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1 Introduction

The convexity of functions is an important concept in the class mathematical analysis
course, and it plays a significant role in many fields, for example, in biological system,
economy, optimization, and so on [1-7]. Furthermore, there are a lot of several inequalities
related to the class of convex functions. For example, Hermite-Hadamard’s inequality is
one of the well-known results in the literature, which can be stated as follows.

Theorem 1.1 (Hermite-Hadamard’s inequality) Letf be a convex function on [a;,a;] with
a < ay. If f is integral on [ay, a;), then

f<“1+”2>< — [Crwan L0 )

2 T ay-m

In [8], Dragomir and Fitzpatrick demonstrated a variation of Hadamard’s inequality
which holds for s-convex functions in the second sense.

Theorem 1.2 Let f: R, — R, be an s-convex function in the second sense, 0 < s <1 and
a,a; € R, ay < ay. If f € LN([ay, a5)), then

sap(@tar) _ 1 = flar) +f(az)
("5 )—f SO de=Tm o @

In recent years, fractional calculus played an important part in fractal mathematics and
engineering. In the sense of Mandelbrot, a fractal set is the one whose Hausdorff dimen-
sion strictly exceeds the topological dimension [9-15]. Many researchers studied the prop-
erties of functions on fractal space and constructed many kinds of fractional calculus by
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using different approaches [16—18]. Particularly, in [19], Yang stated the analysis of local
fractional functions on fractal space systematically, which includes local fractional calcu-
lus and the monotonicity of function.

The outline of this article is as follows. In Section 2, we state the operations with real
line number fractal sets and some definitions are given. Some integral inequalities of gen-
eralized Hermite-Hadamard type for generalized s-convex functions in the second sense
are studied in Section 3. Finally, some applications are also illustrated in Section 4. The
conclusions are in Section 5.

2 Preliminaries
Let R* be the real line numbers on fractal space. Then, by using Gao-Yang-Kang’s concept,
one can explain the definitions of the local fractional derivative and local fractional integral
as in [19-23]. Now, if r{’, r§ and r§{ € R* (0 < @ <1), then

1) rf+rs eR"‘,r‘f‘rﬁ‘ e R,

() rf =15 +17 =(r+1)* = (ra + )%,

(3) r‘f+(r2+r°‘) (ry +r5)+15,

(4) riry =ryrf = (nry))* = (ran)”,

(5) ry(rsry) = (rfry)rs,

(6) (s +15)=(5ry) + (15rg),

(7) rP+0% =0+ =rf and ry - 14 =1 - 1 = 1{.

)
Let us state some definitions about the local fractional calculus on R*,

Definition 2.1 [19] A non-differentiable function y: R — R is called local fractional con-

tinuous at xy if, for any € > 0, there exists § > 0 such that

|y(x) = y(xo)| < &*

holds for |x — x| < §, where ¢, € R. y € Cy(a1,a,) if it is local fractional continuous on

the interval (a1, a»).

Definition 2.2 [19] The local fractional derivative of y(m) of order « at m = my is defined
by

ey T+ a)0m) - yomo)

am® |,._,, m=>mo (m —mg)®

y*(mg) =

’

where I'(m) = [;° m* e dm. If there exists y""*1%(m) = D%, - -- D% y(m) (n + 1 times) for
any m €I CR, theny € Dy,41)0(1), n=0,1,2,....

Definition 2.3 [19] The local fractional integral of function y(m) of order « is defined by,
where y € Cy[m, az],
az

@ _ «
wl2m) = s [ ytoan

1

1 n
=— i t)(At)”
rl+aw) A;To;y( J(Ak)
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with At; = t;,; — t; and At = max{At;: i =1,2,...,n—1}, where [t;,£,1],i=0,1,...,n—1and
to=a; <t <-+-<t,1<t, =apisapartition of the interval [a;,a,].

In [24], the authors introduced the generalized convex function and established the
generalized Hermite-Hadamard’s inequality on fractal space. Let f: I C R — R“ for any
x1,% € I 'and y € [0,1] if the following inequality

Flyx+ Q= y)x) < yfln) + Q- y)*f(x)

holds, then f is called a generalized convex function on /. In « = 1, we have a convex
function, convexity is defined only in geometrical terms as being the property of a function
whose graph bears tangents only under it [25].

