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Abstract

We investigate the existence of positive solutions for a fractional boundary value
problem at resonance. By means of a fixed point theorem of increasing operators, the
minimal and maximal nonnegative solutions for the problem are obtained.
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1 Introduction
We are concerned with the following fractional boundary value problem (P):

Dy u(t) =f(Lu(®), 0<t<l, (1.1)

u(0) =u'(0) =0, u”(0) = 2u(l), (1.2)

where °DJ, denotes the Caputo fractional derivative, 2 < « < 3. We assume that f : [0,1] x
R* — R* is continuous. The boundary value problem (P) is said to be at resonance if the
linear equation Lu = °D, u(t) with the boundary value conditions (1.2) has a nontrivial
solution, i.e., dimker L > 1.

In recent years, there has been much work related to boundary value problems at res-
onance for ordinary or fractional differential equations. We refer the reader to [1-8] and
the references therein. In most papers mentioned above, the coincidence degree theory
was applied to establish existence theorems. In [9-11], the authors obtained the minimal
and maximal positive solutions by using a fixed point theorem of increasing operators.

In this paper, we use this method to solve the boundary value problem (P). For the con-
venience of the reader, we recall some notations.

Let X and Y be real Banach spaces, L : dom(L) C X — Y be a Fredholm operator of index
zero. The map N : X — Y is called L-compact on & if QN(2) and K,(I - Q)() are both
compact.

LetP: X — X, Q:Y — Y be continuous projectors such that ImP = KerZ, KerQ =Im L
and X = KerL @ KerP, Y =ImL & ImQ. It follows that L|gerpndom(z) : Ker P N dom(L) —
Im(L) is invertible.
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We denote the inverse of L by Kp : ImL — Ker P N dom(L). Moreover, since dimIm Q =
dimKer L < 00, there exists an isomorphism J : Im Q — KerL = ImP. Set H = L +J7'P, then
H:dom(L) C X — Y is a linear bijection with bounded inverse and (JQ + K,,(/ — Q))(L +
J7'P) = (L +J'P)(JQ + K, (I - Q)) = I. From [12] we see that K; = H(K N dom(L)) is a cone
in Y and we have the following theorem.

Theorem 1.1 [12] N(u) +J'P(u) = H(u), where u = P(u) + JQN (1) + K,(I - Q)N (1) and u
is uniquely determined.

As a consequence of the above theorem, the author obtained the equivalence of the
following two assertions:

(i) P+JQN +K,(I - QN : K Ndom(L) — K Ndom(L),

(i) N+J'P: K Nndom(L) — K;.

Now we introduce the notion of lower and upper solutions.

Definition 1.2 [6] Let K be a normal cone in a Banach space X, ug < vy, and ug, vy €

K N dom(L) are said to be coupled lower and upper solutions of the equation Lu = Nu if

LMO = NMO;
Lvy > Nvyg.

Theorem 1.3 [6] Let L:dom(L) C X — Y be a Fredholm operator of index zero, K be a
normal cone in Banach space X, ugy,vy € K Ndom(L), ug < vy, and N : [ug,vo] — Y be

L-compact and continuous. Suppose that the following conditions are satisfied:

(C1) uo and vg are coupled lower and upper solutions of the equation Lu = Nu.
(Cy) N+JtP:Kndom(L) — Kj is an increasing operator.

Then the equation Lu = Nu has a minimal solution u* and a maximal solution v* in
[MO’ VO] .

Moreover, u* = limy,_, oo Uy, and v* =lim,_, o, v,,, where

ty = (L+]7'P) (N +]7'P)ut 1,
Vo= (L+J'P) (N +J Py, forn=1,23,...,

Uo < Uy < Uy

CSUp = SV S-SV SV S Vo

2 Preliminaries
Now, we introduce some notations, definitions and preliminary facts which will be used

throughout this paper.

Definition 2.1 The Riemann-Liouville fractional integral operator of order « > 0 of a
function g is defined by

.g(t) = ﬁ / (t - 5)*g(s) ds,

provided that the right side integral is pointwise defined on (0, +00).
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Definition 2.2 The Caputo fractional derivative of order « > 0 of a continuous function
g is given by

¢ _ 1 ! _ n—a-1_(n)
Dwg(t)_if‘(n—a)/a(t s) g"(s)ds,

when # is the smallest integer greater than or equal to «, provided that the right side
integral is pointwise defined on (0, +00).

