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Abstract
In this paper, applying the properties of matrix Schur complement and matrix inverse,
via some matrix equalities and inequalities, we present new lower and upper solution
bounds of the discrete algebraic Riccati equation. Then, by the compressed image
principle and a matrix norm inequality, we offer an existence uniqueness condition
and a fixed point iteration algorithm for the solution of the discrete algebraic Riccati
equation. Finally, a corresponding numerical example demonstrates the effectiveness
of the developed results.
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1 Introduction and preliminaries
The discrete algebraic Riccati equation has many applications in the process of obtaining
optimal control and determining system stability [, ]. For example, consider the follow-
ing linear discrete system (see []):

x(t + ) = Ax(t) + Bu(t), (.)

where x(t) ∈R
n is the state variable, u(t) ∈R

m is the input variable, A ∈ R
n×n is the system

matrix, B ∈R
n×m is the input matrix.

The system (.) is associated with the linear quadratic optimal control problem of min-
imizing the quadratic performance index

˜J =
∞

∑

t=

(

x(t)
u(t)

)T (

Q ST

S G

)(

x(t)
u(t)

)

,

where S ∈ R
m×n, G ∈ R

m×m, Q ∈ R
n×n are symmetric positive definite matrices, then the

problem switches to how to solve the symmetric positive definite solution P ∈R
n×n of the

following equation:

P = AT PA + Q –
(

AT PB + ST)(

G + BT PB
)–(BT PA + S

)

. (.)
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If S = , G = Im, (.) becomes the discrete algebraic Riccati matrix equation

P = AT PA – AT PB
(

I + BT PB
)–BT PA + Q. (.)

In many practical control problems, to study the discrete algebraic Riccati equation (.),
we usually assume that Q is positive semi-definite. When considering certain H-infinity
problems and LQG problems and so on in some discrete control linear systems, the as-
sumption that Q is positive definite is only required. Certainly, it is difficult to discuss this
equation on the assumption that Q is positive semi-definite. Thus, there are many scholars
to research this equation on the assumption that Q is positive definite [–].

As the discrete algebraic Riccati equations (.) and (.) play an important role in many
control analysis and design problems (Bernstein,  []; Kojima et al.,  []), dis-
cussing these equations becomes a heated topic. For one thing, it is important to solve
these equations (Kojima et al.,  []). It is difficult to obtain their solutions, and there
are few iterative algorithms for getting the solutions of these equations (Komaroff, 
[]). Reference [] derives the iterative solution algorithm on the assumption that for the
discrete algebraic Riccati equations (.) there exists a positive definite solution. In certain
control problems, if the original system is assumed to be stabilizable, the exact solutions
of the discrete algebraic Riccati equations (.) and (.) are not often required, while a
reasonably tight solution bound will only be required such as the stabilization of jump
linear systems (Fang and Loparo,  []) and the quadratic optimization problem for a
class of singularly perturbed stochastic systems (Dragan,  []). Hence, in recent years,
many researchers paid much attention to studying the discrete algebraic Riccati equations
(.) and (.). Those include a recursive solution (Assimakis et al.,  []), a matrix
inequality (Saberi,  []), prediction, estimation, and smoothing error covariance ma-
trices (Assimakis and Adam,  []), iterative and algebraic algorithms (Assimakis and
Adam,  []; Chiang et al.,  []), matrix bounds (Choi,  []; Kim and Park,
 []; Gao et al.,  []; Komaroff, ,  [, ]; Lee and Chang,  [];
Lee, , ,  [–], Liu and Zhang, ,  [–], Zhang and Liu, 
[, ]), eigenvalue bounds (Garloff,  []; Lee,  []), trace bounds (Kim et al.,
 []), summation bounds (Komaroff and Shahian,  []), norm bounds (Patel
and Toda,  []), and perturbation bounds (Hasanov et al.,  []; Hasanov, 
[]). The most general bounds are the solution bounds, as they can directly offer the
other types of bounds mentioned. Thus, based on the above, there are three problems to
be considered as follows:

() When does there exist a positive definite solution of the discrete algebraic Riccati
equation (.)?