Theorem 2.1 (Generalized Hermite-Hadamard’s inequality) Letf € allfﬁ;) be a generalized
convex function on [ay, ay] with a; < ay. Then

f<a1+a2> - Id+o) I(“)f(x)ff(al) +f(a2).

2 T (@ —ap)* " 2¢

Note that it will be reduced to the class Hermite-Hadamard’s inequality (1) if o = 1.
In [23], Mo and Sui introduced the definitions of two kinds of generalized s-convex func-
tions on fractal sets as follows.

Definition 2.4
(i) A functionf: R, — R¥ is called generalized s-convex (0 < s < 1) in the first sense if

Six1 + yaxa) < vf (1) + vaf (x2) (3)

for all x1,x, € R, and all y, y» > 0 with 3 + y5 =1, we denote this class of functions
by GK!.

(ii) A function f: R, — R® is called generalized s-convex (0 < s < 1) in the second sense
if inequality (3) holds for all x1,%; € R, and all y1, > > 0 with 1 + y» =1, we denote
this class of functions by GK2.

In the same paper [23], Mo and Sui proved that all functions from GK2, s € (0,1), are

non-negative.

3 Main results

In [26], the authors demonstrated a variation of generalized Hadamard’s inequality which
holds for a generalized s-convex function in the second sense. Now, we will give another
proof for generalized s-Hadamard’s inequality.

Theorem 3.1 Letf: R, — RY be a generalized s-convex function in the second sense, 0 <
s<land ay,a; € R, with ay < ay. If f € L' ([ay, a,]), then

5 ai +as r'd+a)
2a(s 1)f< ) < ~ ﬂllt(z(;)f(x)

2 (az —a1)
I'd+so)l'1+a)
'd+(s+1a)

(f(a) +f(a2)). (4)
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Proof Since f is generalized s-convex in the second sense, then

flyar+(L-y)az) <y*fla) + 1 -y)*f(az), Vy €[0,1].
Integrating the above inequality with respect to y on [0,1], we have

ra+ a)olfu)f(yal +(1-y)az) <fla)l (1 + a)ol*y™
+ (@)l (1 + @)l (1 - y)*

_ T(l+s0)l(1+a)
) W(ﬂ a) +f(b)).

Letx = ya; + (1 — y)a,. Then we have

rl+a) 19f ()

(a1 — ap)*

= Mﬂllc(lz).f(x)'
(az — a1)”

T +a)olf (yan + (1 - y)az) =

Now, it follows that

'l+a) I'd+sa)l'(1+a)

(@2 —a)*™ I f @) < M0+ 61Dy @) *f(@).

Then the second inequality in (4) is proved.

In order to prove the first inequality in (4), we use the following inequality:

f<x1 + xz) Sf(xl) +f(xz)’

5 s Vx1,x5 € 1. (5)

Now, assume that x; = ya; + (1 — y)ap and %y = (1 — y)a; + ya, with y € [0,1].
Then we get by inequality (5) that

, Vyelo1].

f(dl ;ﬂ2> Sf(Wll +(1- )’)ﬂz)z;f((l —y)ai +yas)

By integrating both sides of the above inequalities over [0,1], we have

1 1 a) +ay o 1 @
F(1+a)fof< 2 >(d ) —mallazﬂx)

Then it follows that

2a(s—1)f<al + ﬂZ) < (F 1+ Ol)a ullg)f(x)

2 a; — ay)

This completes the proof. d

Lesa)lLea) g0 ¢ ¢ (0,1], then it is best possible in the second

Remark 3.1 If we set ¢ = Tt

inequality of (4).

Page 4 of 15
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As the function f: [0,1] — [0%,1%] given by f(x) = x** is generalized s-convex in the
second sense,

'd+ow)

(@) 1 '
mallazf(x) = F(l+0l)m/(; X (dx)

~ F'd+so)'(1+a)
T T+ (s+1a)

and

I'd+se)l'(1+a)
I'd+(s+1a)

I'd+so)l'(1+a)

(O +f ) = s D0

Similarly, if & = 1, then inequalities (4) reduce to inequalities (2).

