) - uap(t,z,e)‘ <K exp(— © log? |e|)|€|K2,
2log(q) (84)
ko
241 (t,2,€) — £ (8, 2, €)| 51(1exp< Tk |e|>|e|’<2

foreveryteT,ze Hp,and e € E,NEp,1.
Proof Let 0 < p < ¢ — 1. Taking into account that Us,,,, S Uy, N LIDPH, we ob-

serve from the construction of the functions U and U°#+ that £

D174—1
q 1/k

Dp+1
ql/K(wk )(t,m, €) and
(w a’M)(t m, €) coincide in the domain (Rb N Rb ) X R x D(0,€). This entails

1
the existence of wk” o+

(t, m, €), holomorphic with respect to t on Rb U ’ng, contin-
uous with respect to m € R and holomorphic with respect to € in D(O €0), which coin-

cides with £°7 (WZf)('C,Wl,G) on Ré’p x R x D(0, €y) and also with £ o1 (wzf”)(r,m,e) on

q;1/k q;1/x
Rg 4 XRx D(0, €p).
i b i b :
Let P3040 be such that Loy, €77 S Rap and Po,0,0 €771 S Raw' The function

0 1
wkf K (4, m, €)

®q1/k2 (5)

U=
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Figure 1 Deformation of the path of integration,
first case.

is holomorphic on Rgp U Rgm for all (m,€) € R x (&, N &py1) and its integral along the
closed path constructed by concatenation of the segment starting at the origin and with
eire

ending point fixed at py,0,,,, "7, the arc of circle with radius Po,,0,, CONNECting oo,

Dp+1 ap+1

i iVp+1 b iVp+1 i iffer-
with py,,0,,, €771 € wal’ and the segment from py,5,,,€77*! to 0, vanishes. The differ

ence u°*1 — 4 can be written in the form

u®(t,z,€) — u®r(t,z,€)

/ / " (u,m, €) (, )du 4

exp(izm)— dm
(27‘[)1/2 T 41k Lypi1ooy, 2pun O Ak (et) u
wk P (u,m, €) du

1 - B — exp(izm)— dm
(27T T l/kz LVp Pop 21 ql/kz( ) u

Dpx p+1
Wiy (u,m, €) d
/ / Tl 0 o p(iom) 2L dm, (85)
(27‘[)1/2 T Uk C ®q1/ 2(5) u

PO p,0 41 VPV pHL

where Ly, = [pap,g/, +00)e’Vi for j € {p,p + 1} and Co is the arc of circle

’papvap-fl Dp.?lp+1rypv7/p+l

connecting py, o, €7 with py, o, €77+ (see Figure 1).
Let us put

I /27 NUAZO) . dud
1:= ‘(zn)l/znl/sz /L O (Z) exp(tzm)7 m|.

Yp+l:Pop, Op+1

In view of (80) and (17), one has

Copu 1/2
Wiy lez| /oo e Blml-m3(@) dm
Cpi32m)V2 Tty Joo 1+ |m|)»

||
o ko log2 1 ) -3/2 ( (|et\ )>
X exp| ———— +vlog|u| )|u|“ex —— | d|u|. (86)
/p p( 2loglg) P\ 210a(g)

9p:0p41

We recall that we have restricted the domain on the variable z such that |J(z)| < 8’ < B.
Then the first integral in the previous expression in convergent, and one derives

Co
I < sz (EOFT)I/Z/
1 < -7
0

(2m)1/2 Tk

]

ky log? ky log (124)
exp 2 102 |I/l| exp| - 2 let| |u|v—3/2 d|u|
2log(q) 2log(q)

op¥pi1
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for some C opi > 0. We derive
Yy

exp(kz log? |u| ) exp(—k2 logz(l%l))
2log(q) 2log(q)

(—log? le| - 21og €| log |¢| - log® |t|))

( ka
P 2log(q)

X exp( o )(log|u|10g|e| +log|u|10g|t|)>

From the assumption that 0 < €p <1 and 0 < r < 1, we get

/(2 ,k_210g(r )
exp| — log |e|log |t] ) < || Toe@ 5T,
XP( Tog(q) g |€|log | |> <€l

k o
exp 2 10g|u|10g|6| < |E|10u(q 1 E,(pbp aP‘rl)
log(g)

forteT,ee&NEpu, lul = po,,,,,and also

exp ko log |ullog|t] | < |t|b§72(‘1>]°g(p°1"°1’+1) if p <|ul <1
Tog() < oy <l <1

S log(r7)

if lu >1

k:
exp( —2—log |ullog|¢] ) < [u] ™0
log(q)

for t € 7. In addition to that, there exists Ky 0,10 > 0 such that

k—zlog(m 2,.1)
sup x 1oe(@) P op+1l exp
x>0

log=(x) | < K; .
2]0g(q) g())— k2,00, 5414
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(87)

(88)

(89)

In view of (87), (88), (89), and bearing in mind that (71) holds, we deduce that there exist

