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Abstract
In this paper, we present a new three-level implicit method of order two in time and
three in space on a non-uniform mesh, based on spline in compression
approximation for the numerical solution of 1D quasilinear second order hyperbolic
partial differential equations. We also discuss the application of the proposed method
to a wave equation with singular coefficients. Stability analysis of a linear scheme and
convergence analysis of a general nonlinear scheme are also discussed in this paper.
Computational results are given to demonstrate the usefulness of the proposed
method.
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1 Introduction
Consider the D quasilinear hyperbolic equation

∂u
∂t = A(x, t, u)

∂u
∂x + f (x, t, u, ux, ut),  < x < , t > . (.)

The initial conditions are given by

u(x, ) = φ(x), ut(x, ) = ψ(x),  ≤ x ≤ , (.)

and the boundary conditions are given by

u(, t) = a(t), u(, t) = a(t), t ≥ . (.)

We assume that the functions f (x, t, u, ux, ut), φ(x), ψ(x), a(t) and a(t) are sufficiently
smooth and their required higher order derivatives exist.

The wave equations are important second order hyperbolic partial differential equa-
tions for the description of waves as they occur in most scientific and engineering dis-
ciplines such as sound waves, light waves, water waves, acoustics waves, electromagnetic
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waves, and fluid dynamics, optics, electromagnetism, solid mechanics, structural mechan-
ics, quantum mechanics, etc. The waves for all these applications are described by solu-
tions to either linear or nonlinear second order hyperbolic partial differential equations
(.), which have a dependent variable u(x, t) (representing the wave value), an indepen-
dent variable time t and one independent spatial variable x. The actual form that the wave
takes is strongly dependent upon the system initial conditions, the boundary conditions on
the solution domain and any system disturbances. A few examples of the source of physi-
cal waves are as follows. Chemical waves occur in the concentration variations of chemical
species propagating in a system. Acoustic waves occur in audible sound, medical applica-
tions of ultrasound and underwater sonar applications. Electromagnetic waves occur as
electricity in various forms, radio waves, light waves in optic fibres, etc. The transmis-
sion of variations in a gravitational field in the form of waves is called gravitational waves
as predicted by Einstein’s theory of general relativity. Waves resulting from earthquakes,
large explosions and high velocity impacts are termed seismic waves. Small local changes
in velocity occurring in high density situations can result in the propagation of traffic flow
waves and even shocks. When ripples occur in water, they are manifested as waves of short
length and are termed capillary waves. For waves where the wavelength is much greater
than water depth, they can be modelled by coupled fluid dynamics equations known as
the shallow water wave equations.

In recent years the development of numerical methods for the solution of nonlinear hy-
perbolic partial differential equations of type (.) with initial and boundary conditions
of type (.)-(.) has been of great importance in many branches of science and engi-
neering. Using spline approximations, linear and nonlinear hyperbolic equations in one
dimension have been studied by several authors. During last four decades, there has been
much effort to develop convergent numerical methods based on spline approximations
for the solution of differential equations. First, Bickley [] and Fyfe [] used spline approx-
imations on two point boundary value problems to get their numerical solutions. In ,
Fleck, Jr. [] and Raggett and Wilson [] successfully applied cubic spline approximations
to get the solution of one-space dimensional wave equation. During last three decades
many researchers (see [–]) studied the solution of two point boundary value problems
by using different types of spline methods. Mohanty et al. [–] developed three-level
implicit high accuracy compact finite difference methods for the solution of one-space
dimensional nonlinear hyperbolic equations. Rashidinia et al. [] and Ding and Zhang
[] discussed the use of parametric spline methods for the solution of D hyperbolic
equations. Unconditionally stable difference methods for the linear hyperbolic equation
were discussed in [–]. In , Mohanty and Gopal [] originally developed a high
accuracy numerical method based on cubic spline approximations for the solution of D
nonlinear hyperbolic equations. Mohanty et al. [] and Talwar et al. [] formulated the
solution for one-dimensional parabolic equations with singular coefficients and nonlinear
terms by using spline in compression approximations. In recent past, Gopal et al. [] and
Mohanty and Gopal [] used spline in compression approximations for the solution of
a D nonlinear hyperbolic equation on a uniform mesh. To our knowledge, no numeri-
cal methods based on compression spline approximations for the solution of one-space
dimensional quasilinear hyperbolic equations on a variable mesh are known in the litera-
ture.
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Nonlinear waves are described by nonlinear equations. This means that nonlinear wave
equations are more difficult to analyze mathematically and that no general analytical
method for their solution exists. Hence the only alternative to solve these equations is
the application of stable numerical methods. In this paper, using three non-uniform grid
points in x-direction and three uniform grid points in t-direction, we discuss a new three-
level implicit method of accuracy two in time and three in space based on spline in com-
pression approximations for the solution of D second order quasilinear hyperbolic equa-
tions. In this method, we require only three evaluations of function f . In Section , we
discuss spline in compression and its properties. In Section , we propose a new three-
level implicit method based on spline in compression approximation. In Section , we
derive the proposed method. In Section , we discuss the application of our method to
the wave equation in polar cylindrical coordinates. Stability and convergence analysis are
discussed in Sections  and . In Section , we discuss the higher order approximation at
first time level in order to compute the proposed numerical method of the same accuracy
and compare the numerical results with the existing results. Final remarks are given in
Section .

2 Spline in compression approximation
The solution domain [, ] × [t > ] is divided into (N + ) × J variable mesh with the
variable spatial step size hl = xl – xl–, l = , , . . . , N + , in x-direction and the time step size
k >  in t-direction, where N is a positive integer. Grid points are given by xl = x +

∑l
i= hi,

l = , , . . . , N +, and tj = jk, j = , , , . . . . The mesh ratio parameter is given by σl = hl+/hl ,
l = , , . . . , N . The notations uj

l and Uj
l are used for the discrete approximation and the

exact value of u(x, t) at the grid point (xl, tj), respectively. Similarly, at the grid point (xl, tj),
we define Aj

l = A(xl, tj), Ax
j
l = Ax(xl, tj), . . . , etc.