Lemma 2.3 For a > 0, g € C([0,1],R), the homogeneous fractional differential equation
‘D%, g(t) = 0 has a solution g(t) = ¢y + c1t + ot + -+ Cp ", wherec; €R,i=0,...,n—1,
here n is the smallest integer greater than or equal to o.

Let X = Y = C[0,1] equipped with the norm ||u|| = sup,(o; [4(f)| and K = {u € X : u(t) >
0,t €[0,1]}.
Define the operators L and N, respectively, by L:dom(L) CX — Y
Lu(t) = “Dg+ u(2),

dom(L) = {u € AC?*[0,1] : ‘D§.u(t) € C[0,1],u(0) = #'(0) = 0,u”(0) = 2u(l)} and
N:X—>Y

Nu(t) =f(t,u(r)), Vtelo,1],

then the boundary value problem (P) can be written as Lu = Nu, u € K N dom(L).

Lemma 2.4 We have
KerL = {u edom(L) : u(t) = ct?,c e R,Vt € [0, 1]}
and

1
ImL = {ye Y:/ (1-5)*y(s)ds = 0}.
0

Proof By Lemma 2.3, the function u(t) = ¢o + ¢1t + cot?, co,c1,02 € R is the solution of
Lu(t) = D§. u(t) = 0. Taking into account the boundary conditions (1.2), we get

KerL = {u e dom(L) : u(t) = ct*,c e R,Vt € [0, 1]}.
Let us show that

1
ImL = {ye Y:/ (1—s)*y(s)ds = 0}.
0

For y € Im L, there exists u € dom(L) such that y = Lu € Y. By Lemma 2.3, it follows that

t
u(t) = L / (t —s)"“ly(s) ds + co + c1t + cot>.
I'(a) Jo



Kouachi et al. Advances in Difference Equations (2015) 2015:316 Page 4 of 9

It is easy to get
1 t
u'(t) = ) /0 (t—s5)*2y(s)ds + c; + 2cot,
1 t
u'(t) = ) /0 (t—s)"y(s)ds + 2¢y,
then the boundary conditions (1.2) imply
1
/ (1—s)*y(s)ds = 0.
0

On the other hand, suppose that y € Y and satisfies fol(l — 8)*ly(s)ds = 0. Let u(t) =
Ig. y(t) + ct?, then u € dom(L) and D§. u(t) = y(t). Thus, y € Im L. O

Now, define the operators P: X — X by
1 1
Pu(t) = Ea(a +1)(a + 2)t2/ (1-s)*uls)ds
0
and Q:Y — Y by
1
Qy(¢) = oz/ 1 -s)*"y(s)ds, Vtelo,1].
0

It is easy to see that the operators P and Q are both projectors. In fact, for ¢ € [0,1],

P2u(t) = P(Pu)(¢)

! 1 2)t? 11 *(Pu)(s)d.

—Eoc(oe+ Yo+ 2)¢t /0( — ) (Pu)(s) ds

1, 2 2o ! -l ! ae-12
-4a (a +1) (a+2)t/0(1 s) u(s)ds/o(l $)* s ds

! 1 2)t? 11 *ly(s)ds =P
—Eoc(oe+ Yo+ 2)¢t /0( —8)“u(s)ds = Pu(t).

Similarly we show that Q is a projector. Obviously, ImP = Ker L and Ker Q = Im L.

Lemma 2.5 The operator L :dom(L) C X — Y is a Fredholm operator of index zero, and
its inverse K, : Im L — dom(L) N Ker P is given by

1
Kyy(t) :/0 k(t,s)y(s)ds, Vte[0,1],

where
(t-s)*71 2 (@) 2a-1
k(s =1 T@ —a(a+1)(a +2)¢ T2 1-s)*" 0<s<t<l, 1)
—ar(or + 1)@ + 2)8 5 (1 - 5)* 7, 0<t<s<L
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Proof From u = (4 — Pu) + Pu it follows that X = Ker P + Ker L. By simple calculation, we
obtain KerZ N Ker P = {0}, then X = KerL @ Ker P. By the same idea we prove that ¥ =
ImL & ImQ. Thus

dimKerL =dimImQ =codimImLZL = 1.
This means that L is a Fredholm operator of index zero.