Theorem 3.2 Let A: [0,1] — R* be a function such as

'+ a)

a) + dy
(ay - a)” “11537(” +d-) ) v €(0,1],

Aly) = 5

where f: [a1,a;] — R® is a generalized s-convex function in the second sense, s € (0,1],
ay,ay €R,, ay <ay and f € LY ([ay,a,]). Then

(i) AeGK?onl0,1],

(i) we have the inequality

Aly) > 2““7(%), vy €10,1], ©6)

(iii) and the following inequality also holds:

A <min{A,(y),A2(y)}, v €[0,1], 7)
where
Ay = “S%mé‘;f(x) La- y)“f(“l ;”)
and
a9 = LS (r (v s -5
+f<yaz +(1- y)%))
fory €(0,1].

(iv) IfA = max{A;(y),As(y)}, y € [0,1], then

A F(l ’ aS)F(l i Ol) as o as a) +ay
ASW{V (flar) +f(a2)) +2°(1—y) f<T)}



Kiligman and Saleh Advances in Difference Equations (2015) 2015:301 Page 6 of 15

Proof (i) Let y1,y» € [0,1] and w1, o > 0 with pg + p = 1, then

'l+a) ai + dy
A(pryr + nays) = mallg) ((,U«l)’l +ay2)x + (1= (s + pay)) 7
2 -

(1
< Mmlg{ f(y1x+ 1-9n) 1+ﬂz)

(az — a1)®

e (s (-5 )|

2
= U’ A(n) + u3*A(n),

which implies that A € GK? on [0,1].

(i) Let y € (0,1] and by the change of variable m = yx + (1 — y)“5*, we have
ra+a) Fl+a)
Aly) = myaﬁﬂ e Zlm ) alﬂlgf( ) = mhllbzf(m)-

By using the first generalized Hermite-Hadamard inequality, we have

Fl+a) a1+ D2\ oy (Bt a2
Ga =yt M 22 5 )= ()

and inequality (6) is obtained.
If y = 0, the inequality

a +ayp _ ay +dy
>2a(s1)
(52 ) =z

also holds.
(iii) By using the second part of generalized Hadamard’s inequality, we get

F(1+a) I'd+se)l'(1+a)
(by — RS ;,zf( m) < m(ﬂbl) +f(b2))
I'd+sa)l'1+a) a1+a2
T+ s+ Dar) <f<y”1 =) >

+f<)’ﬂ2 +(1- )/)a1 +a2>>

Az()/): VV € [O: 1]

If y = 0, then the inequality

ap + ds 2°TA +sa) T A+ @) (a1 +as
f( 2 >=A(0)5A2(0)= TA+ s+ D) f( 2 )

holds as it is equivalent to

( I(1+(s+1a) _2a>/(ﬂ1+612)§0a
I'l+sa)T'(1+a) 2
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and we know that for s € (0,1),

(252
Since
S(rer =32 ) <y -y (52
for Vy € [0,1] and x € [a, a,], then we obtain
Aly) = Mal azf()/x+ (1- y)a1 +a2>
(az —a1)” 2
ws T(L+a) J@ asef @1+ a2
=Y mal azf(x) +(1-y) f(T)
= Ay(y).
Then, the proof of inequality (7) is complete.
(iv) We have
I'd+so)l'(1+a) a + ao a + as
As(y) = m[f(yﬂﬁ(l—)/) 5 )+f()/ﬂ2+(1—}/) 5 )]
FA+sa)LL+a)[ s 1t+as
Sm[ fla) +(1-y) f< )
rreta) a4
CPA+sa)TA+a)[ o wsef M+ a2
= W[V (fla) +f(a2)) +2°A-y) f(T)}
vy €[0,1].
Since
'l+ow) @ _ 'd+soe)l'(1+a)
ma11a2f(x) = —F(l T s+ Da) (f(ﬂl) +f(“2))
and
wsef @1+ a2 N ws LA +sa) T +) (a1 +as
a5 )52(1_” fraeme (57
then
Ayl = yos BLESOTRL D) 0 L )

r'd+(s+1a)

o ws T L+sa)M(1+a) (a+as
2 0= T 51 D0 ( 2 )

and the proof of Theorem 3.2 is complete.