Let Sj(x) be the non-polynomial spline in compression of the function u(x, t) at the grid
point (xl, tj) and be given by

Sj(x) = al + bl(x – xl) + cl sinω(x – xl) + dl cosω(x – xl), l = , , , . . . , N + , (.)

where al , bl , cl , dl are unknown coefficients and ω is a parameter to be determined. Sj(x) ∈
C[, ], which interpolates u(x, t) at the grid point (xl, tj).

The derivatives of function Sj(x) are given by

S′
j(x) = bl + ωcl cosω(x – xl) – ωdl sinω(x – xl),

l = , , , . . . , N + ; j = , , . . . , J , (.)

S′′
j (x) = –ω[cl sinω(x – xl) + dl cosω(x – xl)

]
,

l = , , , . . . , N + ; j = , , . . . , J . (.)

We define

Mj
l = S′′

j (xl), l = , , , . . . , N + ; j = , , . . . , J . (.)

To derive expression for the coefficients of (.) in terms of Uj
l , Uj

l+, Mj
l and Mj

l+, we use

Sj(xl) = Uj
l , Sj(xl+) = Uj

l+, Mj
l = S′′

j (xl), Mj
l+ = S′′

j (xl+).
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From algebraic manipulation, we get

al = Uj
l +

Mj
l

ω , bl =
Uj

l+ – Uj
l

hl+
+

Mj
l+ – Mj

l
ωθl+

,

cl =
Mj

l cos θl+ – Mj
l+

ω sin θl+
, dl =

–Mj
l

ω ,

where θl = ωhl .
Using the continuity of the first derivative at (xl, tj), that is, S′

j(xl–) = S′
j(xl+), we obtain

the following relation:

Uj
l+ – Uj

l
hlhl+

–
Uj

l – Uj
l–

h
l

= αMj
l+ + (β + β)Mj

l + γ Mj
l–, (.)

where

α =


θlθl+

(
θl+

sin θl+
– 

)

,

β =


θlθl+
( – θl+ cot θl+),

β =

θ

l
( – θl cot θl),

γ =

θ

l

(
θl

sin θl
– 

)

.

When ω → , that is, θl → , then (α,β,β,γ ) → ( σl
 , σl

 , 
 , 

 ), and relation (.) reduces
to the cubic spline relation on the variable mesh

Uj
l+ – Uj

l
hlhl+

–
Uj

l – Uj
l–

h
l

=
σl


Mj

l+ +
(

 + σl



)

Mj
l +




Mj
l–. (.)

From (.), we obtain the consistency condition α + β + β + γ = +σl
 , which is equiv-

alent to the equation tan θl
 = θl

 . This equation has an infinite number of roots. Solving
graphically, we obtain the smallest nonzero positive value θl = ..

Now, from (.) we have

mj
l = S′

j(xl) = Ux
j
l

=
Uj

l+ – Uj
l

hl+
+

Mj
l+ – Mj

l
ωθl+

+
Mj

l cos θl+ – Mj
l+

ω sin θl+
cosω(x – xl)

+
Mj

l
ω

sinω(x – xl), xl ≤ x ≤ xl+, (.)

and replacing ‘hl+’ by ‘–hl ’ in (.), we get

mj
l = S′

j(xl) = Ux
j
l

=
Uj

l – Uj
l–

hl
+

Mj
l – Mj

l–
ωθl

+
Mj

l– cos θl – Mj
l

ω sin θl
cosω(x – xl–)

+
Mj

l–
ω

sinω(x – xl–), xl– ≤ x ≤ xl. (.)
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Further, using the relations θl = ωhl , θl+ = ωhl+, from (.) and (.), we have

mj
l+ = S′

j(xl+) = Ux
j
l+

=
Uj

l+ – Uj
l

hl+
+

hl+

θ
l+

[ – θl+ cot θl+]Mj
l+ –

hl+

θ
l+

[ – θl+ cosec θl+]Mj
l

=
Uj

l+ – Uj
l

hl+
+ hl

[
αMj

l + βMj
l+

]
, (.)

mj
l– = S′

j(xl–) = Ux
j
l–

=
Uj

l – Uj
l–

hl
+

hl

θ
l

[ – θl cosec θl]M
j
l –

hl

θ
l

[ – θl cot θl]M
j
l–

=
Uj

l – Uj
l–

hl
– hl

[
βMj

l– + γ Mj
l
]
. (.)

Note that (.), (.), (.) and (.) are important properties of the spline in a com-
pression function Sj(x).

3 Variable mesh method based on spline in compression approximation
For the sake of simplicity, we choose σl = hl+/hl = σ (a constant), that is, hl+ = σhl , and
we consider the one-space dimensional nonlinear hyperbolic partial differential equation

∂u
∂t = A(x, t)

∂u
∂x + f (x, t, u, ux, ut),  < x < , t >  (.)

with the given initial conditions (.) and boundary conditions (.).
Now, we consider the following approximations:

Ut
j
l =

(
Uj+

l – Uj–
l

)
/(k), (.)

Ut
j
l± =

(
Uj+

l± – Uj–
l±

)
/(k), (.)

Utt
j
l =

(
Uj+

l – Uj
l + Uj–

l
)
/
(
k), (.)

Utt
j
l± =

(
Uj+

l± – Uj
l± + Uj–

l±
)
/
(
k), (.)

Ux
j
l =

Uj
l+ – ( – σ )Uj

l – σ Uj
l–

σ ( + σ )hl
, (.)

Ux
j
l+ =

( + σ )Uj
l+ – ( + σ )Uj

l + σ Uj
l–

σ ( + σ )hl
, (.)