Let us find the expression of K, : ImL — dom(L) N Ker P. Let # € dom(L) N Ker P, then
y(t) =D, u(t) € ImL and

Kpy(t) = u(t) = I3 y(t) + Ct? = ﬁ /(‘) (t—5)"'y(s)ds + Ct*. (2.2)
Since u € dom(L) N Ker P,
1
0= Q-0 u)d
/0 A -0)% u(t)det

1 : 1
W)/o (l—t)a—1/0 (t—s)afly(s)dsdt+C/0 21— 0 dt

_ 1 ! ! -1 -1 2C
—m/() y(s)/s @A=-0)*"(t-5s) dtds+a7(a+1)(a+2),

thus

C=- M/ ()fu NNt = )% Vdt ds,

2
= —ale+ (e +2) o (“) f (1 - 5)%Ly(s) ds.
Substituting C by its value in (2.2) we get

Key)(0) = %a) /0 (-5 y(s) ds

oo + 1) (o +2)¢

20-1
Zm )/( ~ 2 ly(s) ds

1
= / k(z,s)y(s) ds,
0
where k(¢, s) is given by (2.1). O
3 Main result
Define the isomorphismJ : Im Q — Ker L by J(c) = %(a +1)(a +2)ct?. We have the following

result.

Lemma 3.1 We have

1
(JON + K,(I - Q)N)u(t) = ‘/0 G(t,s)f (s, u(s)) ds,
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where
" o+ D)+ 2)t22§ o (1-s)2t
Glt.s) = +oalo+1)(a+ 2)t2(1 4r 2a ) )(1 - 5)e1 Ft(a)(l —8)* 1, 0<s<t<l,

—or(or +1)(o + 2)8 5 (1 - s)za—l

+ale+1D(a+ 2)t2(1

-1_ %)(1—9‘“, 0<t<s<l.
G is continuous and nonnegative on [0,1] x [0,1].

Proof We have
1
QNu(t) =« / 1- s)a’lf(s, u(s)) ds,
0
1
K,(I - Q) Nu(t) = / k(t,s)f(s,u(s)) ds
—oz(/ 1-9)*Yf s,u(s) )(/ k(t, s)ds)
Then

(JQN + K,(I - Q)N)u(t)
2
_ (Ol+1 2)¢ /(1 5)lf (s,u(s))

+ /01 k(t, s)f(s, u(s)) ds —a (/0 a- s)"‘_lf(s, u(s)) ds) (/01 k(t,s) ds)

1
_ w /0 (1=)*"f (s, u(s) ds

1 ¢ 4
— -5~ , d.
+ /O(t s) f(s u(s)) s

I (e)
Fe@) (' ou
2T (2a) -/o =S (o ulo) s

+ (— Ft(‘;) +alo+1)(a + 2)t2%> <f;(1 - S)“’lf(s, u(s)) ds).

It is easy to see that G is continuous according to both variables s, € [0,1]. Let £ <s <1,
then

—afo+ (o +2)82

G(t,s) = —a(a + 1)(a + 2)t2%(1 — )l

1 (a) o—-1 2 o1
ol + Do +2)82 (2 T (20 ))(1—5) - 1_‘(0[)(1—5)

4T (2a) T(x)
I'(a) 1

4T 2a) T(a)

2
> (—oe(ot iDesp @ lot(a P (e + 2)t2>(1 51

> (—a(a +1)(a +2) + 50{(0{ +1)(a + 2))t2(1 —s)*t

> 621 -5)*1>0
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Similarly we get, for 0 <s <t <1,
t-s 2 a-1
G(t,s) > ———— +6t2(1-5)*" > 0.
IN'c

The proof is complete. 0

Lemma 3.2 The operator N is L-compact and continuous on 2, where Q is any open
bounded subset of K N dom(L).

Proof We have to prove that QN(2) and K,(I - Q)(2) are both compact. Let # € Q and
M = max(f(s, u(s)),0 < s < 1, u € Q), remarking that |k(¢,s)| < 21, we easily get

1
|Kp(1— Q)Nu(t)| < /0 f(s,u(s))|k(t,s)| ds

1 1
+o (/o a- s)“_lf(s, u(s)) ds> (/0 |k(t, s)| ds) < 42M,

thus || K,(I — Q)Nu|| < 42M, so K,(I — Q)N is uniformly bounded on Q.
Let0 <t <t <1, then

| Ky (I = Q)Nu(ts) — K, (I - Q)Nu(ty)|

1

i a-1 a-1
“to /0 (62— 51 = (1 — 51" ) f s, u(s)) ds

1 2 a-1
m /n (tp — ) f(s, u(s)) ds

+ala+1)(a+2)(5 -t 2I‘8<l f (1 -8 (s,u(s)) ds

1 r
N (/0 a _S)a—lf(s, u(s)) ds> ((tz - t1) + (o + 1) o + 2)(1,‘2 BFEZL))

(e)

M
=< I:Ol(tz -h)+ m

m (a+1)2(a+2)(t§—t12) + (tg—tf‘):|.