Page 7 of 15
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Remark 3.2 In particular:

1. If we choose s =1 in Theorem 3.2, then we get:

(a)
Fl+a) ( 611+6l2>
(az —ar)* alay flyx+1-y)
< min{y“MmIfla)f(x) (1- )af< - +a2)
(ay —ay)*™ @
(' +a))? a +ﬂ2
I+ 20) (f(ya1 +-y) >
+f(yaz +1-p) 2 ;“2))}
(b) Since
~ (1+oz ay +dy
A:max{y ( YL azf(x)+(1 V)af( )r
a) —
ra 2
e
we have

A(V)_%[V (F(an) + f(az)) + 24(1 - y)“f<“”“2>].

2. Now if one chooses & = 1 in Theorem 3.2, then we can easily obtain:

(@)
1 2 a) +ay
(az —a1) / f(yx+ == 2 )dx
/ ay) + ay
<m1n{y Sx)dx+(1- )’)Sf< );
(lz —611

H%(f(yma—y)“l;“ >+f(yaz+(1 y) ”“2)>}.

(b) Similarly we have

A:max{ys 1 uf(x)dx+(1 y)7<”1+“2),

(a2 —a1) a

S%(f(yaﬁ(l—y)al;a )+f()/az+(1 y)ﬂlmz))}

~ 1
Aly) < —
s+1

and

ay) + ady

[Vs(f(ﬂl) +f(a)) +2(1- J/)Sf(T>] for Vy €[0,1].

3. If one considers & =1 and s =1 in Theorem 3.2, then we get:

Page 8 of 15
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(@)
1 “2 a )a1+az d
(@ —a) J,, f(y“ A )x
gmin{y e dxr (- y)f(“”“z),
(a2 —a1) ay
%(f(yaw(l—y)al a)+f()/az+(1 y)“””))}-
(b)
- 1 42 a) + dap
Azmax{ym/al f(x)dx+(1—y)f( ) )’
%(f(mu(l—y)al;@)+f<7/az+(1—7/)ﬂ1;az)>}
and

ay + ady

Aly) < = [V(f(“l) +f(az)) +2(1 - )/)f< )} for ¥y € [0,1].

Theorem 3.3 Let g: [0,1] — R* be a function such as

1
(T +a))? (a2 — a1)*

ay pa
gly)= / / Syx+ (1= y)x)(dx) (dx,)*, v €[0,1],
a Ja
where f: [a1,a;] — R is a generalized s-convex function in the second sense, s € (0,1],
ay,a € R, which aj < ay and f € L'([ay, a3]). Then:
(i) g€ GK2in[0,1]. Iff € GK}, then g € GK.
(i) gy + %) :g(% —y) forall y =0, 1] and g(y) is symmetric about y = %
(iii) We have the inequality

201(5—1) 4,01(5*1) a + as
gly)= ml“(y) = ra +ot))2f( ) ) Jor¥y €10,1]. (8)
(iv) We have the inequality
g(y) < min{gi(y). &)}, ©)

where

1 o
a )a alléz)f(xl)

a0 =l + -V e e

and

ra 2
@) - [ﬁ} (@) +f (v +(L=y)as) +£ (=) + yas) +/(@s)]

forVy €[0,1].
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Proof (i) Take {1, 72} C[0,1, i +y2=1, 4,5 € Dand f € GKE, then we have

gnti + yaty) = @ (T s )

X / / F((nts + yata)as + (1= (nty + yata) )2 ) (dxy)” (doxn)”

- 1
T (@ -a)*(T1+w)?

ay pa
X / / [)ﬁasf(tlxl + %9 — tixy)
ai ay

+ ¥y of (fax1 + %0 — tzxz)](dxl)“(dxz)“

as 1 “ “ o o
S Premyse oy / / Flter + %3 — b)) )
+vy” (@ —a)™ : rd+a) / / S (k221 + %2 — %) (dx1)” (dx2)*

=ygt) +yy g(tz),

which implies that g € GK? in [0,1].
(ii) Let y € [0, %], then

1\ 1
¢ (V ’ 5) " a2 —a)= (T (1 + )2
f / ((y . —)x1 . (1 - %)m)(dxl)“(dxz)“
" (@ —al)M(m +a))?
/ / ((‘ - V)xl + (% + y>x2>(dx1)“(dx2)“
o)

g(y) is symmetric about y = % because g(y) =g(1—y).