K' € R, K? > 0 such that

log? ks log? (14 - k: Q
exp(w) exp<_2—|“) lul” < K2 exp(— 2 log2 |e|)|e|1<1
2log(q) 2log(q) 2log(q)

fort € T,r> po,0,,, and € € £, N &y Provided this last inequality, we arrive at

KCO_H

=~
A

op:0pi1

. ks i
=1<3exp< ) log |e|)|6|’(1

for some K3 >0, forallt e T,z e Hg and € € E,NEpur.
We can estimate in the same manner the expression

wk (u,m, €) du
I := —2 " explizm)— dm
> ‘ 2702 71 kg / /L 0,1k () plizm) u

Vpﬂapa

sz (60'”7)1/2 *© d|ul ky 2 K1
=< 373 SXP| — log” |€] )]€|
Coks 8(2m)12 Tk Jp |4 2log(q)

(90)
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to arrive at the existence of K* > 0 such that

I, < K* exp( log |e|)|e|f<1 (91)

ko

0g(q)
forallt € T,z € Hy and € € £, N &,,1. We now provide upper bounds for the quantity
Op, p+1

1 1 /OO/‘ sz (M m, E) . ( . ) d
_ - — " explizm m|.
¥ (2m)v2 Tk J-c0 Jc, Oql/kz(a) P

POp,D 1 VP Vpl

The estimates in (80) and (17) allow us to obtain the existence of C:f::p *! 5 0 such that

0p,0p+1
Cwi P 1 €1/2 %) e—ﬂ|m\—mﬁ(z)
JApi o — dmlypa - el
(2m) T giiky Cq,kzspap,ap“ oo (1 +|ml)
2/ Popopi
WL )
2log(q)

forall t € T,z € Hy and € € £, N &,,1. We can follow analogous arguments as in the

previous steps to provide upper estimates of the expression

PopOp,
12 k2 log’( 01‘7:; —r)
e exp| ———————
2log(q)
Indeed,
P +
[ Felog (ZE)
[t exp| —————
2log(q)
log? kylog(ppyo,,1)  kaloglha o)
—e _M |E| log(Z) 2l |t| log([z;) &
2log(q)

ks 2 2 1/2
exp —log” |e| — 2log |e|log |t| — log” |£]) | |£]™~.
(210g(q)( )

From the assumption 0 < €y < 1 we check that

k2 log(r )
exp| - log|e|log|t|) <lel” T loerT
( log(q)

fort € T, € € £, N &y Gathering (89), we get the existence of K° € R, K® > 0 such that

Popd
ko log?(—222tLy N k g
|t|1/2exp(_—“|>§1(6exp<_ 2 1og2|e|)|6|1<5,
21log(q) 2log(q)

to conclude that

N ky
I3 5K7eXP< 2@ log® |e |>|6|K (92)
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for some K7 >0,all¢ €T,z e Hg and € € £, N &,,1. We conclude the proof of this result
in view of (90), (91), (92) and the decomposition (85).

In order to obtain analogous estimates for the forcing term f°7, one can follow analogous
estimates as for #°” under the consideration of the estimates in (75). O

We now state the second situation one can find when estimating the difference of two

consecutive solutions. For this purpose, we enunciate the following.

Lemma 6 Let 0 < p < ¢ — 1. Under the hypotheses of Theorem 1, assume that Uy, N
Us,,, =Y. Then there exist Klf >0, Mf € R such that

[Caiie (w ) @m,€) = Lot (wif ) (. m, )]

§Kpﬁe’ﬁ|""(1+ |m|)7# exp(—#g(q)logzltI)Irlle (93)

foreverye € (,NEpn), T € (Rgp N ’ngl) and m € R.

Proof We first recall that, without loss of generality, the intersection ’Rgp N Rgpﬂ can be
assumed to be a nonempty set because one can vary § in advance to be as close to 0 as
desired.

Analogous arguments as in the beginning of the proof of Proposition 13 allow us to write

CD;HI (Wziwl)(r m,€) — ,qu/K(WZf)(‘L',Wl,E)

q;1/k
in the form
0p+l
P+
1 / W]q (ur m; 6) du
T x ® 4 u
qie Lyps100p,0 41 q'e ( T )
Op
1 f w, (u,m, €) du
_ =
7Tq1//c LVP’/’Dp,DpH ®q1//c ( = ) u
. 1 / Wi (u, m, €) du (94)
Q. (% .’
T 0 4 u
4% JCon 0,1 1 7p01 O g (7)
where 03,0, Lyppopopr Lypiioopo,a and vap,vaypvl’wl are constructed in Proposi-
tion 13.

In view of (82) and (17), one has

If:

1 f sz (u,m,e) du
; o0 u

TT 1k

q TPPOp, D1

«clog? [re?? +5|

C .
LA / o exp(Tg s +aloglre™ +80) gy
o

< _ m log? (%) i
qux(s (1 + |m|) 0p:2p+1 exP(% Olig(l‘;)l ) '
log r
o exp(3yee + ¢1087) dr
- o 21log(q)
< Kpll(1+|m]) e Wl/ i)y
PP, 0y ex (K - ) g

IOg( )
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for some K;ﬁ > 0. By usual calculations, and taking into account the choice of « in (71),

one derives the previous expression equals

o0 «log|t|
KA1t (1+ ml) e exp( - log? |z / e "2 gy,
p,1| | ( | |) p 210g(q) g || ; 7

0p¥p41

which yields

IIL < K1f2 (1 + |nf1|)7#e_‘3‘”’| exp(— log? |r|> (95)