() If the discrete algebraic Riccati equation (.) possesses a positive definite solution
under certain conditions, in what range is the solution unique? In addition, how do
we estimate the upper and lower solution bounds of this equation?

() If the discrete algebraic Riccati equation (.) possesses a unique positive definite
solution in a certain range, how do we design the iterative solution algorithms?
Further, we need to discuss the solution bounds affecting the iterative algorithms.

Therefore, in this paper, we present new lower and upper solution bounds of the dis-
crete algebraic Riccati equation (.). Then we offer an existence uniqueness condition
and a fixed iterative algorithm for the solution of the discrete algebraic Riccati equation
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(.). Finally, a corresponding numerical example demonstrates the effectiveness of the
developed results.

Throughout this paper, we use the following symbol conventions. Let Rn×m and N+ de-
note the set of n × m real matrices and positive integers. For X = (xij) ∈ R

m×n, let XT , ‖X‖
denote the transpose and the spectral norm of X, respectively. If X ∈R

n×n, X– denotes the
inverse of X. If X, Y ∈R

n×n, the inequality X > (≥)  means that X is a symmetric positive
(semi-) definite matrix and the inequality X > (≥) Y means X – Y is a symmetric positive
(semi-) definite matrix. Suppose X ∈ R

n×n is an arbitrary symmetric matrix, we assume
that the eigenvalues of X are arranged so that λ(X) ≥ λ(X) ≥ · · · ≥ λn(X). For X ∈ R

n×n,
suppose the singular values of X are arranged so that σ(X) ≥ σ(X) ≥ · · · ≥ σn(X). The
identity matrix with appropriate dimensions is represented by I .

Let N = {, , . . . , n}. For nonempty index sets α,β ⊆ N whose elements are both con-
ventionally arranged in increasing order, we denote by |α| the cardinality of α and by
αc = N –α the complement of α in N . We write X(α,β) to mean the submatrix of X ∈ Rn×n

lying in the rows indexed by α and the columns indexed by β . X(α,α) is abbreviated to
X(α). Assuming that X(α) is nonsingular, denote the Schur complement with respect to
X(α) by

X/α = X/X(α) = X
(

αc) – X
(

αc,α
)[

X(α)
]–X

(

α,αc).

The following lemmas are used to prove the main results.

Lemma . (Zhang [], p., Theorem .) Let X ∈R
n×n be partitioned as

X =

(

E F
G H

)

,

and suppose both X and E ∈R
m×m are nonsingular matrices. Then X/E is nonsingular and

X– =

(

E– + E–FS–GE– –E–FS–

–S–GE– S–

)

,

where S = H – GE–F = X/E.

Lemma . (Zhang [], p., Case ) If the matrix X is defined as Lemma ., choosing
α = {, , . . . , m}, then

(X/α)– = X–(αc).

Lemma . (Lee []) Let P be the positive semi-definite solution of the discrete algebraic
Riccati equation (.), and σ 

 (A) <  + σ 
n (B)δ, then P has the upper matrix bound

P ≤ λ(Q)
 + δσ 

n (B) – σ 
 (A)

AT A + Q ≡ η, (.)

where δ ≡ λ[AT (I + QBBT )–QA + Q].
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Definition . (Rudin []) The pair (X, d) is called a complete metric space if X is a
nonempty set whose elements are denoted by x, y, . . . and assume that on the Cartesian
product X × X a distance function d is defined satisfying the following conditions:

(D) d(x, y) ≥ ,
(Dl) d(x, y) =  if and only if x = y,

(D) d(x, y) = d(y, x),
(D) d(x, y) ≤ d(x, z) + d(z, y),
(D) every d-Cauchy sequence in X is d-convergent, i.e., if xn is a sequence in X such

that limn,m→∞ d(xn, xm) = , then there is an x ∈ X with limn→∞ d(xn, x) = .