Ux
j
l– =

–Uj
l+ + ( + σ )Uj

l – σ ( + σ )Uj
l–

σ ( + σ )hl
, (.)

Uxx
j
l =

[Uj
l+ – ( + σ )Uj

l + σUj
l–]

σ ( + σ )h
l

, (.)

Fj
l = f

(
xl, tj, Uj

l , Ux
j
l, Ut

j
l
)
, (.)

Fj
l± = f

(
xl±, tj, Uj

l±, Ux
j
l±, Ut

j
l±

)
. (.)
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Since the derivative values of Sj(x) defined by (.)-(.) are not known at each grid
point (xl, tj), we use the following approximations for the derivatives of Sj(x). Let

Mj
l =


Aj

l

(
Utt

j
l – Fj

l
)
, (.)

Mj
l+ =


Aj

l+

(
Utt

j
l+ – Fj

l+
)
, (.)

Mj
l– =


Aj

l–

(
Utt

j
l– – Fj

l–
)
, (.)

m̂j
l+ =

Uj
l+ – Uj

l
σhl

+ hl
[
αMj

l + βMj
l+

]
, (.)

m̂j
l– =

Uj
l – Uj

l–
hl

– hl
[
βMj

l– + γ Mj
l
]
, (.)

m̂j
l = Ux

j
l +

αhl

( + σ )Aj
l

[(
Fj

l+ – Fj
l–

)
–

(
Utt

j
l+ – Utt

j
l–

)]
+

αh
l Ax

j
l

Aj
l

Uxx
j
l. (.)

Now we define the approximations

F̂ j
l± = f

(
xl±, tj, Uj

l±, m̂j
l±, Ut

j
l±

)
, (.)

F̂ j
l = f

(
xl, tj, Uj

l , m̂j
l, Ut

j
l
)
, (.)

in which we use spline in a tension function Uj
l = Sj(xl), approximation of its first order

space derivative defined by (.)-(.) in x-direction and central difference approximations
of time derivative defined by (.)-(.) in t-direction.

Then, at each grid point (xl, tj), the differential equation (.) is discretized by

[
Aj

l + PhlAx
j
l + Ph

l Axx
j
l
](

Uj
l+ – ( + σ )Uj

l + σUj
l–

)

=
h

l


[
PUtt

j
l+ + QUtt

j
l + RUtt

j
l–

]
–

h
l


[
PF̂j

l+ + QF̂j
l + RF̂j

l–
]

+ T̂ j
l , (.)

where

P =
(

σ – 


)

–
(
 + σ + σ )hlAx

j
l

Aj
l

,

P =
 – σ + σ 


,

P =
(
σ  + σ – 

)
–

(
 + σ + σ )hlAx

j
l

Aj
l

,

Q = ( + σ )
(
σ  + σ + 

)
+

(
 – σ )( + σ + σ )hlAx

j
l

Aj
l

,

R = σ
(
 + σ – σ ) + σ ( + σ + σ )hlAx

j
l

Aj
l

,

and the local truncation error T̂ j
l = O(kh

l + kh
l + h

l ).
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4 Mathematical derivation of the method
For the derivation of method (.), we use spline in compression approximations in
x-direction and second order finite difference approximation in t-direction.

At the grid point (xl, tj), let us denote

Uab =
(

∂a+bU
∂xa ∂tb

)j

l
, ψ

j
l =

(
∂F
∂Ux

)j

l
. (.)

At the grid point (xl, tj), we denote

Utt
j
l – Aj

lUxx
j
l = Fj

l , (.)

where

Fj
l = f

(
xl, tj, Uj

l , Ux
j
l, Ut

j
l
)
.

Using the Taylor expansion, we obtain

[
Aj

l + PhlAx
j
l + Ph

l Axx
j
l
](

Uj
l+ – ( + σ )Uj

l + σUj
l–

)

=
h

l


[
PUtt

j
l+ + QUtt

j
l + RUtt

j
l–

]
–

h
l


[
PFj

l+ + QFj
l + RFj

l–
]

+ O
(
kh

l + kh
l + h

l
)
. (.)

Simplifying (.)-(.), we get

Ut
j
l = Ut

j
l + O

(
k), (.)

Ut
j
l± = Ut

j
l± + O

(
k + khl + h

l
)
, (.)

Utt
j
l = Utt

j
l + O

(
k), (.)

Utt
j
l± = Utt

j
l± + O

(
k + khl + h

l
)
, (.)

Ux
j
l = Ux

j
l +

σh
l


U + O

(
h

l
)
, (.)

Ux
j
l+ = Ux

j
l+ –

σ ( + σ )h
l


U + O

(
h

l
)
, (.)

Ux
j
l– = Ux

j
l– –

( + σ )h
l


U + O

(
h

l
)
, (.)

Uxx
j
l = Uxx

j
l +

(σ – )hl


U +

( – σ + σ )h
l


U + O

(
h

l
)
. (.)

With the help of approximations (.) and (.), from (.), we obtain

Fj
l = f

(

xl, tj, Uj
l , Ux

j
l +

σh
l


U + O

(
h

l
)
, Ut

j
l + O

(
k)

)

= f
(
xl, tj, Uj

l , Ux
j
l, Ut

j
l
)

+
σh

l


Uψ
j
l + O

(
k + h

l
)

= Fj
l +

σh
l


Uψ

j
l + O

(
k + h

l
)
. (.)
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Similarly,

Fj
l+ = Fj

l+ –
σ ( + σ )h

l


Uψ
j
l + O

(
k + khl + h

l
)
, (.)

Fj
l– = Fj

l– –
( + σ )h

l


Uψ
j
l + O

(
k + khl + h

l
)
. (.)

Now using approximations (.)-(.) in (.)-(.) and simplifying (.)-(.), we
get

m̂j
l+ = mj

l+ + O
(
k + khl + h

l
)
, (.)

m̂j
l– = mj

l– + O
(
k + khl + h

l
)
. (.)