K
2log(q)

for some K 152 > 0. Analogous arguments allow us to obtain the existence of Klfg > 0 such

that
Dp+1
1 f wy (u,m, €) dy
7Tq1/K LVp+1'pr,Dp+l ®ql/K(¥) u
<KZ 1+ |m|) e P exp| - X log? 7| ). 96
<Ky (L Iml) P ~Ziogig %€ I (96)
We write
7 1 /‘ Wiy (u, m, €) du
2 qul/K C ®q1/l((%) u ’

PO p,0 1 VP VpHl

Regarding (82) and (17), one derives that

C o
w,q” e~Bim |7_-|1/2

Iy < 12 R
e (L4 mD" pg%, | Coud

x10g” 102 ,,0,,,1 ¢ +3]

Vp+l CXP(W +o IOg |,ngyap+1€i9 + 8|)
X 5 de
7 o log2(ZBpiL)
eXP(3 —Togtp )
B 2 paprbpﬂ
< KL |.L,|1/2 € P eXp _Elog ( || )
TP (L m))m 2 log(q)
with
C oy 2
w 1 Kk log*(00,,0,,1 +9)
K5, = 1Vpr1 = vl — - ( Z +alog(pa,,0,, +8)>.
pd P+ r Tl péﬁfawcq’,{g 2log(q) p:Op+1

Let Ksz = Klﬁ exp(—#g(q) logz(pap,apﬂ)). It is straightforward to check that

L L
I SKp,5|T|

12 SoEP2popn) Bl ( "logle') (97)

log(q) - exp _—
(1 + [m|)* 2 log(q)

From (95), (96) and (97), put into (94), we conclude the result. O
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Proposition 14 Let 0 < p < ¢ — 1. Under the hypotheses of Theorem 1, assume that Uy, N
Us,,, =Y. Then there exist K3 > 0 and Ky € R such that

k
‘u°p+1(t,z,e) - uap(t,z,e)‘ <Kj exp(——1 log? |e|) le|Xs,
2log(q)
(98)

[Ptz €) -2 (t,2,€)| < K3 eXp(— log? |6|> e[

ki
2log(q)
foreveryteT,zeHp and e € £,N Epar.

Proof Let0 < p < ¢ —1. Under the assumptions of the enunciate, one can not proceed as in
the proof of Proposition 13 for there does not exist a common function for both p and p + 1
defined in Rgp U Rgp+1 in the variable of integration when applying g-Laplace transform.
However, one can use the analytic continuation property (81) and write the difference

u®rtt —u as follows. Let po,,0,,, be such that py,0,,,€" € R} and po,0,, "7 € Ry

:ap+l p+1’

and let 6, ,.1 € R be such that pap,t,mlee!"!’*l lies in both Rgp and Rgp+1' We write

u®ri(t,z,€) — u®r(t,z,€)

/ / R o 24
explizm m
(271)1/2 T ik Lpetoopayn O,k (L)
/ / sz > (u,m,€) i )d
exp(izm)— dm
@) x v Lipoagopy © ik () P
2,04
/ / ka Pl(u,m,e) ( )dud
N ——— X exp(izm) — dm
() Talha Jooo Crap.0p1 o1 ¥pl ®q”k2(£) u
W) i
(277)1/2 TTqlka c O i (£) P u
P00 pi1 Opp+17P g2 Vet
£, 2
/ / Lhw (@, m,e) - [':ql/;((wkp)(f m,€)
(271 Q2m)2 Ak L0,p3,0,01 pst 0,1k ()
du
x exp(izm)— dm. (99)
u

iy; 1
Here, we have denoted L,,],,pbp’aw1 [0, 0 ,+00)e'l for j e {p,p +1}, C 00,0 1 Opips1Vps1 1S

the arc of circle connecting py, o .. €7t with py, o . €Pr+1, C is the arc of
pr9p+l p:Op+1 Y

29,0 pe1 Ippr1oVp

. . l]/ . 19 y 1 _ l'e , 1 . .
circle connecting py,,0,,,, €7 with po, ., €77+ ,Lo,pap‘aml =10, po,,0,,, 1677741, as it is

vep,pﬂ
shown in Figure 2.
Following the same line of arguments as that in the proof of Proposition 13, we can

guarantee the existence of K/>0and KK e R for 1 <j<4and5 <k <8such that

/ / Wk2 (wme) exp(izm)@ dm
(27‘1’)1/2 T itk L » CRV e u

Yp+1:Pop, oy

. k: &5
< 1(1 exp(—ﬁg(q) 10g2 |€|) |€|K ,
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Figure 2 Deformation of the path of integration,
second case.

