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Abstract

In this paper we establish a predator-prey model with a refuge and an open habitat
for prey. The Allee effect in a prey refuge and the environment carrying capacity of
prey are considered. According to biology of prey and predator, fast and slow time
scales are considered in some parameters. Based on two different time scales, the
system is divided into a fast system and a slow system. Applying the singular
perturbation techniques, we analyze the dynamics on the slow system. The stability
analyses are performed, and the Hopf bifurcation occurs when the environment
carrying capacity of prey is greater than a critical value. This value is an increasing
function of the Allee effect. By calculating the first Lyapunov coefficient, the stable
periodical oscillation is shown. It is shown that the carrying capacity of prey and the
Allee effect of prey in the refuge can influence biological environment.

Keywords: predator-prey model; refuge; fast-slow system; Allee effect; Hopf
bifurcation

1 Introduction

Allee effect is a phenomenon in biology characterized by a positive correlation between
population size or density and the mean individual fitness of a population or species. In
general, these facilitative behaviors for Allee effect mechanisms include mate limitation,
cooperative defense and environmental conditioning [1, 2]. Allee effects have been shown
to be present in all major taxonomic groups of animals [3]. Examples include social spiders
[4], meerkats [5], African wild dogs [6], white-winged choughs [7] and red-backed voles
(8].

In [9], based on habitat-selection theory, Morris illustrated how qualitative and quan-
titative differences of habitats affect population growth. The result was that the growth
rate of prey in an open habitat should be different from that in refuges. In 1996, Knight
and Morris [10] observed an open wetland and a covered wetland (like a refuge) along
the coasts of Hudson and James Bays in northern Canada to assess the habitat choices
of red-backed voles. They found that there was higher density of voles in the open wet-
land than in the covered wetland. In predator-prey ecological systems, it is the same that
there is more population in open habitats than in refuges for prey. Furthermore, given dis-
persal populations can be sustained in habitats with conditions outside the sink habitats
(refuges). Without immigration, sink populations face extinction because deaths exceed
births (e.g., because of unfavorable abiotic conditions, scant resources) [11]. It is natural
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that there is migration of prey between open habitat and refuges, and the movement rate
is a constant [12].

In 2002, Morris performed some tests on red-backed voles and deer mice in Canada’s
Rocky Mountains [8]. These tests revealed an Allee effect and suggested that the Allee
effect occurs only at small population sizes for small mammals. Furthermore, Morris [9]
pointed out that ecologists are likely to debate whether Allee effects are common or rare,
but there can be little doubt that an Allee effect occurs at low population sizes. In [11] the
authors also pointed out that populations at low density experience Allee effects in many
species. Hence, we consider an Allee effect in prey refuges in a predator-prey system. In
this paper we study the Allee effect and the environment carrying capacity of prey to gain
insight on the impact of them on the dynamics of a predator-prey system.

The Allee effect has numerous impacts on population dynamics, distribution and con-
servation [4—8] and attracts much attention in biomathematics. In predator-prey systems,
many authors have considered the Allee effect in prey [13—18]. In [13] the Allee effect is
considered in both the richer habitat and the poorer habitat (refuge). Two models with
refuge and without refuge are separated. The authors considered linear functional re-
sponse. It is shown that the impact of evolution is enhanced by the availability of refuges
and the Allee effect. In [14] the Allee effect and type I1I functional response are considered
in a predator-prey system. It is shown that the Allee effect can promote system collapse. In
[15], the authors extend the work of Auger [19] considering the Allee effect in prey popu-
lation. The functional response is linear. At the slow time scale, saddle-node, supercritical
Hopf and Bogdanov-Takens bifurcations caused by the Allee effect are found. In [18] the
Allee effect is incorporated into a predator-prey model with Holling II type functional re-
sponse. The authors found that the Allee effect of prey species increases the extinction
risk of both predators and prey and can lead to unstable periodical oscillation.