Definition . (Rudin []) The pair (X,‖ · ‖) is called a normed space if X is a real vector
space whose elements are denoted by x, y, z, . . . and assume that for every x ∈ X there is
associated a nonnegative real number ‖x‖, called the norm of x, in such a way that:

(D) ‖x + y‖ ≤ ‖x‖ + ‖y‖,
(Dl) ‖αx‖ = |α| · ‖x‖ where α is a scalar,

(D) ‖x‖ >  if x 
= .

Lemma . (Berinde [], Theorem B) Let (X, d) be a complete metric space and F : X −→
X be a strict contraction, i.e., a map satisfying

d(Fx, Fy) ≤ ad(x, y), for all x, y ∈ X,

where  ≤ a <  is constant. Then F has a unique fixed point in X.

Every normed space may be regarded as a metric space, in which the distance d(x, y)
between x and y is ‖x – y‖. Hence, we get the following conclusion from Definitions .,
. and Lemma ..

Lemma . Let (X,‖ · ‖) be a real Banach space, and � ⊂ X be a convex, closed and
bounded subset and F : � −→ � be a contraction map, i.e., a map satisfying

∥

∥F(P) – F(P)
∥

∥ ≤ p‖P – P‖, for all P, P ∈ �,

where  ≤ p <  is constant. Then F has a unique fixed point in �.

Lemma . (Zhao et al. [], Lemma .) If X, Y ∈ R
n×n, and  < X ≤ Y , then

‖X‖ ≤ ‖Y‖.

2 New solution bounds for the discrete algebraic Riccati equation (1.3)
In this section, we first present a lemma (Lemma .). Then new lower and upper solution
bounds are deduced from Lemma ..

Lemma . Define the map

F(P) = AT(

P– + BBT)–A + Q, (.)



Zhang and Liu Advances in Difference Equations  (2015) 2015:313 Page 5 of 17

then

F(P) = Q



[

Q– 
 AT(

P– + BBT – A
(

F(P)
)–AT)–AQ– 

 +



I
] 


Q


 +




Q. (.)

Proof By (.), then

Q = F(P) – AT(

P– + BBT)–A =

(

F(P) AT

A P– + BBT

)

/

αc. (.)

Applying Lemma . to (.) yields

Q =

⎡

⎣

(

F(P) AT

A P– + BBT

)–

(α)

⎤

⎦

–

,

which is equivalent to

Q– =

(

F(P) AT

A P– + BBT

)–

(α). (.)

Introducing Lemma . to (.) gives

Q– = F(P)– + F(P)–AT[

P– + BBT – A
(

F(P)
)–AT]–AF(P)–. (.)

Multiplying (.) on the right and on the left by F(P) one gets

F(P)Q–F(P) = F(P) + AT[

P– + BBT – A
(

F(P)
)–AT]–A. (.)

Define

˜F(P) = Q– 
 F(P)Q– 

 , (.)

multiplying (.) on the right and on the left by Q– 
 leads to

˜F(P) –˜F(P) +



I = Q– 
 AT[

P– + BBT – A
(

F(P)
)–AT]–AQ– 

 +



I,

from which one infers that

(

˜F(P) –



I
)

= Q– 
 AT[

P– + BBT – A
(

F(P)
)–AT]–AQ– 

 +



I. (.)

From (.), we get

F(P) ≥ Q, (.)

i.e.,

(

F(P)
)– ≤ Q–. (.)