‘ / / WIQ , (471:€) exp(izm)— dm‘
Qm)V2 o pus L C) Ukz( )

YPPOp,D il

A ko 6
<K, exp(—Tg(q) 10g2 |€|) |E|K ’

(100)

Dprbpd(

W/( I/l,m,f) dl/l
I3 = / / — _ explizm —dm‘
3 ‘ 22 Ve c ®ql/k2($) plizm) U

P20 1 Opp+17pl

. ky
51<3exp( p— )1 g Iel)lel
0p,0p41

1 1 /"O/ Wy, o (u,m,€) (, )dud
=|l-—— —CX wzm)—am
* (2m)12 Tk J-00 JC ®q1/ 9 (Z) P u

Pop, Op+1 rep,pﬂvl’[’

<K4exp< )log |e|>|e|K8.

ko
2log(q
We now give estimates for

(ka*l)(u m,€) — £q1/K(Wk1 Yu, m, €)

0p+1
L
q;1/k
’ Q)2 x I / /L O vk, (%)

000,041 0p.p+1

X exp(izm)@ dm‘. (101)
u

In view of Lemma 6 and (17), one has

L
J < Kp 1 /0" o-Bim=3(@m dm
T @r)2 e oo 1+ |m|)»

ME
/pap.ap+1 exXP(— gyagg log” lut)) |t dju|
X
0

< ko log? | % | 12 U
Cq:k25exp(7 log(qd )|et| | |

We recall that z € Hy for some ' < B. Then there exists K3; > 0 such that

L 1/2 ¥k _1og? Mg
: KFKn  |eV2rlf /vap,% exXp(=5iogr 108" DUl d|u)
= 172 = o2 | U 3/2°
(2m) TT Uk Cykrd ky M) |4

exp(3 Tz
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We now proceed to prove that the expression

fﬂap,ap+1 exp(— 21% log |z,t|)eX ky od? ¢ dlul
0 (kg log? Idl) P 2log(g) & |u|3/2—MpE

CXPT Toe@

is upper bounded by a positive constant times a certain power of || for every € € (£,NEy.1)
and ¢ € T. This concludes the existence of K3, > 0 such that

J5 < Kayle['? exp( log |e|) (102)

ki
og(q)

foreverye € (§,NEyi1), t €T and z € Hy.
Indeed, we have

Popp eXP(= ey log? |ul) k o2 d|u)
A T exp og” |€|

log? (13 2log(q) 3/2-ME
¢ (% igog(‘q)” ) £ lul !
equals
( al €] b log® | t|)
exp log? |e| - og” |e
2log(q) 2log(q)
Pop, 0,y k- kyloglet| 3 3.
x/ » plexp<_(l<+ z) 2|u|)|u| ot HME g (103)
0 2log(q)

Given m; € R and m, > 0, the function [0,00) 3 x — H(x) = ™ exp(—m1, log?(x)) attains
its maximum value at xo = exp(3,~ L ) with H(xp) = exp( ) This yields an upper bound
for the integrand in (103); the expressmn in (103) is est1mated from above by

(M —3/2)*log(q)
Popopn exP( 20 + k)

1 k% kz(Mpﬁ—B/Z)
ex —ky + ki ) 102? €| ||e]” <2
p(Zlog(q)<K+k2 2 1) g | |>| |

1 kz ko (ME ~3/2)
N / 1 t t k+ky
eXp<210g(q)(/<+kz Q) ¢’ |>| |

1 k2
X exp B ky ) log |e|log|¢] ). (104)
log(q) \ x + k3

2
The second line in (104) is upper bounded for every ¢ because Klfr—zkz < k, and also one has
an upper bound for the third line in (104) is 1. Regarding (71) and taking into account that

k2
K +k2

- /(2 = kl,

the expression (104) is upper bounded by

ko (M -312)
Kazle| <

for some K33 > 0. The conclusion is achieved.
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The result follows from (99), (100) and (102).
The proof for the estimates of f° is analogous as that for #°. In this case, one has to
take into account (74), (75) and (77) to apply the same arguments as above. O

Example Let A > 0. An example of problem under study in this work is given by the equa-

tion

3,0, +iA)’u(qt, z,€) = (€1)’d,u(q”t, 2, €) + tecia(z, €)ulqt, z,€)

+ tZESCLQ(z, 6)3zu(q2t,2,6) +f(qt1Zy 6);

with ¢;11, ¢15 and f constructed following the procedure described at the beginning of
Section 5.

Here, D = 3, Ry = 1, Ry = R3(x) = x and Q(x) = (x + iA)*R3(x). Every condition on the
constants are satisfied. Also, we observe that one can choose large enough A > 0 in order
to choose large enough rq,,, > 0, with the only forbidden direction given by the negative
real ray.

6 Existence of formal series solutions in the complex parameter and
asymptotic expansion in two levels
In the first part of this section, we develop a two-level g-analog of the Ramis-Sibuya the-
orem. This result provides the tool to guarantee the existence of a formal power series
in the perturbation parameter which formally solves the main problem and such that it
asymptotically represents the analytic solution of that equation.
This asymptotic representation is held in the sense of 1-asymptotic expansions of certain

positive order.

Definition 8 Let V be a bounded open sector with vertex at 0 in C. Let (I, || - ||r) be a
complex Banach space. Let g € R with g > 1 and let k be a positive integer. We say that a
holomorphic function f : V — F admits the formal power series f(€) = Y oumofne” € Fle]
as its g-Gevrey asymptotic expansion of order 1/k if for every open subsector U with (1 \
{0}) C V, there exist A, C > 0 such that

N
g
n=0

for every e € U and N > 0.

N(N+1)
(2]: |E|N+l

< CAN+1q
F

The set of functions which admit null g-Gevrey asymptotic expansion of certain positive
order are characterized as follows. The proof of this result, already stated in [1], provides
the g-analog of Theorem XI-3-2 in [20].