(iii) Let us observe that

gly)= ! ! f 2( ! / zf(yx1 +(1- V)x2)>(dx1)a(dx2)a.

(CA+a))? (a2 —ar)® (a2 — 1)

Now, since x; is fixed in [a1, a5], then the function
Ay, [0,1] > R®

can be given by

P pa— / Flyan+ (L= ) (d)®

(a2 —a)* Jo
_IMl+a)

= @ —ane el (ra+ (= y)m).
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As it was shown in the proof of Theorem 3.2, for y € [0,1], we have equality

F(1+Ol) (@)

1, f(m),

Ayly)= 2
)= Gy — e

where by = ya; + (1 — y)xy and by = ya; + (1 — y)x,. By using the generalized Hermite-
Hadamard inequality, we have

ra+ ” o) o D1+ D
R ey oyt

(by — by)* 2
= 2a(s_1)f<l/ “ ;az +(1- V)x2>
for all y € (0,1) and x; € [a41,45]. Integrating on [a1, a2] over x;, we have
2a(s—1) ¢
>—A(1- \4 0,1).
gy)= TAra) (1-y) forVy€(0,1)

Further, since g(y) = g(1 - y), then the proof of inequality (8) is done for y € (0,1).If y =0
or y =1, then inequality (8) also holds.

(iv) Since f(yx1 + (1 —y)x2) < y*f (1) + (1— y)**f (o) for all %1, %5 € [a1,a2] and y € [0,1],
integrating the above inequality on [a;, 4,]%, we have

ﬁ/ 2/ Zf(yxl +(1- J/)xz)(dxl)a(dxz)“

LT+ )’ a
=7 (ay —ar)™ (F(1+ot))2/ / S 1) (dx)* (dxy)

2
1=y Ldre) T f /fxz (d)* ()

(az_ﬂl)Za
_ F(1+Ol) s ( +Ot) @
=V g — el @)+ A=) Ol )
Tlra)

= (e =p)) Az o If (x).

(a2 —

The proof of the first part in (9) is done.
By the second part of the generalized Hermite-Hadamard inequality, we obtain

(2(1+a) . bzf(m)

_ F'd+se)l'(1+a)
'd+(s+1a)

An(y) =
(flyar+ A= y)xs) +f (vaz + 1 - y)x2)),

where by = yas + (1 — y)xp and by = ya; + (1 — y)xy, y € [0,1]. Integrating this inequality
on [ay,a] over x,, then

I'(1+sa) 'l+aw) @
) = Fl+a)l1+(s+1)a) |:(a2 — ) ale, (yar+ (1 -y)w)
%allf,‘;)f(yaz +(1- J/)xz)]-
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A simple calculation shows that

'l+a) @ B
(ay — ar)” ol f (vaz + A =y)x)

rM+a) .,
= mclléz)f(m)
- F'd+so)l(1+a)
rd+(s+1a)
'd+soe)l'1+a)

" TirGre @ flrard-ym)],

[f(c1) +f(c2)]

where ¢; = ay, ¢; = yay + (1 — y)a; and y € (0,1). Similarly, for y € (0,1),

e e+ 0 )

I +sa)l(1+a)
T e a) V@) Sl 4-vim))
Then

I'(1l+sa)

gly) = |:F(1 + G+ Da)

If y =0 or y =1, then this inequality also holds.

Remark 3.3 If @ =1 in the above theorem, then
1 a a
gy)=— / / Fyx + (L= y)w)(dx)dx), v €[0,1]
(ﬂz - al) a a

and

1

(ay —a1)

a) < min{[ys f1-y)] f ’ Flon) ),

(1 +5)?