Zhang and Liu Advances in Difference Equations  (2015) 2015:313 Page 6 of 17

In terms of (.), it is evident that

F(P) ≥ Q >



Q,

or, equivalently

˜F(P) ≥ 


I. (.)

Combining (.) with (.) shows that

˜F(P) –



I =
[

Q– 
 AT[

P– + BBT – A
(

F(P)
)–AT]–AQ– 

 +



I
] 


,

i.e.,

˜F(P) =
[

Q– 
 AT[

P– + BBT – A
(

F(P)
)–AT]–AQ– 

 +



I
] 


+




I. (.)

Substituting (.) into (.) gives

F(P) = Q



[

Q– 
 AT(

P– + BBT – A
(

F(P)
)–AT)–AQ– 

 +



I
] 


Q


 +




Q,

which completes the proof. �

Theorem . Let P be the positive definite solution of the discrete algebraic Riccati equa-
tion (.), then P has the lower matrix bound

P ≥ Q



[

Q– 
 AT(

Q– + BBT)–AQ– 
 +




I
] 


Q


 +




Q ≡ P. (.)

Proof From (.), we have

P = AT P
[

P– – B
(

I + BT PB
)–BT]

PA + Q. (.)

Let

X =

(

P– B
BT I + BT PB

)

,

according to Lemmas . and ., (.) changes to

P = AT P

[(

P– B
BT I + BT PB

)

/

αc

]

PA + Q

= AT P

⎡

⎣

(

P– B
BT I + BT PB

)–

(α)

⎤

⎦

–

PA + Q

= AT P

[(

P + PB(X/α)–BT P –PB(X/α)–

–(X/α)–BT P (X/α)–

)

(α)

]–

PA + Q. (.)
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Since

X/α = I + BT PB – BT(

P–)–B = I,

(.) becomes

P = AT P
(

P + PBBT P
)–PA + Q = AT(

P– + BBT)–A + Q. (.)

By (.), choosing F(P) = P in Lemma ., we have

P = Q



[

Q– 
 AT(

P– + BBT – AP–AT)–AQ– 
 +




I
] 


Q


 +




Q. (.)

From (.), we get

P ≥ Q,

i.e.,

P– ≤ Q–. (.)

In the light of (.), (.) turns to

P ≥ Q



[

Q– 
 AT(

P– + BBT)–AQ– 
 +




I
] 


Q


 +




Q

≥ Q



[

Q– 
 AT(

Q– + BBT)–AQ– 
 +




I
] 


Q


 +




Q.

This completes the proof. �

Furthermore, we propose new lower and upper solution bounds on the basis of Lem-
ma ..

Theorem . Let P be the positive definite solution of the discrete algebraic Riccati equa-
tion (.), and σ 

 (A) <  + σ 
n (B)δ, then P has the lower and upper solution bounds

˜P ≤ P ≤̂P, (.)

where

˜P ≡ Q



[

Q– 
 AT(

Q– + BBT – Aη–AT)–AQ– 
 +




I
] 


Q


 +




Q

and

̂P ≡ Q



[

Q– 
 AT(

η– + BBT – AQ–AT)–AQ– 
 +




I
] 


Q


 +




Q,

δ and η are defined as in Lemma ..
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Proof Applying Lemma . and (.) to (.), it is simple to see that

P = Q



[

Q– 
 AT(

P– + BBT – AP–AT)–AQ– 
 +




I
] 


Q


 +




Q

≥ Q



[

Q– 
 AT(

Q– + BBT – AP–AT)–AQ– 
 +




I
] 


Q


 +




Q

≥ Q



[

Q– 
 AT(

Q– + BBT – Aη–AT)–AQ– 
 +




I
] 


Q


 +




Q

and

P = Q



[

Q– 
 AT(

P– + BBT – AP–AT)–AQ– 
 +




I
] 


Q


 +




Q

≤ Q



[

Q– 
 AT(

η– + BBT – AP–AT)–AQ– 
 +




I
] 


Q


 +




Q

≤ Q



[

Q– 
 AT(

η– + BBT – AQ–AT)–AQ– 
 +




I
] 


Q


 +




Q.