According to [20], Holling II functional response may be more appropriate for homoge-
neous systems. Based on the observation of Knight [10], the tests of Morris [8, 9] and the
results of [11], the Allee effect is more likely to occur in prey refuges. Previous predator-
prey models did not consider either the Allee effect in prey refuges or Holling II functional
response. Hence, we consider the Allee effect in prey refuges and Holling II functional re-
sponse in this paper. The goal of this work is to study the impact of Allee effect in prey
refuges and the environment carrying capacity of prey on the dynamics of the predator-
prey system. In this paper we consider fast and slow time scales and apply the singular
perturbation techniques to reduce the complete system to an aggregated model that de-
scribes the dynamics of the total number of prey and the number of predator at the slow
time scale.

The paper is organized as follows. In Section 2 we establish a predator-prey model with
Allee effect in prey refuge and Holling II type functional response. We separate fast and
slow equations and carry out equilibria. In Section 3 we discuss the stability of equilibrium
points in the slow dynamics. In Section 4, Hopf bifurcations are studied. In Section 5 we

carry out numerical simulations. We end the paper with a brief discussion.

2 Modeling
We use the well-known Rosenzweig-MacArthur predator-prey model with logistic growth

function of the prey and Holling II functional response. For predator, the reproductive rate
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Table 1 Parameters
Parameters Description
Ci Migration rate of prey from an open habitat to a refuge
Co Migration rate of prey from a refuge to an open habitat
n Intrinsic growth rate of prey in the open habitat
I Intrinsic growth rate of prey in the refuge
K Environment carrying capacity of prey
a Half saturation constant
b Attack rate of predators to prey in the open habitat
c Conversion efficiency
d Mortality rate of predator in the open habitat
A Allee effect constant
responds only to the rate of prey killed per predator. Then we can set up the compartmen-
tal model as follows:
& Cyxy — C (1- %) b
a = Laixa 12X1 + X1 X prea
d
T2 = Craxy — Couxy + 1axo (1 - 2)(F - 1), (2.1)
dy _ cbxyy

dt ~ a+x) Y-

Here x; represents the number of prey in an open habitat, x, represents the number of
prey in a refuge, y represents the number of predators in the open habitat. In this model,
we consider the Allee effect only in the equation of x;.

All the parameters are listed in Table 1. If bc < d, predators can never grow, and then we
assume bc > d.

It is a fact that the movement of prey is on a faster time scale than the growth and the
death. According to the references [21-23], it is reasonable to consider two time scales
for these parameters in the model. Let r; = €7, b = el;, d = ed. Here € < 1 is a small posi-
tive parameter, which means that movements have a larger speed than that associated to

growth and death processes. We obtain the fast system

d ~ b

% = C21x2 - Clle + 6[7’1961(1 — x?l) - aﬂc)l/]’

d. ~

TG = Cx — Cuxs + e[Rx(1- 2)(F - 1), (2.2)
dy _ chxyy

D e[ gy,

Let x = x; + X be the total number of prey, u; = (i = 1,2) be the proportions of prey in

patch i. We rewrite the fast system as follows:

W1 ity — Crom + €[ (L - ur)(1— “2) = (1 - 1) 242

K a+ulx
- ramus(1 - 2F)(%* - 1)1,

G = exlriu (1~ %5) + Run(1 - 2)(4% -1) - 2ax),

K A a+u1x
dy _ chux 5
- ey[aﬂ,tlx d]

(2.3)

According to the method of [21], we put € = 0 in (2.3) and obtain the equilibrium

* k) _ Co Ci2
(i, u3) = (C12+C21’ Cia+Cn1

) for the fast system. By replacing u; by ! (i = 1,2) in the 2nd
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and 3rd equations of (2.3), we obtain the following two-dimensional system:

dx uzx)(uzx _ buly]

AT a+uix (2.4)

uix ~
=x[nuf(l - 5-) + rauy (1 -

dy _ bcul
dat ~ [a+u x d]

In this model, the purpose is to study the impact of Allee effect and the carrying capacity

of prey. Here we only consider the particular case Ci, = Cy;. Then uj = u} = % and system

(2.4) is
n 9 b
dt 7 =x31-50) + 2(1- 0G5 - D - 5.5) 2.5)
d CX !
d_}tl :y[le]H—x _d]

Let the right-hand side of (2.5) equal to zero, we obtain

2, o ~ ~
x=0,  y=E0- 22 4R -R)
_ Zad
y=0, = fea

Thus, the equilibrium E, = (0,0) always exists. For the equilibria without predator, it
should satisfy the equation

x r}x
— -1 +r -1y ) =0.
2K 24

If 1 < ra, there are two boundary equilibria E; = (%2241), 0) and E; = (2K, 0).