Lemma 7 A holomorphic function f : V — F admits the null formal power series 0 € Fle]
as its g-Gevrey asymptotic expansion of order 1/k if and only if for every open subsector U
with (U \ {0}) C V, there exist constants K, € R and K, > 0 with

K
[f@)]ls < Kaexp (—2]0;@ log’ |e|) el

foralle € U.
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We recall the one-level version of the g-analog of the Ramis-Sibuya theorem proved
in [1].

Theorem 2 (¢-RS) Let (F, || - ||r) be a Banach space and (E,)o<p<c-1 be a good covering
in C*. For every 0 < p < ¢ — 1, let G, (€) be a holomorphic function from &, into F, and let
the cocycle A,(€) = Gyi1(€) — Gpl€) be a holomorphic function from Z, = £, N €, into F
(weput E. = E and G = Gy). We also make the following assumptions:
(1) The functions G,(€) are bounded as € tends to 0 on &, for every 0 <p < ¢ —1.
(2) Forall 0 <p < ¢ -1, the function A,(€) is q-exponentially flat of order k on Z,, i.e.,
there exist constants C,, € R and C;, > 0 such that

1 k
|2, < Colel% eXp<_210g(q) log® |e|)

foreverye e Z,,all0 <p<g¢ -1
Then there exists a formal power series G(€) € F(e] which is the common q-Gevrey asymp-
totic expansion of order 1/k of the functions G,(€) on &,, which is common for all 0 < p <
¢c—-1

The next result leans on the one-level version of the g-analog of the Ramis-Sibuya theo-
rem and states a two-level result in this framework. It is straightforward to generalize this

result to a higher number of levels, but for practical purposes, we develop it just in two.

Theorem 3 Let (F, | - ||r) be a Banach space and (£,)0<p<c-1 be a good covering in C*. Let
0 < ki < ko, consider a holomorphic function G, : & — T for every 0 < p < ¢ —1 and put
A,(€) = Gpii(€) — Gyle) for every € € Z, := £, N Ep,1. Moreover, we assume:
(1) The functions G,(€) are bounded as € tends to 0 on &, for every 0 <p < ¢ —1.
(2) There exist nonempty sets Ij,I, € {0,1,...,¢ =1} such that L UL, ={0,1,...,¢c -1}
and I, NI, =@. Also,
- for every p € I, there exist constants K; > 0, M; € R such that

/(1
2log(q)

12,65 < Kile™ exp(— log? |e|>, € €Zy,

- and for every p € I, there exist constants K, > 0, M, € R such that

ky
2log(q)

[Ap(€) | < Kale|™ exp(— log? |e|>, € €Z,.

Then there exists a convergent power series a(€) € F{e} defined on some neighborhood of
the origin and G'(€), G*(¢) € F[€] such that G can be written in the form

Gple) = ale) + G},(e) + G;(e).
G}?(e) is holomorphic on &, and admits G(€) as its q-Gevrey asymptotic expansion of or-

der 1/ki on &, for every p € I; whilst Gf,(e) is holomorphic on &, and admits G%(e) as its
q-Gevrey asymptotic expansion of order 1/k, on &, for every p € I.
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Proof For every 0 < i < ¢, we define the functions A’l:(e) € O(Z)) forj=1,2 by

A= | 1O Hieh
0 ifief{0,1,...,¢-1}\J;
fore € Z;.
As an introductory lemma, we provide the following result without proof which can be
found in Lemma 8 of [1], and it rests on the arguments of Lemma XI-2-6 from [20].

Lemma 8 Under the assumptions of Theorem 2, for every 0 <i < ¢ —1and j=1,2, there
exist bounded holomorphic functions WV, : £ — C such that

Aj(€) = Wi, (€) - Wile)
forevery e € Z; (\Ilé (€):= \Ilé(e)). Moreover, there exist gof}, € F, for every m > 0, such that
forevery 0 <i < ¢ —1and any closed proper subsector W C E,, with vertex at 0, there exist
kp,Mp > 0 with

j X M+1 o M+1
. A A =
W(e) - E g™l <K,M,)"'q * ||
m=0 F

foreverye e Wand M > 0.

We now consider the bounded holomorphic functions a;(€) = Gi(€) — W}(e) — W (e) for
all 0 <i < ¢ —1and e € &. By definition, for j = 1,2 and i € I;, we have
ain(€) — ai(€) = Gia(e) — Aj(€) — A(€) = Ginl€) — Gi(e) — Ai(€) =0
for € € Z;. Therefore, each a;(¢) is the restriction on &; of a holomorphic function a(e)
defined on a neighborhood of the origin but zero. Indeed, a(e) is bounded on (Jo;-. ; &
so the origin turns out to be a removable singularity and, as a consequence, a(¢) defines a

convergent power series on the neighborhood of the origin (U,,._; &) U {0}.
One can finish the proof by rewriting

Gi(e) = ale) + Wi(e) + W2(e)

and bearing in mind Lemma 8. O

We conclude this section with the main result in the work in which we guarantee the
existence of a formal solution of the main problem (72), written as a formal power series in
the perturbation parameter, with coefficients in an appropriate Banach space, say i(t, z, €).
Moreover, it represents, in some sense to be precised, each solution u® (¢, z, €) of problem
(72).