This completes the proof. �

Remark . For one thing, we point out that ˜P ≥ P ≥ Q. Indeed,

˜P = Q



[

Q– 
 AT(

Q– + BBT – Aη–AT)–AQ– 
 +




I
] 


Q


 +




Q

≥ Q



[

Q– 
 AT(

Q– + BBT)–AQ– 
 +




I
] 


Q


 +




Q = P

and

P = Q



[

Q– 
 AT(

Q– + BBT)–AQ– 
 +




I
] 


Q


 +




Q

≥ Q



(

 +



I
) 


Q


 +




Q = Q,

which implies that ˜P ≥ P ≥ Q.

Remark . P and η are two different upper bounds. It is difficult to compare them for
the same measure. Further, in Section , we offer a numerical example which shows that
P is better than η (i.e., P ≤ η) in a certain case. It is hard to prove that this result holds
for the general case in the theory.

3 On the solution existence uniqueness of the discrete algebraic Riccati
equation (1.3)

In this section, we present a new existence uniqueness condition for the solution of the
discrete algebraic Riccati equation (.).
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Theorem . Let σ 
 (A) <  + σ 

n (B)δ, AT (̂P–
 + BBT )–A + Q ≤ η, and

 < p <  (.)

with

p = ‖A‖ · ∥∥˜P–


∥

∥

 · (∥∥̂P–
 + BBT∥

∥

)–,

where δ, η are defined as in Lemma ., ˜P, ̂P are defined by (.). Then the discrete
algebraic Riccati equation (.) has a unique positive definite solution P, and˜P ≤ P ≤̂P.

Proof () If σ 
 (A) <  + σ 

n (B)δ, using (.) and the inequalities

η– ≤ Q–, –AQ–AT ≤ –Aη–AT ,

we get ˜P ≤̂P. Suppose the discrete algebraic Riccati equation (.) possesses a positive
definite solution, from Theorem ., then the positive definite solution is in [˜P,̂P], i.e.,
˜P ≤ P ≤̂P.

() Define the map F(P) = AT (P– + BBT )–A + Q and set

P ∈ � = {P |˜P ≤ P ≤̂P}.

It is obvious that � is a convex, closed, and bounded set and F(P) is continuous on �.
We consider a Banach space (�,‖ · ‖), where ‖ · ‖ is the spectral norm.

For one thing, since P ≤̂P, AT (̂P–
 + BBT )–A + Q ≤ η,

F(P) = AT(

P– + BBT)–A + Q ≤ AT(

̂P–
 + BBT)–A + Q ≤ η.

For another, since ˜P ≤ P,

F(P) = AT(

P– + BBT)–A + Q ≥ F(˜P) = AT(

˜P–
 + BBT)–A + Q ≥ Q.

Thus, by Lemma ., we obtain

F(P) = Q



[

Q– 
 AT(

P– + BBT – A
(

F(P)
)–AT)–AQ– 

 +



I
] 


Q


 +




Q

≥ Q



[

Q– 
 AT(

Q– + BBT – A
(

F(P)
)–AT)–AQ– 

 +



I
] 


Q


 +




Q

≥ Q



[

Q– 
 AT(

Q– + BBT – Aη–AT)–AQ– 
 +




I
] 


Q


 +




Q =˜P

and

F(P) = Q



[

Q– 
 AT(

P– + BBT – A
(

F(P)
)–AT)–AQ– 

 +



I
] 


Q


 +




Q

≤ Q



[

Q– 
 AT(

η– + BBT – A
(

F(P)
)–AT)–AQ– 

 +



I
] 


Q


 +




Q

≤ Q



[

Q– 
 AT(

η– + BBT – AQ–AT)–AQ– 
 +




I
] 


Q


 +




Q =̂P.
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Consequently, for P ∈ �, we get ˜P ≤ F(P) ≤̂P.
Thus F(�) ⊆ �.
For arbitrary P, P ∈ �,

F(P) = AT(

P–
 + BBT)–A + Q,

F(P) = AT(

P–
 + BBT)–A + Q.