If 71 > 73, there is only one boundary equilibrium E, = (2K, 0).

Denote K; = =24 _~ and A; = 525 Then the coexistence equilibrium E* = (x*,y*) exists
under the condltlon K>K; andA <A if 7y > 7. Here,

2ad

. ac x* r}x*
Y= m 1- K +r -
C —

Next we will study the dynamics at the slow time scale.

3 Dynamics of model (2.5) for the slow system

We first calculate the Jacobian matrix for system (2.5)

Aors g (24 Bty 3542 2aby b
j=| 2 +(55 + )X = SGR® ~ Gane? Qa+x
Zabcy bex —6~1
(2a+x)? 2a+x

It is easy to calculate and obtain that

nin
’Eoz(é _a>'
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Then Ej is a node point if 7; < 73 and a saddle point if 7; > 73, and a saddle-node bifurcation
occurs at 1] = ry.

For E; = (%22_;‘),0) when 71 < 7.

where

T )

an = 1- = ,
2 I(T’z
2Ab(F, — 1)
apy=———-—-—"-<0,
27 2ar, + 247 - 71)

A(bc - d)(F; - 1) - adr

a = .

ary + A(ry — 1)

Note that A < K and 3 — 71 < 79, then aq; > 0. Hence, E; is an unstable source if A > A;
and is a saddle if A < A1, and a saddle-node bifurcation occurs at A = A;.
For E; = (2K,0) when 71 < 7.

[Z5VEZ5V)
JE, = ,
0 [75%)

where
_R-A[_ KR
2 AR -7) ]
K(bc—d) —ad
ayp=—"—""

a+K

Note that A(;f—r_z”) <1, then aj; < 0. Hence, E; is an unstable source if K > Kj and is a
saddle if K < K}, and a saddle-node bifurcation occurs at K = K.

For E, = (2K,0) when 7; > 5. In this case aj; < 0. Hence, E, is an unstable source if
K > Kj and is a saddle if K < K7, and a saddle-node bifurcation occurs at K = Kj.

For E* = (x*, %),

where
ap =—< 0)
c
bc - d)?
ar = g_y* > 0.

2abc
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The characteristic equation of Jgx is

)\,2 - 6111)\, + —dj = 0.
C

=R (B RANL 3
1 24 1 2K 8AK

Ec—d 771—772 }7296 ’:2_771 * 772 *) 2
ke P2 R P
bc 2 4A 4K 8AK

x* [be+d (fx* rax*
=————\|—+nn-nrn|+ —
4K bc 2A 2A
1[d (Ax* _ _\ &t
+=|=|——+nn—-1rmn]+ .
2| be\ 24 24

Note the condition of existence of E* is A < #’i) Then % + 11 — 13 > 0. Denote

K- [1+~ SR }>1<1>o.
el TG n
Then

K> ](2 < ay > 0.

Hence, E* is a source if K > K, and E* is a sink if K < K5.
The existence and stability of equilibria can be summered in the following Theorem 3.1.

Theorem 3.1

(1) Eo =(0,0) always exists and is a node point if i, < o and a saddle point if i, > 75, and
a saddle-node bifurcation occurs at 1 = 7.

(2) E1 = (%22"3), 0) exists when 11 < 1o and is an unstable source if A > Ay and is a
saddle if A < Ay, and a saddle-node bifurcation occurs at A = A;.

(3) Ez =(2K,0) always exists and is an unstable source if K > Ky and is a saddle if
K < K3, and a saddle-node bifurcation occurs at K = Kj.

(4) E* =(x*,y*) exists under the condition K > Ky and A < Ay if 7y > i1, and is a source if
K > Ky and is a sink if K; < K < Ks.

4 Hopf bifurcation analysis
In this section we study the dynamical behavior of E* when K = K. The characteristic

equation of Jgx is

)\.2 - au)\. + z(lzl =0.