Now we define the approximation

m̂j
l = Ux

j
l + ahl

[(
Fj

l+ – Fj
l–

)
–

(
Utt

j
l+ – Utt

j
l–

)]
+ bh

l Uxx
j
l, (.)

where ‘a’ and ‘b’ are parameters to be determined. By the help of approximations (.),
(.), (.), (.) and (.), from (.) we obtain

m̂j
l = mj

l +
h

l


[(
σ – a( +σ )Aj

l
)
U + 

(
b – a( +σ )Ax

j
l
)
U

]
+ O

(
k + khl + h

l
)
. (.)

Approximation (.) to be of O(k + khl + h
l ), the coefficient of h

l must be zero. Thus
for the values of parameters a = α

(+σ )Aj
l

and b = αAx
j
l

Aj
l

, approximation (.) reduces to

m̂j
l = mj

l + O
(
k + khl + h

l
)
. (.)

Now, with the help of approximations (.) and (.), from (.), we obtain

F̂ j
l = f

(
xl, tj, Uj

l , mj
l + O

(
k + khl + h

l
)
, Ut

j
l + O

(
k))

= f
(
xl, tj, Uj

l , mj
l, Ut

j
l
)

+ O
(
k + khl + h

l
)

= Fj
l + O

(
k + khl + h

l
)
. (.)

Similarly,

F̂ j
l+ = Fj

l+ + O
(
k + khl + h

l
)
, (.)

F̂ j
l– = Fj

l– + O
(
k + khl + h

l
)
. (.)

Using approximations (.)-(.) and (.)-(.), from (.) and (.), we obtain the
local truncation error T̂ j

l = O(kh
l + kh

l + h
l ).

Now, we consider the numerical method of O(k + khl + h
l ) for the solution of quasi-

linear hyperbolic equation (.).
Whenever the coefficient A is a function of x, t and u, i.e., A = A(x, t, u), the difference

scheme (.) needs to be modified. For this purpose, we use the following approximation
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values:

Ax
j
l =


σ ( + σ )hl

[
Aj

l+ –
(
 – σ )Aj

l – σ Aj
l–

]
+ O

(
h

l
)
, (.)

Axx
j
l =


σ ( + σ )h

l

[
Aj

l+ – ( + σ )Aj
l + σAj

l–
]

+ O(hl), (.)

where

Aj
l = A

(
xl, tj, Uj

l
)
,

Aj
l± = A

(
xl±, tj, Uj

l±
)
.

Thus, substituting values (.)-(.) into (.), we obtain the required numerical
method of O(k + khl + h

l ) for the solution of the quasilinear hyperbolic equation (.),
and hence the local truncation error retains its order, that is, T̂ j

l = O(kh
l + kh

l + h
l ). For

hl+ = hl = h, the proposed method (.) becomes of O(k + kh + h) (see []).
Note that the initial and Dirichlet boundary conditions are given by (.) and (.), re-

spectively. Incorporating the initial and boundary conditions, we can write method (.)
in a tri-diagonal matrix form. If the differential equation (.) is linear, we can solve the
linear system using the Gauss-elimination (tri-diagonal solver) method; in the nonlinear
case, we can use the Newton-Raphson iterative method to solve the nonlinear system (see
Kelly [], Hageman and Young []).

5 Application to a wave equation in polar coordinates
We consider the one-space dimensional wave equation in polar coordinates

utt = urr + D(r)ur + f (r, t),  < r < , t > . (.)

The initial and the Dirichlet boundary conditions are prescribed by

u(r, ) = φ(r), ut(r, ) = ψ(r),  ≤ r ≤ , (.)

u(, t) = q(t), u(, t) = q(t), t ≥ , (.)

where D(r) = γ

r . For γ =  and , equation (.) represents a wave equation in cylindrical
and spherical polar coordinates, respectively. Assume that f (r, t) ∈ C(, ) × [t > ] and
conditions (.) and (.) are given with sufficient smoothness to maintain the order of
accuracy in the numerical method under consideration.

Replacing the variable x by r, applying method (.) to (.) and neglecting the local
truncation error, we obtain


h

l

[
uj

l+ – ( + σ )uj
l + σuj

l–
]

= P
(
utt

j
l+ – Dl+ûr

j
l+ – f j

l+
)

+ Q
(
utt

j
l – Dlûr

j
l – f j

l
)

+ R
(
utt

j
l– – Dl–ûr

j
l– – f j

l–
)
, (.)
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where

P =
(
σ  + σ – 

)
, Q = ( + σ )

(
σ  + σ + 

)
, R = σ

(
 + σ – σ ),

ûr
j
l+ =

uj
l+ – uj

l
σhl

+
σhl


[
utt

j
l + utt

j
l+ – Dlur

j
l – Dl+ur

j
l+ – f j

l – f j
l+

]
,

ûr
j
l– =

uj
l – uj

l–
hl

–
hl


[
utt

j
l + utt

j
l– – Dlur

j
l – Dl–ur

j
l– – f j

l – f j
l–

]
,

ûr
j
l = ur

j
l +

αhl

 + σ

[
Dl+ur

j
l+ – Dl–ur

j
l– – utt

j
l+ + utt

j
l– + f j

l+ – f j
l–

]
,

where the approximations associated with (.) are defined in Section .
Note that scheme (.) is of O(k + khl + h

l ) accuracy for the solution of wave equation
(.). Since r = , scheme (.) fails to compute at l =  due to zero division. In order to
get a stable spline in the tension scheme of O(k + khl + h

l ) accuracy, we need to modify
scheme (.). Let

Dl = D(rl) ≡ D, (.)

Dl+ = Dl + σhlDrl +
σh

l


Drrl + O
(
h

l
) ≡ D, (.)