As t; — b, the right-hand side of the above inequality tends to 0, consequently K, (I —
Q)(R) is equicontinuous. By means of the Arzela-Ascoli theorem we conclude that K,(I-
Q)(R) is compact. Similarly we prove that QN () is compact. a

Theorem 3.3 Assume that:

(Hy) There exist ug, vy € K Ndom(L) such that ug < vy and

D uo(t) = f(tuo(t)), Vtel[0,1],
cDg+V0(t) Zf(t: VO(t))) Vi e [Ov 1]

(Hz) Foranyx,y € KNdom(L), uo(t) < y(£) < x(t) <wvo(t), Vt € [0,1], the function f satisfies

1 1
F(6,%(8) - (6,5(0)) z—a( /0 (1— )" x(e) dt - /0 (l—t)"“ly(t)dt).
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Then the boundary value problem (P) has a minimal solution u* and a maximal solution

v* in [ug, vo].

Proof We will prove that all conditions of Theorem 1.3 are satisfied. From the proof of
Lemma 2.5, we know that L is a Fredholm operator of index zero. In view of condition
(H1), we get Lug < Nup and Lvg > Nvy, so condition (C;) of Theorem 1.3 holds. For u# € K,

we have

(P+JQN + K,(I - QN)u(t)

1 1
= %a(ot + 1) (o + 2)t2/0 (1—s)* L uls) + fo G(t, s)f(s, u(s)) ds.

Since G(t, s) is continuous and nonnegative for ¢,s € [0,1], (P+JQN + K,(I - QN)(K) C K.
By virtue of the equivalence assertions, we conclude that N + J7'P: K N dom(L) — K;.
Condition (H,) implies that N +J 1P : KNdom(L) — K is a monotone increasing operator,
in fact for x,y € K N dom(L), y(¢) < x(¢), V¢ € [0,1], we have

(N +J7'P)x(t) = (N +J7'P)y(t)

1 1
=f(t:x0) -f(Ly(@) +« ( /0 (1 - 8% Lu(t) dt - /0 () () dt) >0,

so condition (C,) is satisfied. Finally, we conclude by Theorem 1.3 that the equation Lu =
Nu has a minimal solution #* and a maximal solution v* in [ug, Vo], where u* = lim,,_, o 1,

and v* = lim,,_, » vy, uniformly according to ¢, the sequences u,, and v,, are defined by

ty = (L+77P) " (N + TP,y

= (JQ+ K,(I - Q)(N +J'P)uya

1
(JQ+Ky(I-Q) <f (5 tn1(5)) + / (1 =)y (s) dS)
0

1

- ‘ _ el
F(a),/o(t )" (s, n-1(5)) ds

1
rale +1)(@ +2)82 4?8‘;) /0 (1= )Y (5, 1y (5)) ds
r

! -1
- m /(; 1-5s) f(s, u,,_l(s)) ds

2T (a)

—a(o+1)(a + 2)2F(2a)

1
/ 1- s)2a_lf(s, un_l(s)) ds
0

1
+ %a(a +1) (o +2)8 /0 (1 -8 uy,1(s) ds,

similarly we get the expression of v,,, moreover, we have
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Example 3.4 Let us consider the following fractional boundary value problem:

s
‘Diut)=t*+-%, 0<t<l,

u+l’

u(0) =u'(0) =0, u”(0) = 2u(l).

(3.1)

We can choose

uo(t) = /O(t—s)%s%zsg %3)/0 (t—5)2 (s +1)%ds = vo(t),

1
r'3)
then

5 5
‘Diug(t) = £ < (t+1)* =D& vo(2),
5 5
CD(§+ I/lo(t) ff(tt MO(t))) CD(§+ VO(t) Zf(t; VO(t))t Vte [0)1]'

For any x,y € K Ndom(L), we have

2, X 2, Y 5((° a-1 ! a-1

where uo(£) < y(t) < x(¢) < vo(2), Vt € [0,1]. Then, by Theorem 3.3, the boundary value
problem (3.1) has a minimal solution #* and a maximal solution v* in [ug, vo].
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