This result is based on the existence of a common formal power series f (¢,z,€) which
is the g-Gevrey asymptotic expansion of order 1/k;, seen as a formal power series in
the perturbation parameter € with coefficients in a certain Banach space, of every f°
oné&,.

From now on, I stands for the Banach space of bounded holomorphic functions defined
on 7 x Hg, with the supremum norm,where g’ < g, as above.
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Lemma 9 Under the hypotheses on Theorem 1, there exists a formal power series

N e
f(t,Z,é) = me(t,Z)%,

m=>0

with f,,(¢,z) € F for m > 0, which is the common q-Gevrey asymptotic expansion of order
1/ki on &, of the functions f°, seen as holomorphic functions from &, to F, for all 0 < p <
¢c—-1

Proof Let 0 < p < ¢ — 1. We consider the function f° constructed in (77) and define
G{,(e) := (t,2) > f°7 (¢, 2z, €), which is a holomorphic and bounded function from &, into F.
Regarding (84) and (98), and taking into account that k; < k3, we have that (98) holds for
every 0 < p < ¢ —1. This yields the cocycle Aj;(e) = GJ; L1(€)— Gj;(e) satisfies the conditions
of Theorem 2 for k = ki, and one concludes the result by the application of Theorem 2.

O
Theorem 4 Under the hypotheses of Theorem 1, there exists a formal power series
Gm
it z€)= Y hu(t,2)— €F[e],
m!
m=>0
formal solution of the equation
dp
~ _ dp E*l ~
Q(3)o4i(t, z,€) = (et)™oy, > Rp(9,)i(t, z, €)
D-1
+ Z (Z e Bt o;‘f ez, €)Ry(0,)u(t, z, e))
=1 “rely
+0,f(t,z,€). (105)

Moreover, i(t, z, €) turns out to be the common q-Gevrey asymptotic expansion of order 1/k,
on &, of the function u®?, seen as a holomorphic function from &, into ¥, for 0 <p < ¢ - 1.
In addition to that, it is of the form

u(t,z,e€) = alt,z,e) + 1 (t, z,€) + thr (£, 2, €),

where a(t,z,€) € Fle} and i (¢, z,€), 02 (¢, z, €) € F[le] and such that forevery 0 <p < ¢ -1,
the function u® can be written in the form

u(t,z,€) = alt,z,€) + ufp (t,z,€) + u;”(t, z,€),

where € ulb” (¢,z,€) is an F-valued function that admits in (¢, z, €) as its q-Gevrey asymp-
. . 2 , ,

totic expansion of order 1/k; on &, and also € — u,’(t,z,€) is an F-valued function that

admits iy (t, z, €) as its g-Gevrey asymptotic expansion of order 1/k, on &,.

Proof For every 0 < p < ¢ — 1, one can consider the function u°0(t,z,¢) constructed in
Theorem 1. We define G,(¢) := (¢,2) = u,(Z,z,€), which is a holomorphic and bounded
function from &, into FF. In view of Proposition 13 and Proposition 14, one can split the set
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{0,1,..., ¢ —1} in two nonempty subsets of indices, ; and I, with {0, 1,...,¢ -1} = UL, and
such that I (resp. I) consists of all the elements in {0,1,..., s — 1} such that U, N U,
contains the sector Up, o, as defined in Proposition 13 (resp. Uy, N U, = #). From
(84) and (98) one can apply Theorem 3 and deduce the existence of formal power series
Gl(e), Gz(e) € F[e]), a convergent power series a(e) € F{e} and holomorphic functions
G,(€), G;(€) defined on &, and with values in I such that

Gple) = ale) + Gll,(e) + G;(e),

and for j = 1,2, one has Gﬁ,(e) admits G/(¢) as its g-Gevrey asymptotic expansion or order
1/k; on &,. We put

it z,€) = Y hult, z)%”: = a(€) + G (€) + GA(e).

m=>0

It only remains to prove that i(t, z, €) is the solution of (105). Indeed, since u° (resp.
£°r) admits (¢, z, €) (resp. f ) as its g-Gevrey asymptotic expansion of order 1/k; on &,, we
have that

lim sup |8E"‘u°”(t,z,€) - hm(t,Z)’ =0,
€08 1eT zeHy
(106)
lim sup |8;”f°”(t,z,é) —fm(t,Z)| =0
e—>0,eefp teT zeHy

forevery0 <p<g¢-land m > 0. Let p € {0,1,...,5 —1}. By construction, the function
u®» (t,z,¢€) solves equation (72). We take derivatives of order m > 0 with respect to € at
both sides of equation (72) and deduce that 3”1’ (t, z, €) satisfies

Q(3,)04 (0" u) (¢, 2, €)

d

m! 2+

§ : d, d, k

- m'm 183’1(6 D)t Loy’ RD(az)(aén”Dp)
my+my=m 14752

D-1
DY L!(agﬂeﬁu)tdu(ag"zw(z,e))Rg(az)o;«'(ag"uf'zo)

my'my'ms!
(=1 Aelp my+my+mz=m 112723

+04(0"f°%) (8, 2, €) (107)

for every (t,z,€) € T x Hg x &,. Welet € — 0 in (107) and obtain the recursion formula

m! d i—D+l
Q(0;)ohm(t,2) = Wt Poy, > Rphy_ap(t,2)
—dp)!
D-1 !
— B (872¢5 4(2,0) )R (8,) 05 My (8,
+KZI§ Z,A mylms! (E el )) o )Uq 3 (6:2)
= ¢ mp+m3=m Al
+ 0ufon(t,2) (108)

for every m > max{dp, maxi<¢<p-1,.er, Ax¢} and all (t,z) € T x Hg . Bearing in mind that
¢y¢ (constructed in (73)) is holomorphic with respect to € in a neighborhood of the origin,
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in such a neighborhood one has