Dl– = Dl – hlDrl +
h

l


Drrl + O
(
h

l
) ≡ D, (.)

f j
l = f (rl, tj) ≡ F, (.)

f j
l+ = f j

l + σhlfr
j
l +

σh
l


frr

j
l + O

(
h

l
) ≡ F, (.)

f j
l– = f j

l – hlfr
j
l +

h
l


frr

j
l + O

(
h

l
) ≡ F, (.)

where

Drl =
dD(rl)

dr
, Drrl =

dD(rl)
dr ,

fr
j
l =

∂f (rl, tj)
∂r

, frr
j
l =

∂f (rl, tj)
∂r , . . . , etc.

Now, with the help of the approximations defined in Section  and (.)-(.), neglect-
ing high order terms, we can re-write scheme (.) in the three-level compact implicit
form


h

l

[
uj

l+ – ( + σ )uj
l + σuj

l–
]

=
(

P –
PDσhl


+

αhlQD

 + σ

)

Utt
j
l+ +

(

Q –
PDσhl


+

RDhl



)

Utt
j
l

+
(

R –
αhlQD

 + σ
+

RDhl



)

Utt
j
l– +

(
PD

σhl


–

αhlQDD

 + σ

)

Ux
j
l+

+
(

PDDσhl


– QD –

RDDhl



)

Ux
j
l +

(
αQDDhl

 + σ
–

RD
hl



)

Ux
j
l–
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–
PD

σhl

(
uj

l+ – uj
l
)

–
RD

hl

(
uj

l – uj
l–

)
–

(

P –
PDσhl


+

αhlQD

 + σ

)

F

–
(

Q –
PDσhl


+

RDhl



)

F –
(

R –
αhlQD

 + σ
+

RDhl



)

F. (.)

Note that the numerical scheme (.) based on spline in compression approximations
is of O(k + khl + h

l ) accuracy and free from the terms /(rl±), hence very easily solved
for l = ()N in the solution region  < r < , t > . This technique shows that the pro-
posed method is applicable to singular problems, and we do not require the presence of
any fictitious points outside the solution region to handle the numerical scheme near the
boundary.

6 Stability analysis
Consider the damped wave equation in a general form

wtt + ηwt = wxx + f (x, t),  < x < , t > , (.)

where η >  is a real parameter.
The damped wave equation is a linear second order hyperbolic partial differential equa-

tion. The term ηwt represents a damping force proportional to the velocity wt .
Replacing the variable u by w and applying scheme (.) to the differential equation

(.) with η = , that is, hl+ = hl = h, we obtain a numerical approximation of O(k + h) as

(

 +
δ

x


)

δ
t wj

l + ηk
(

 +
δ

x


)

(μtδt)w
j
l – λδ

x wj
l =

k


[
f j
l+ + f j

l– + f j
l
]
, (.)

where we denote

λ = (k/h) > , f j
l = f (xl, tj)

and δ
t wj

l = wj+
l – wj

l + wj–
l , (μtδt)w

j
l = wj+

l – wj–
l , etc.

The corresponding error equation is

(

 +
δ

x


)

δ
t ε

j
l + ηk

(

 +
δ

x


)

(μtδt)ε
j
l – λδ

xε
j
l = O

(
k + kh). (.)

To establish stability for scheme (.), it is necessary to assume that the solution of the
homogeneous part of the error equation (.) is of the form ε

j
l = ξ jeiθl , where i =

√
–, θ

is real, and we obtain the characteristic equation

pξ  + qξ + r = , (.)

where

p = ( + ηk)
(

 –



sin
(

θ



))

,

q = – +



sin
(

θ



)

+ λ sin
(

θ



)

,

r = ( – ηk)
(

 –



sin
(

θ



))

.
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The necessary and sufficient condition for |ξ | <  is that p+q+r > , p–r > , p–q+r > .
The conditions p + q + r >  and p – r >  are satisfied for η >  and for all θ except
θ =  or π .

The condition p – q + r >  is satisfied if

 < λ ≤ 


. (.)

In order to obtain an unconditionally stable spline in compression finite difference
scheme of O(k + h) accuracy, we may re-write scheme (.) as

(

 – ρλδ
x +

δ
x



)

δ
t wj

l + ηk
(

 +
δ

x


)

(μtδt)w
j
l – λδ

x wj
l =

k


[
f j
l+ + f j

l– + f j
l
]
, (.)

where ρ is a free parameter to be determined. The additional term –ρλδ
xδ


t wj

l is of higher
order and does not affect the consistency and accuracy of the scheme. Like (.), the char-
acteristic equation for (.) may be written as

p∗ξ  + q∗ξ + r∗ = , (.)

where

p∗ = ( + ηk)
(

 –



sin
(

θ



))

+ ρλ sin
(

θ



)

,

q∗ = – +



sin
(

θ



)

+ λ sin
(

θ



)

– ρλ sin
(

θ



)

,

r∗ = ( – ηk)
(

 –



sin
(

θ



))

+ ρλ sin
(

θ



)

.

The necessary and sufficient condition for |ξ | <  is that p∗ + q∗ + r∗ > , p∗ – r∗ > ,
p∗ – q∗ + r∗ > .

Thus, for stability, we must have the conditions

(i) p∗ + q∗ + r∗ = λ sin
(

θ



)

>  for all θ except θ =  or π .

We can treat this separately:

(ii) p∗ – r∗ =
ηk



(

 + cos
(

θ



))

>  for η >  and all variable angles θ,

(iii) p∗ – q∗ + r∗ =



(

 + cos
(

θ



))

+ λ(ρ – ) sin
(

θ



)

>  if ρ ≥ 


.

Thus scheme (.) is stable if ρ ≥ 
 , η >  for all θ except θ =  or π .

We treat this case separately. For θ =  or π , we have the characteristic equation

( + ηk)ξ  – ξ + ( – ηk) =  (.)

whose roots are ξ, = , –ηk
+ηk . In this case also |ξ | ≤ .