Consequently,

F(P) – F(P) = AT[(

P–
 + BBT)– –

(

P–
 + BBT)–]A

= AT{(

P–
 + BBT)–[(P–

 + BBT)

–
(

P–
 + BBT)](

P–
 + BBT)–}A

= AT(

P–
 + BBT)–(P–

 – P–


)(

P–
 + BBT)–A

= AT(

P–
 + BBT)–P–

 (P – P)P–


(

P–
 + BBT)–A.

Since ˜P ≤ P ≤̂P, according to Lemma ., we have

∥

∥F(P) – F(P)
∥

∥ =
∥

∥AT(

P–
 + BBT)–P–

 (P – P)P–


(

P–
 + BBT)–A

∥

∥

≤ ∥

∥AT∥

∥ · ‖A‖ · ∥∥P–


∥

∥ · ∥∥P–


∥

∥ · ∥∥(

P–
 + BBT)–∥

∥

· ∥∥(

P–
 + BBT)–∥

∥ · ‖P – P‖
≤ ∥

∥AT∥

∥ · ‖A‖ · ∥∥˜P–


∥

∥ · ∥∥˜P–


∥

∥ · (∥∥̂P–
 + BBT∥

∥

)–

· (∥∥̂P–
 + BBT∥

∥

)– · ‖P – P‖
= ‖A‖ · ∥∥˜P–


∥

∥

 · (∥∥̂P–
 + BBT∥

∥

)– · ‖P – P‖
= p‖P – P‖. (.)

As p < , thus the map F(P) is a contraction map in �. In the light of Lemma ., the map
F(P) has a unique fixed point in �.

Combing () and () shows that (.) has a unique positive definite solution P, and˜P ≤
P ≤̂P. �

4 A fixed point iteration algorithm for the solution of the discrete algebraic
Riccati equation (1.3)

In this section, based on Theorem ., we present a fixed point iteration algorithm for the
solution of the discrete algebraic Riccati equation (.).

For arbitrary given P() ∈ � = {P |˜P ≤ P ≤̂P}, we construct the matrix sequence

P(k+) = AT[(

P(k))– + BBT]–A + Q, k = , , . . . . (.)

Next, we prove P(k) is convergent and converges to the exact solution of the discrete
algebraic Riccati equation (.).

Theorem . If the conditions of Theorem . are satisfied, then the sequence P(k) given by
(.) is convergent and converges to the unique positive definite solution P of the discrete
algebraic Riccati equation (.).
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Proof For P() ∈ �, in terms of (.), for k ∈ N+, we obtain a sequence {P(k)}, then

P(k) – P(k–) = AT{[(

P(k–))– + BBT]– –
[(

P(k–))– + BBT]–}A

= AT{[(

P(k–))– + BBT]–{[(P(k–))– + BBT]

–
[(

P(k–))– + BBT]}

× [(

P(k–))– + BBT]–}A

= AT[(

P(k–))– + BBT]–[(P(k–))– –
(

P(k–))–][(P(k–))– + BBT]–A

= AT[(

P(k–))– + BBT]–(P(k–))–(P(k–) – P(k–))(P(k–))–

× [(

P(k–))– + BBT]–A.

In a similar way to the proof of (.), we obtain

∥

∥P(k) – P(k–)∥
∥ ≤ p

∥

∥P(k–) – P(k–)∥
∥.

Applying mathematical induction, it is easy to get

∥

∥P(k) – P(k–)∥
∥ ≤ pk–∥

∥P() – P()∥
∥. (.)

Because  < p < , thus limk→∞ pk = . Then, ∀ε > , ∃N ∈ N+, ∀k > N, we get

pk <
ε( – p)

‖P() – P()‖ . (.)