The roots are

1 1/, 4d ,
A = 5 + S\ @i~ an:= w(K) £ io(K).
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If K = Ky, a;; = 0, and then the eigenvalues are A1, = +iw and the Hopf bifurcation will
occur. In this case,

Denote P = 25 4 7, — /5. The transversality condition is satisfied:

"K) x* l;c+c~ip+ Fox™ 0
= _ >0.
’ 8K2 | e 24

Now we calculate the first Lyapunov coefficient. Rewrite the coordinate of E; when K =

1(2:
o 0 261;1 acP >
(57) = < d’ (be- d)("’+ r 1)

Note that the slow system (2.5) is

72) (3 + i = 72)2a + %) - bay, @
y= —-dQ2a + x)y + bcxy.

i=3(1-

Translate the origin of the coordinates to this equilibrium by the change of variables

x=x+&,
=j/0 +§2.
Since ay; = 0, 25 (1— %) 2bc(1’25132d x° — d)P. From by = 1(2a+xo)(1— 3G 2-)P, we obtain

the new system

£ = —bx%%, + A€l — bti& + aso&; +o(|E[*),

. - - . (4.2)
& = (bc — d)y°& + (be — d)&,16,.

Denote r = r; — 7, and then P > r. Here,

1 ~ -~ ~ o~ ~ ~ ~ ~
dyy=—————= = [(b2c2 + bed + d2)P2 + bc(2bc + d)Pr + b262r2] <0,
2d[(2bc + d)P — bcr]
30 = ——= Nbc _fi = [(l;zc2 +2bcd + 2;1’2)P2
4ad?[(2bc + d)P — bcr]

— (be + d)(2bc + d)Pr + be(be + ;z')rz]

bed o N
o T8 (e +dP-ber](be+ (P -1) + BP
4ad2[(2bc+d)P—bcr]{[( ¢ +d)P—ber](be + d)(P—r) + &P} <0

This system can be represented as

. 1 1
§ =Bt + EC(E,%‘) + gD(S,E,E) +o(l&]%),
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where B = B(K), and the multilinear functions C and D take on the planar vectors & =
(£1,€), 1 = (91, m2) and ¢ = (&1, &) the values

CE,n) = 2az08im — b(En, + E2m) ’
(bc — d) (&1 + &)

and

D(E,n,¢) = (-6613(;)517)1{1) '

Write the matrix B(K) in the form

B ( i 0~ —IZxO) '
(bc—d)y* 0

The eigenvalues of B are

2abc . 2abc .
)\,1 = ~wl, )\2 = — L.

Cbe—d

From
Bg = \agq, BTp =Mp,

we can calculate that the eigenvectors are

(o) o (3)

To achieve the necessary normalization (p,q) = 1, we can take, for example,

B d B 1 wc) 21—51
1= iwc)]’ p_2a)c;i id] i '

And we calculate

_ (2a30d? - b(2wedi)
Claa = < (be — ) 2wedi) )

. (2ad?
C(q,q)=<a2(;’ )

and

_ —6aszyd>
D(qu)z( go )
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Then we obtain

@0 = (0. C(q,9)) = asod + (bc — d)d — dcwi,
g = (]ﬂ, C(q; é)) = ﬂ20£~11,
g = (]0, C(q; q, é)) = 3(130;12.

The first Lyapunov coefficient is

1

I(K) = —ZRe(igzogu + wgn)
2w

2

= ﬁ(wzo +dszo)

<0.

Therefore, a unique and stable limit cycle bifurcates from the equilibrium E* via the Hopf
bifurcation for K > K. This result is different from the result in [18].

Theorem 4.1 IfK > Kj, a unique and stable limit cycle bifurcates from the equilibrium E*
via the Hopf bifurcation.

5 Numerical simulation

Now we perform some simulations for the dynamics of the slow system (Figures 1-4) and
the original system (Figure 4). According to some literature works, the values of param-
eters are listed in Table 2. We choose a = 10, b = 0.5, ¢ = 0.5, d = 0.07. Then K; = 3.89.
Some simulations are performed by Maple software (Figures 1-4).

If we increase the environment carrying capacity of prey, Figure 2 shows that the period
of predator oscillation is very long. In additional, a different Allee effect of prey in a refuge
can lead to stable oscillation or stable endemic equilibrium state (Figure 3).