Hence, for η > , ρ ≥ 
 , scheme (.) is stable for all choices of h >  and k > .



Mohanty et al. Advances in Difference Equations  (2015) 2015:337 Page 13 of 20

7 Convergence analysis
We consider the nonlinear hyperbolic differential equation

∂w
∂t =

∂w
∂x + g(x, t, w, wx, wt),  < x < , t > . (.)

The initial and boundary conditions are given by

w(x, ) = a(x), wt(x, ) = b(x),  ≤ x ≤ , (.)

w(, t) = a(t), w(, t) = a(t), t ≥ . (.)

In this section, we establish under appropriate conditions the fourth order convergence of
the proposed method.

We assume that the initial value problem (.)-(.) has a unique smooth solution w(x, t),
and the following conditions (see []) are satisfied:

(i) g(x, t, w, wx, wt) is continuous,
(ii) g(x, t, w, wx, wt) satisfies the Lipschitz condition, namely

∣
∣g(x, t, w + ξ, wx + ξ, wt + ξ) – g

(
x, t, w + ξ ∗

 , wx + ξ ∗
 , wt + ξ ∗


)∣
∣

≤ L
(∣
∣ξ – ξ ∗


∣
∣ +

∣
∣ξ – ξ ∗


∣
∣ +

∣
∣ξ – ξ ∗


∣
∣
)
,

where ξi and ξ ∗
i are arbitrary real numbers, and L is a Lipschitz constant,

(iii) a(x) and b(x) are continuously differentiable up to order  and , respectively.
For hl+ = hl = h, λ = (k/h) >  and replacing the variables U by W , u by w, we may re-write
scheme (.) as

λ(W j
l+ – W j

l + W j
l–

)
– k[W tt

j
l+ + W tt

j
l– + W tt

j
l
]

+ k[Ĝj
l+ + Ĝj

l– + Ĝj
l
]

= Tj
l , l = ()N ; j = , , , . . . , (.)

where

Gj
l = g

(
xl, tj, W j

l , W x
j
l, W t

j
l
)
, Ĝj

l = g
(
xl, tj, W j

l , Ŵx
j
l, W t

j
l
)
, etc., . . . and

Tj
l = O

(
k + kh + kh).

Let Wj = [W j
, W j

, . . . , W j
N ]T (T denotes transpose) and wj = [wj

, wj
, . . . , wj

N ]T be the ex-
act and approximate solution vectors of the solution w(x, t) at the grid point (xl, tj), respec-
tively, and let T = [Tj

, Tj
, . . . , Tj

N ]T be the local truncation error vector.
Let

φ(W) ≡ φ
(
Wj+, Wj, Wj–) = k[Ĝj

l+ + Ĝj
l– + Ĝj

l
]

and

φ(w) ≡ φ
(
wj+, wj, wj–) = k[ĝj

l+ + ĝj
l– + ĝj

l
]
,

where

gj
l = g

(
xl, tj, wj

l, wx
j
l, wt

j
l
)
, ĝj

l = g
(
xl, tj, wj

l, ŵx
j
l, wt

j
l
)
, etc., . . . .
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Then the spline in compression method described by (.) can be expressed in a matrix
form as follows:

DWj+ + CWj + DWj– + φ(W) = T, (.)

where D = [–, –, –]T and C = [ + λ,  – λ,  + λ]T are tri-diagonal matrices of
order N .

The method consists of obtaining an approximation wj+ for Wj+ by solving the tri-
diagonal system

Dwj+ + Cwj + Dwj– + φ(w) = . (.)

Let ε
j
l = wj

l – W j
l and Ej = wj – Wj = [εj

, εj
, . . . , εj

N ]T .
We may write

wt
j
l – W t

j
l =

(
ε

j+
l – ε

j–
l

)
/(k), wx

j
l – W x

j
l =

(
ε

j
l+ – ε

j
l–

)
/(h), . . . , etc.,

gj
l± – Gj

l± = ε
j
l±Hj

l± +


h
(±ε

j
l± ∓ ε

j
l ± ε

j
l∓

)
Ij

l± +


k
(
ε

j+
l± – ε

j–
l±

)
J j
l±, (.a)

gj
l – Gj

l = ε
j
lH

j
l +


h

(
ε

j
l+ – ε

j
l–

)
Ij

l +


k
(
ε

j+
l – ε

j–
l

)
J j
l , (.b)

ĝj
l± – Ĝj

l± = ε
j
l±Hj

l± ± 
h
(
ε

j
l± – ε

j
l
)
Ij

l± ± αh
k

(
ε

j+
l – ε

j
l + ε

j–
l

)
Ij

l±

± βh
k

(
ε

j+
l± – ε

j
l± + ε

j–
l±

)
Ij

l±

∓ αh
[

ε
j
lH

j
l +


h

(
ε

j
l+ – ε

j
l–

)
Ij

l +


k
(
ε

j+
l – ε

j–
l

)
J j
l

]

Ij
l±

∓ βh
[

ε
j
l±Hj

l± +


h
(±ε

j
l± ∓ ε

j
l ± ε

j
l∓

)
Ij

l± +


k
(
ε

j+
l± – ε

j–
l±

)
J j
l±

]

Ij
l±

+


k
(
ε

j+
l± – ε

j–
l±

)
J j
l±, (.c)

ĝj
l – Ĝj

l = ε
j
lH

j
l +


h

(
ε

j
l+ – ε

j
l–

)
Ij

l

–
αh
k

[(
ε

j+
l+ – ε

j
l+ + ε

j–
l+

)
–

(
ε

j+
l– – ε

j
l– + ε

j–
l–

)]
Ij

l

+
αh


[

ε
j
l+Hj

l+ +


h
(
ε

j
l+ – ε

j
l + ε

j
l–

)
Ij

l+ +


k
(
ε

j+
l+ – ε

j–
l+

)
J j
l+

]