Guze) =) 0¢)(@,0) (109)

o m!
for every1 < ¢ <D -1 and A € I;. By direct calculations on the recursion (108) and (109)
one concludes that the formal power series ii(t,z,€) = ), hn(t, )€™ /m! is a solution of
equation (105). O

7 Application
Let D > 3 and k; > 1 be integers. Let ¢ € R with g > 1 and assume that for every 1 < ¢ <
D -1, I, is a finite nonempty subset of nonnegative integers.

Let dp > 1 be an integer. For every 1 < £ <D -1, we consider § > 1, and for each A € I,
we take integers d; ¢ > 1, A, , > 0. We assume that

=1, 8¢ <dpn

foreveryl <f¢ <D -1andall A €I,, and also

d dp -1
Ay =>dy, 211>, D

1>6 110
i & +1=>0¢ (110)

foreveryl<¢<D-1andall A €I,.
We consider Q,R, € C[X] for all 1 < ¢ < D with

deg(Q) = deg(Rp) > deg(R), ~ Q(im) #0,  Rp(im) #0

foreveryme Rand all 0 <¢ <D -1. We take 8 > 0 and u > deg(Q) + 1.

For every1 <¢ <D -1and all A € I, the function m — C, ¢(m, €) belongs to the space
E,) for some 8> 0 and p > deg(Rp) + 1. In addition to that, we assume these functions
depend holomorphically on € € D(0, €), and also the existence of apositive constant C; ;
such that

|Cre(m, €| B = C.e (111)

for every € € D(0, €9).

Let Ny > 0 be an integer. We choose F(T,m,e) = YN0 F,(m,e)T" € Eg,,,)[T] which
depend holomorphically on € € D(0, €p). We assume there exist positive constants Ko, T
such that

1
[E,0m )5, <Koy

for every 0 < n < Ny and € € D(0, €p). Under this last condition, Bq,l//q (F(T,m,¢))(t) is an
o
element of Expy 5.,

1/fo (t,m,€). Following the same arguments as in Lemma 5 in [1], one can check that

) for some « € R and p > 0 and every p, which will be denoted by

~Blml| ks log? §
2 e og” |t + 6|
] (*

<C I 8 112
=S e & 2loglg) ¢ oglt + I) (112)

for some C,/,k1 > 0, valid for all € € D(0, o), T € Uy, UD(0, p) and m € R.
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We consider k, > k; as chosen in Section 4 and « determined by (23). From the fact that
the g-Laplace transform of some order provides an extension of the inverse operator for
the formal g-Borel transform of the same order when defined on monomials, it is direct
to check that

No

ZFn(er 6)Tﬂ = ﬁq;ukzﬁq;w'ﬁ;?f (T, m, 6) (113)

n=0

for every € € D(0,¢€p), m € R.
We depart from the formal power series F(T,m,¢) = ano F,(m,e)T", where F,(m,¢€)
are defined after (72), in Section 5, and assume that this formal power series formally

solves the equation

Q(im)o F(T,m,€)

d—D+1
= T%¢,"  Rp(im)F(T,m,e€)

D-1
1 oo
+ <Z Tt ehne=due e / Ci.o(m — my, €)Ry(imy)F (g T, my, €) qu)
=1 “iely o
+0,F(T,m,¢). (114)
q

Proposition 15 Assume that F,(m, €) are fixed elements in Eg ) which depend holomor-

Pphically on € € D(0, €y) for

pe{O,l,...,maxi max du,dD}}.
1<¢<D-1,xel,

Then there exists a unique formal solution power series F(T,m,€) = ano F,(m,e)T",

where m — F,(m,€) is an element of E(g .y which depend holomorphically on € € D(0, ).

Proof By plugging the formal power series F(T,m,€) into equation (114), one gets that

its coefficients satisfy the following recursion formula in order to be a formal solution of

(114):
Rp(im) (D 11)(n-dp)-n
F,(me) = 2" 4" L A ,
L (m, €) QUim) n dD(m €)
1 D-1 1
Aje=dye
Qo 2 G

=1 rely

x / Cye(m — my, )Ry (imy) g™ =4O, n-d; o A

o0

L.
Q(im)

n

for every n > max{max;<¢<p-1er, ds.¢,dp}. In view of Lemma 2 and Proposition 2, the

coefficients F,, belong to E(3,,) and depend holomorphically on € € D(0, €). O
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We multiply equation (114) by 7% and apply the formal g-Borel transform of order k;
on both sides of the resulting equation. Regarding Proposition 6, we arrive at

h

Q(iM)WWh(T’ m,€)

TdD+k1
= (7)ot vz Ro Vi (T, €)
D-1 Aso—dy g d; gtk dy
eBnt= e A et az_i_l 1 R
£
+;<§ (@) @) & a2 9 )2 (Cielm,€) * wkl(f,m,e))>
= ¢
h
+ (qVk)kala-1)72 Vi (T, m,e€), (115)

where

}’l

Yy (2, m,€) ZF m,e€) (qV/kynlnD72’

n>0

Yy, (T,m,€) ZFn(m: W

n>0
We now make the additional assumption that there exists an unbounded sector
Sqrp = {z€ C: |z = rqmp, [arg(2) - dary | < Nqry |
for some 5 g, >0 and dqr;, € R such that

Q(im)
Rp (im)

SQR])» meR.