At last we compare the dynamics of the original system with the slow system when € is
small (Figure 4). From Figure 4, we can see that the Hopf bifurcation occurs in both the
original system and the slow system. The dynamics are similar, which also shows that the
full dynamical system can be characterized by the dynamics on the slow manifold.

Figure 1 Hopf bifurcation occurs. € =0.1 and 7,
=02,7=01,K=7505A=1.Then? >7 and K
=K >Kj.
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Figure 2 Comparison of oscillation with
different K.
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»(1) 27
IOMU\/\,”
0+ . \\ .
0 5000 10000 15000
t
— =] () m— K=20
Figure 3 Comparison of oscillation with 81 ” n
different A.

0 5000 10000 15000

t
— A8 m— A2
Figure 4 Hopf bifurcation occurs in both the
original system and the slow system.
30
o
10
0 '
0 5000 10000 15000
t
= Slow system Original system

6 Discussion

In this article we conducted mathematical analyses of a predator-prey model with Allee
effect in prey refuge and Holling II type functional response. According to biology of prey
and predator, fast and slow time scales are considered. Applying the singular perturbation
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Table 2 The value of parameters

Parameters Description Values References
(=12 Intrinsic growth rate of prey 0.1-2 day™! [4-8, 21, 24-26)
K Environment carrying capacity of prey 5-50 [4-8,21,24-26]
a Half saturation constant 0.6-20 [25, 26]

b Attack rate of predators to prey in an open habitat 0.1-5 day™ [19, 21, 25, 26]
c Conversion efficiency 0.32-1 day™! [25]

d Mortality rate of predator in an open habitat 0.07-2 day™! [4 8 1,24-26]
A Allee effect constant 0.5-8 [14,17]

€ Small positive parameter 0.01-0.5 [21 6}

techniques, we separate the dynamics of the model into two time scales. Based on the-
oretical analyses and numerical simulations (Figure 4), we show that the full dynamical
system can be characterized by the dynamics on the slow manifold in the long run. Then
we analyze the stability of the system on the slow time scale. Our results show that when
the carrying capacity for the prey population K is greater than some value K3, the Hopf
bifurcation will occur. According to Figure 2, if the carrying capacity for the prey is en-
sured abundant, the period will be longer and the amount of predators fluctuates greatly.
In additional, reducing the Allee effect of prey will lead to stable periodical oscillation
(Figure 3), which is different from the result of [18].

In nature, the growth rate of prey in a refuge should be less than that in an open habitat
because of limitation of mating. According to Theorem 3.1, this difference will lead to the
equilibria without predator, and the equilibria without predator is unstable. This means
that biological environment without predator is unstable in nature, which is in good agree-
ment with some practical phenomena. For example [27], Kaiba forest located in the north-
ern margin of the Colorado Grand Canyon, Arizona. In 1925, to protect the black tailed
deer, people killed all the natural enemies of the forest. The number of deer in the forest
began to increase sharply to 100,000, but by 1942 the number reduced to 8,000. The rea-
son is that the original ecosystem had been destroyed, more than its stability threshold,
and thus became unstable.

Furthermore, when the carrying capacity of prey (K) is bigger than a critical value (K3),
the coexistence equilibrium with prey and predator is stable, i.e., animals and their natu-
ral enemies can coexist. When the carrying capacity of prey is less than the critical value,
prey and predator can not coexist. This can also explain why a lot of animals and natural
enemies coexist in nature [27, 28]. In 1930s, Hawaii’s snail disaster is a very good exam-
ple. In the Hawaii islands, the big snails were bred in a small region and eaten by human
beings. Some old snails were thrown in the wild, which meant the carrying capacity of
snail increased. A few years later, a large number of breeding snails were everywhere. This
meant that snails and humans coexisted. People sprayed chemicals and cultivated land for
15 consecutive years, but also could not remove the snails [27]. According to this conclu-
sion, human beings can control the amount of prey and predator by adjusting the carrying
capacity of prey. Based on these analyses, it is easy to see that the carrying capacity of prey
and the Allee effect of prey in the refuge can influence biological environment. In addi-
tion, in this model the migration rate of prey can affect the number of equilibria and the
stability. However, the purpose of this paper was to study the impact of Allee effect and
the carrying capacity of prey. Hence, we have only considered the particular case in this
paper, and the general case will be considered in the future.
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