Ij
l

–
αh


[

ε
j
l–Hj

l– +


h
(
–ε

j
l– + ε

j
l – ε

j
l+

)
Ij

l– +


k
(
ε

j+
l– – ε

j–
l–

)
J j
l–

]

Ij
l

+


k
(
ε

j+
l – ε

j–
l

)
J j
l (.d)

for suitable H , I , J , and α = 
θ ( θ

sin θ
– ), β = 

 – α, θ = ..
Further, we may write

Hj
l± = Hj

l ± Hx
j
l + O

(
h), Ij

l± = Ij
l ± Ix

j
l + O

(
h) and J j

l± = J j
l ± Jx

j
l + O

(
h).
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With the help of (.c) and (.d), we obtain

φ(w) – φ(W) = PEj+ + QEj + REj–, (.)

where P, Q and R are the coefficient matrices of error vectors Ej+, Ej and Ej–, respectively.
Subtracting (.) from (.), we have

(D + P)Ej+ + (C + Q)Ej + (D + R)Ej– = –T. (.)

Assume that the exact solution values of w(x, t) are known exactly at initial and first time
levels so that Ej = Ej– = . Then from (.) we obtain the error equation

(D + P)Ej+ = –T. (.)

Let Pl,m be the (l, m)th element of matrix P, then it is easy to verify that

– + Pl,l± <  for l = ()N – , ()N ,

and hence D + P is irreducible (see Varga []).
Let Sm be the sum of the elements of the mth row of D + P and I∗ = Min[(α – β)Ij

l · J j
xl –

(α + βJ j
l )I

j
xl ], then, for sufficiently small h and k, we obtain

Sm >
khI∗


, m =  and N , (.a)

Sm ≥ khI∗, m = ()N –  (.b)

and hence D + P is also monotone.
Then (D + P)– exists (D + P)– ≥  (see Varga []).
Since

N∑

m=

(D + P)–
l,m · Sm = , l = ()N ,

hence

(D + P)–
l,m ≤ 

Sm
≤ 

khI∗
, l = ()N ; m =  and N (.a)

and

N∑

m=

(D + P)–
l,m ≤ 

Min Sm
≤ 

khI∗
, l = ()N . (.b)

From (.), we have

∥
∥Ej+∥∥ ≤ ∥

∥(D + P)–∥∥‖T‖. (.)
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Now,

∣
∣ε

j+
l

∣
∣ ≤ (D + P)–

l, |T| +
N–∑

m=

(D + P)–
l,m · |Tm| + (D + P)–

l,N |TN |, l = ()N . (.)

Let ‖Ej+‖ = max{|εj+
l | : l = ()N}.

With the help of (.a) and (.b) and when k ∝ h, from (.), we obtain, for suffi-
ciently small h and k,

∥
∥Ej+∥∥ = O

(
h). (.)

This establishes the fourth order convergence of the method.

8 Numerical results
Substituting approximations (.), (.), (.) and (.) directly into the differential equa-
tion (.), we obtain a method

Utt
j
l = Aj

lUxx
j
l + f

(
xl, tj, Uj

l , Ux
j
l, Ut

j
l
)

+ O
(
k + hl

)
, l = ()N , j = , , . . . . (.)

In this section, we solve some benchmark problems using the method described by equa-
tion (.) and compare our results with the results obtained by using the method dis-
cussed in []. The exact solutions are provided in each case. The right-hand side ho-
mogeneous functions, initial and boundary conditions may be obtained using the exact
solution as a test procedure. The linear difference equations have been solved using a
direct method, that is, tri-diagonal solver; whereas nonlinear difference equations have
been solved using the Newton-Raphson iteration method. For the Newton-Raphson it-
eration method, we have chosen zero vector as the initial guess and the iterations were
stopped when the error tolerance ≤ – was achieved. All computations were car-
ried out using double precision arithmetic. All computations were done using MATLAB
codes. Throughout computation, we have used ωl = ωl+ = ω. From consistency con-
dition, we found the relation tan( ωhl

 ) = ωhl
 . This equation has an infinite number of

roots, the smallest positive nonzero root being given by ωhl = .. We have used
ωhl = . (fixed) throughout the computation, that is, ω = (.)/hl . For
different values of ‘hl ’, we have different values of ‘ω’. That would not affect the accuracy
of the scheme.

Note that the proposed method (.) for second order quasilinear hyperbolic equations
is a three-level scheme. The value of u at t =  is known from the initial condition. To start
any computation, it is necessary to know the numerical value of u of required accuracy
at t = k. In this section, we discuss an explicit scheme of O(k) for u at first time level,
i.e., at t = k in order to solve the differential equation (.) using method (.), which is
applicable to problems in Cartesian and polar coordinates.

Since the values of u and ut are known explicitly at t = , this implies that all their suc-
cessive tangential derivatives are known at t = , i.e., the values of u, ux, uxx, . . . , ut , utx, . . . ,
etc. are known at t = .

An approximation for u of O(k) at t = k may be written as

u
l = u

l + kut

l +

k


(utt)

l + O
(
k). (.)
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From equation (.), we have

(utt)
l =

[
A(x, t, u)uxx + f (x, t, u, ux, ut)

]
l . (.)

Thus, using the initial values and their successive tangential derivative values, from (.)
we can obtain the value of (utt)

l , and then, ultimately, from (.) we can compute the value
of u at first time level, i.e., at t = k. Replacing the variable x by r in (.), we can also obtain
an approximation of O(k) for u at t = k for problems in polar coordinates.

We discretize the solution domain � = {(x, t)| < x < , t > } such that  = x < x < · · · <
xN < xN+ = , where hl = xl – xl– and σ = hl+/hl > , l = ()N ,

 = xN+ – x = xN+ – xN + xN – xN– + · · · + x – x

= hN+ + hN + hN– + · · · + h

=
(
 + σ + σ  + · · · + σ N)

h. (.)