We consider the polynomial

Q(im) Rp (im) d
P, (1) = 1/ky Yy (k (dp +kp)(dp+k1-1) °,
(q 1)ki(kr— (ql/kl) D)lp
and factorize it
dp-1
Rp(im)
oo :_(ql// )dD+k1>dD+k1 =) H T - qu(m)),
with
|Qim)| (dp +k1)(dp +ky ~1)—k; (k-1 \ 1/dD
q(m) = [ ———(¢"" 2
|Rp (im)]

1 Q(im) | 1y, \ prkdp ki) 277l
=1 — 2 e
* exp<\/—<dD arg(RD(lm) (q ) * dp

forevery0 </<dp - 1.
Moreover, we choose the family of unbounded sectors U, 0<p=<g, with vertex at 0,
a small closed disc D(0, p), established in Definition 7, and choose Sq.rp satisfying:
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(1) There exists M; > 0 such that
|t - q@(m)| =M (1+ 7))

forevery0<l/<dp-1l,allmeRandt € UDPUB(O,p),Ofpf ¢-1
(2) There exists M, > 0 and [ € {0,...,dp — 1} such that

|'L' _qf()(m)| 2M2|qlo(m)|

for every m € R and t € D(0, p) U Uy, andall0 <p<¢ -1
One can follow analogous steps as in (52) to conclude the existence of a constant Cp > 0
such that

. dp-
[P, (x)] = Colramy)"*® | R (im)| (1 + 7)™~ (116)
for every t € D(0,p)U U, foral0<p<¢-1l,andmeR.

Proposition 16 Let w > 0. Under the hypotheses made at the beginning of Section 7 on the
elements involved in the construction of equation (115) and (110), under assumptions (1)
and (2) above, and if there exist small enough positive constants ;,hq yEueforl<€<D-1
and A € 1y such that

C)\,Z = ;)L,Z’ Clﬁkl = E]/,kly

then equation (115) admits a unique solution 1//,?1”(7:, m, €) in the space Exp(alfbﬁ,ﬂ,a)for some
v € R. Moreover, || wkalp(r, 1, €) |k, 8,,0) < @ forevery e € D(0, €y), and this function is holo-
morphic with respect to € in D(0, o).

Proof The proof of this result follows analogous steps as those in the demonstration of
Proposition 11, so we omit it. O

Let F°7(T,m, €) be defined in (76).
We put ¢, ¢(z,€) = F1(m +— C,(m,e€)), which is a holomorphic function defined in
Hg x D(0,€p), and

f(t,z,€)= Y F ' (m> Eulm,e))(@)(te)",

n>0

which is a holomorphic function defined in D(0, r) x Hg' x D(0, €¢) for small enough r > 0.
One can apply F! to (114) to deduce that £ is a solution of the equation

dp ,
Q)0 (t,2,€) = ()P0, Rp(3)f (t,2,€)
D-1

+ Z (Z (LB a;fcu (z,€)Ry(3,)f°% (t, 2, €)>

=1 “ely

+04£(t,z,€). (117)
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Theorem 5 We assume that the hypotheses of Theorem 1 and those stated in this section
hold. We define

d—D+1
P(t,z,€,0,,0,) = Q)0 — (€t)a,>  Rp(d,)

D
- Z (Z It e Bt a;‘f ez, €)Ry (3z)) )

-1
=1 “rely
dp

=41
P(t,2,€,0,,0,) = Q(3,)0, — (€£)P5,"  Rp(d,)

D-1

- (Z thtetitodic, (2, e)Re(Bz)) .
1

rely

Then the functions u® (t,z,€) constructed in Theorem 1 solve the problem
P(t,z,¢,0;, aq)oq’lP(t, 2,€,0,0)u’ (t,2,€) = 0,£(t, 2, €), (118)

whose coefficients and forcing term f are analytic functions on D(0,r1) x Hg x D(0, €).
Moreover, the formal power series u(t, z, €) constructed in Theorem 4 formally solves equa-
tion (118).

Proof For the first part of the proof, one can check that F° (T, m,¢) as defined in (76) is
an analytic solution of equation (114). This assertion comes from equality (113) and the
application of the properties of the g-Laplace transform, stated in Proposition 7 in the
same manner as it has been done throughout the work, so we omit the details at this point.
Then the first part of the result is straight from (117) and Theorem 1. In order to prove that
u(t, z, €) provides a formal solution of equation (118), one takes into account that (¢, z, €)
formally solves equation (72) and that f (¢,2z,€) constructed in Lemma 9 formally solves

the equation

P(t,z,¢, 8Z,aq)f’(t, z,€) = 04(¢, 2, €). O
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