Consequently, ∀k > N, ∀v ∈ N+, using the triangular inequality, (.), and (.), we obtain

∥

∥P(k+v) – P(k)∥
∥ ≤ ∥

∥P(k+v) – P(k+v–)∥
∥ +

∥

∥P(k+v–) – P(k+v–)∥
∥ + · · · +

∥

∥P(k+) – P(k)∥
∥

≤ (

pk+v– + pk+v– + · · · + pk)∥
∥P() – P()∥

∥

=
pk – pk+v

 – p
∥

∥P() – P()∥
∥

<
pk

 – p
∥

∥P() – P()∥
∥

< ε.

Hence P(k) is a Cauchy sequence in �, then P(k) is convergent. Denote limk→∞ P(k) = P.
Let k → ∞ in (.), then

P = AT(

P–
 + BBT)–A + Q.

This shows that P is a solution of (.). According to Theorem ., P is the unique pos-
itive definite solution of the discrete algebraic Riccati equation (.). This completes the
proof. �

By Theorem ., define P(k) as the kth iterative solution of the discrete algebraic Riccati
equation (.). For the iterative solution P(k+) and P(k), by (.), for any small ε > , we
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have the error estimation

∥

∥P(k+) – P(k)∥
∥ ≤ pk∥

∥P() – P()∥
∥ ≤ pk‖̂P –˜P‖ < ε.

In the case of the precision ε is permitted, we have the following algorithm.

Algorithm .

Input: For the discrete algebraic Riccati equation (.), given A, B, Q.
Output: P(k).
Step : Compute ˜P and ̂P.
Step : Compute p, if  < p < , go to Step ; otherwise, stop.
Step : Set P() ∈ � = {P |˜P ≤ P ≤̂P}.
Step : Compute

P(k+) = AT[(

P(k))– + BBT]–A + Q, k = , , . . . .

Step : For any small ε >  and k ∈ N+, if ‖P(k+) – P(k)‖ < ε, stop; otherwise, let k = k + ,
go to Step .

5 A numerical example
In this section, we demonstrate the effectiveness of our results by the following real appli-
cation example. In many engineering fields such as solid mechanics, quantum mechanics,
parameter identification and automatic control, we often need to study the system stabil-
ity and optimal control of linear discrete systems. Sometimes, these problems reduce to
discussing the symmetric positive definite solution of the corresponding discrete algebraic
Riccati matrix equations (.) and (.). The whole process of the example is carried out
on Matlab . and the precision is –.

Example . Consider the following linear discrete system (see []):

x(t + ) = Ax(t) + Bu(t), (.)

where x(t) ∈ R
n is the state variable, u(t) ∈R

m is the input variable, A ∈R
n×n is the system

matrix, B ∈R
n×m is the input matrix. Here, we choose

A =

⎛

⎜

⎝

. . .
. . 
. –. .

⎞

⎟

⎠
,

B =

⎛

⎜

⎝

.  .
. . 
 . .

⎞

⎟

⎠
.

The quadratic performance index of (.) is

J =



∞
∑

t=

[

xT (t)Qx(t) + uT (t)u(t)
]

, (.)
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where

Q =

⎛

⎜

⎝

. . .
. . .
. . .

⎞

⎟

⎠

is symmetric positive definite.
In order to seek the optimal control such that the quadratic performance index (.)

attains the minimum, we use the minimum principle. Choose the Hamiltonian function
as

H(t) =



xT (t)Qx(t) +



uT (t)u(t) + χT (t + )
[

Ax(t) + Bu(t)
]

.

Then we can obtain the canonical equation

χ (t) =
∂H(t)
∂x(t)

= Qx(t) + ATχ (t + ), (.)

and the control equation

∂H(t)
∂u(t)

= u(t) + BTχ (t + ) = ,

i.e.,

u(t) = –BTχ (t + ). (.)

Suppose

χ (t) = Px(t). (.)

Substituting (.) into the canonical equation (.) yields

Px(t) = Qx(t) + AT Px(t + ). (.)