1 [f@)+f(yar+ Q- y)ax) +f(A-y)ar + yas) +f(a2)] }

Theorem 3.4 Let us consider that a sum of A belongs to GK2,

A=) adly),
i=1

where
1 i o a
ai(y) = T+ /a1 /;1 Silyar + (1= y)x2) (dxy)* (dxa)”,

then
(i) sup(A) =2% Y"1 a;(0) =2¢ Y1) ai(),
(i) A is symmetric abouty = %,
(i) A € GK2.

2
} [f@) +f(yar+ Q= y)a) +f(A-y)ar + yas) +f(a2)].

Page 12 of 15
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Proof (i)

s 1 i o o
W) <V e / / ) (dx)* (dx)

+(1- V)asm/ / f(x2) dx1)*(dxy)*, Vi

Since f; are generalized s-convex functions, we get

a0 = (4 0= 1") v / / i) () ()

l+a f ffxl (dx1)* (dxy)®

a(O) 2%a;(1).

(ii) a;(y) is symmetric about y = % since a;(y) = a;(1 - y), Vi.
Then A(1 - y) =A(y) and A also is.
(iii) Since a;(yx1 + (1 — ¥ )x2) < y**a;i(x1) + (1 — y)**a;(x2), then

n

Ay + A= y)x) = > ai(yx + (1-y)x)

i-1
=y* 2": ai(x) + 1 -y)* Xn: ai(%2)
i-1 i-1
= yCAM) + (1-y) Alxz),
that is, A € GK2. O

4 Applications to special means
We now consider the applications of our theorems to the following generalized means:

ai +as

Alar, az) = e wa= 0,

a2a +a2a 2

1 2
]((611,612) = ( 90 ) ) a,ay = 0
and

o o l

G(alva) = (ﬂl az)zx ay,a = 0.

In [23], the following example is given.
Let 0 <s<1anda$,a3,a5 € R* Define, for x € R,,

ay, n=0,
f(n) =

ayn™® +as, n>0.

If a§ > 0% and 0% < a¥ < a?, then f € GK2.
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Proposition 4.1 Let aj,a; € Ry, a1 < ay and a; — a; <1, then the following inequalities
hold:

'+ 2a)

rl+a) ]? )
T+ 0s3a) )]Aml,az), (10)

1
K*(ay, — G (ay, >0 — 2
[ (a1, a2) + 3G (@ ﬂz)] > |:F(1+2a
[(1-y +y?) K ana) + y*(1 - y)* G a1, )

2 4 (1-p)* [T+ 2a)
2¢T(1 + 3a) |:F(1+a)

2 1
] |:K2(a1,u2) + z—an(ﬂl;ﬂZ)]
> 2% (1 - y)*A*(ay, a2). (11)

Proof If f € GK? on [ay,a,] for some y € [0,1] and s € (0,1], then, in Theorem 3.3, if
f:10,1] — [0%,1%], f(x) = x**, where x € [a;,a,] and s =1, s0

1 1
TCA+a))? (@ -a

)Za / ) / ’ (Vxl + (1 - y)xz)za(dxl)a(dxz)a

o o F(l 2 ) o« oo o
= -y )F(1+a);(1a+ 3y (42" i )
o, ,o o F(1+ ) “ o o
+2 Y (1—'}/) [F(Tgxa)] (ﬂz +al )2.

Then, by Theorem 3.3, we get

I'(1+2a)

rl+a) 1? )
20 20 A o o
F(1+Ol)r(1+301) (612 +a; +a1a2) = |: :| (Ll2 +ﬂ1) :

'd+2a)

Then we obtain inequality (10).
By applying Theorem 3.3, we obtain inequality (11) as follows:

2a 20
[(1 —y+y?)’ (M) +yo(1- V)“a‘{‘a‘ﬁ‘]

20{
Aoy T2 (@ +a) 1, ,
29T(1+3a) | IT'A+a) 20 Qo 172
a% +a”\>
Zzaya(l_y)a( 22a 1) . 0

5 Conclusion

In this article, we have established some new integral inequalities of generalized Hermite-
Hadamard type for generalized s-convex functions in the second sense on fractal sets R,
0 < « < 1. In particular, our results extend some important inequalities in a classical sit-
uation; when « = 1, some relationships between these inequalities and the classical in-
equalities have been established. Finally, we have also given some applications for these
inequalities on fractal sets.
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