Thus

h =
 – σ

 – σ N+ , σ 
= . (.)

Hence, by prescribing the total number of mesh points N + , we can compute the value
of h from (.). The remaining mesh is determined by hl+ = σhl , l = , , . . . , N . We have
chosen σ = .. We have taken N +  = , , ,  as the total number of grid points in
the x-direction. Therefore, to obtain the numerical solution at t = ., we choose the time
step k = ./(N + ).

Example  (Wave equation in polar coordinates)

∂u
∂t =

∂u
∂r +

γ

r
∂u
∂r

+ f (r, t),  < r < , t > . (.)

The initial and boundary conditions are given by

u(r, ) = , ut(r, ) = cosh r,  ≤ r ≤ , (.)

u(, t) = sin t, u(, t) = cosh  sin t, t ≥ . (.)

The exact solution is given by u(r, t) = cosh r sinh t. The maximum absolute errors (MAE)
are tabulated in Table  at t = . for γ =  and .

Table 1 Example 1: the maximum absolute errors

N + 1 Proposed method (5.11) Results given in [23]

γ = 1 γ = 2 γ = 1 γ = 2

8 0.5448(–02) 0.8876(–02) 0.6100(–02) 0.1200(–01)
16 0.1126(–02) 0.2216(–02) 0.1600(–02) 0.3600(–02)
32 0.4848(–03) 0.8672(–03) 0.6162(–03) 0.1200(–02)
64 0.2088(–03) 0.3474(–03) 0.2643(–03) 0.5281(–03)
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Table 2 Example 2: the maximum absolute errors

N + 1 Proposed method (3.20) Results given in [23]

γ = 1 γ = 2 γ = 3 γ = 1 γ = 2 γ = 3

8 0.1615(–04) 0.1211(–04) 0.1132(–04) 0.2676(–04) 0.1610(–04) 0.1473(–04)
16 0.1433(–05) 0.1008(–05) 0.8878(–06) 0.2138(–05) 0.1210(–05) 0.9764(–06)
32 0.1515(–06) 0.1068(–06) 0.6704(–07) 0.2363(–06) 0.1236(–06) 0.7923(–07)
64 0.1688(–07) 0.1082(–07) 0.5315(–08) 0.2665(–07) 0.1332(–07) 0.6733(–08)

Table 3 Example 3: the maximum absolute errors

N + 1 Proposed method (3.20) Results given in [23]

t = 1 t = 2 t = 1 t = 2

8 0.5675(–04) 0.9244(–05) 0.8583(–04) 0.1064(–04)
16 0.3232(–05) 0.6453(–05) 0.6570(–05) 0.8302(–05)
32 0.4242(–06) 0.7236(–06) 0.7055(–06) 0.9182(–06)
64 0.1006(–06) 0.1528(–06) 0.1108(–06) 0.1810(–06)

Example  (Van der Pol type nonlinear wave equation)

∂u
∂t =

∂u
∂x + γ

(
u – 

)∂u
∂t

+ f (x, t),  < x < , t > . (.)

The initial and boundary conditions are given by

u(x, ) = sinπx, ut(x, ) = –γ sinπx,  ≤ x ≤ , (.)

u(, t) = sin t, u(, t) = cosh  sin t, t ≥ . (.)

The exact solution is given by u(x, t) = e–γ t sinπx. The MAE are tabulated in Table  at
t = . for γ = ,  and .

Example  (Dissipative nonlinear wave equation)

∂u
∂t =

∂u
∂x – u

∂u
∂t

+ f (x, t),  < x < , t > . (.)

The initial and boundary conditions are given by

u(x, ) = , ut(x, ) = sinπx,  ≤ x ≤ , (.)

u(, t) = , u(, t) = , t ≥ . (.)

The exact solution is given by u(x, t) = sinπx sin t. The MAE are tabulated in Table  at
t =  and .

Example  (Quasi-linear hyperbolic equation)

∂u
∂t =

(
 + x + u)∂u

∂x + γ u
(

∂u
∂x

+
∂u
∂t

)

+ f (x, t),  < x < , t > . (.)
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Table 4 Example 4: the maximum absolute errors

N + 1 Proposed method (3.20) Proposed method (8.1)

γ = 5 γ = 10 γ = 5 γ = 10

8 0.4950(–03) 0.1610(–01) 0.7676(–02) 0.2871(–00)
16 0.3597(–04) 0.1421(–02) 0.2346(–02) 0.6952(–01)
32 0.3023(–05) 0.1444(–03) 0.6924(–03) 0.2221(–01)
64 0.4042(–06) 0.2188(–04) 0.2852(–03) 0.8512(–02)

The initial and the boundary conditions are given by

u(x, ) = cosh x, ut(x, ) = cosh x,  ≤ x ≤ , (.)

u(, t) = et , u(, t) = et cosh , t ≥ . (.)

The exact solution is given by u = et cosh x. The MAE are tabulated in Table  for γ =
 and  at t = .

9 Final remarks
Available numerical methods based on spline in compression approximations for the nu-
merical solution of second order quasilinear hyperbolic equations on a variable mesh are
of O(k + hl) accuracy only. In this article, using the same number of grid points and three
evaluations of the function F , we have derived a new stable method of O(k + khl + h

l )
accuracy for the solution of second order quasilinear hyperbolic equation (.). To demon-
strate the efficiency and the applicability of the proposed method, we have applied it to a
few benchmark problems and have obtained convergent results. The results were com-
pared with the results obtained by using a Numerov type method discussed in [], and
they show superiority over the latter. The non-polynomial basis {, x, sin x, cos x} consists
of C∞-differentiable functions, which compensates the loss of smoothness inherited by
standard Numerov type discretization discussed in []. Therefore, the numerical method
(.) based on non-polynomial spline approximations gives better results compared with
the results given in [].
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