Using the state equation (.) and the control equation (.), we have

x(t + ) = Ax(t) + Bu(t) = Ax(t) – BBT Px(t + ),

then

x(t + ) =
(

I + BBT P
)–Ax(t). (.)

Substituting (.) into (.), eliminating x(t) on both sides of the equality, applying the
Sherman-Morrison-Woodbury equality

(I + ST)– = I – S(I + TS)–T , (.)
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we get the discrete algebraic Riccati equation (.),

P = AT PA – AT PB
(

I + BT PB
)–BT PA + Q.

In terms of (.) and (.), by (.), we obtain the optimal control

u(t) = –
(

I + BT PB
)–BT PAx(t) (.)

such that the quadratic performance index (.) attains a minimum, where P is the sym-
metric positive definite solution of the discrete algebraic Riccati equation (.).

Obviously, σ 
 (A) <  + σ 

n (B)δ, then the upper matrix bound for the solution P of the
discrete algebraic Riccati equation (.) by (.) is

η =

⎛

⎜

⎝

. . .
. . .
. . .

⎞

⎟

⎠
,

leading to

λ(η) = ., λ(η) = ., λ(η) = ..

The lower matrix bound for the solution P of the discrete algebraic Riccati equation (.)
found by (.) is

P =

⎛

⎜

⎝

. . .
. . .
. . .

⎞

⎟

⎠
,

leading to

λ(P) = ., λ(P) = ., λ(P) = ..

The lower and upper matrix bounds for the solution P of the discrete algebraic Riccati
equation (.) found by (.) are

˜P =

⎛

⎜

⎝

. . .
. . .
. . .

⎞

⎟

⎠
,

leading to

λ(˜P) = ., λ(˜P) = ., λ(˜P) = .,

̂P =

⎛

⎜

⎝

. . .
. . .
. . .

⎞

⎟

⎠
,
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leading to

λ(̂P) = ., λ(̂P) = .,

λ(̂P) = ..

Obviously,

˜P ≥ P, η ≥̂P.

This shows that the lower bound ˜P is better than P, and the upper bound ̂P is better
than η.

By computation, obviously, ˜P ≤̂P, AT (̂P–
 + BBT )–A + Q ≤ η, and

 < p = . < .

According to Theorem ., the discrete algebraic Riccati equation (.) has a unique pos-
itive definite solution P, and ˜P ≤ P ≤̂P.

Let e(k) = ‖P(k+) – P(k)‖ be the iteration error at the kth iteration, k denote the iteration
number, where we choose ε = – and P() = ˜P and P() = Q, respectively. Then Algo-
rithm . and Theorem . of [] need  and  iteration steps, respectively, to converge to
the iteration solution of the discrete algebraic Riccati equation (.) as follows:

P =

⎛

⎜

⎝

. . .
. . .
. . .

⎞

⎟

⎠
.

The relation between iteration step and iteration error is shown in Table  and Figure .
Obviously, Table  and Figure  show that compared to Theorem . of [], Algorithm .
has less errors and less iteration steps.

Thus, by (.), we can have the optimal control

u(t) = –
(

I + BT PB
)–BT PAx(t)

=

⎛

⎜

⎝

. . .
. . .
. . .

⎞

⎟

⎠
x(t)

such that the quadratic performance index (.) attains a minimum.

Table 1 Iteration errors (ε = 10–8)

P0 = ̂P1 P0 = Q

k e(k) k e(k)

1 0.00198010 1 0.00881228
2 6.53368839× 10–6 2 1.29922911× 10–4

3 5.18447904× 10–8 3 1.54679034× 10–6

4 6.25516090× 10–10 4 1.94930367× 10–8

5 1.90929712× 10–10



Zhang and Liu Advances in Difference Equations  (2015) 2015:313 Page 16 of 17

Figure 1 Iteration errors. The red line and blue
line denote P(0) =˜P1 =ψ and P(0) = Q, respectively.
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