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1 Introduction
In this paper, we consider third-order nonlinear dynamic equations with nonpositive neu-
tral coefficients of the form

(@20 ®)) ") +/ (Lx(h®)) =0, &)

where z(t) = x(t) — p(¢)x(g(t)), on a time scale T satisfying infT = £y and supT = oo.
Throughout this paper we assume that:
(C1) rq,ry € Ciq(T, (0,00)) such that

* 1 * 1
/ TAtZOO, / WAtZOO;
0w 1) o 1y ()

(C2) y, y1, y» are all quotients of odd positive integers, and y = y; - y»;
(C3) p e Cy(T,[0,00)) and there exists a constant py with 0 < pg < 1 such that

lim p() = po;
t—00

(C4) g€ Cy(T,T), g(t) <t lim,, g(t) = 00, and there exists a sequence {ck}x>0 such
that limg_, oo ¢k = 00 and g(ck+1) = ks
(C5) he Cy(T,T),and forany t €T,

o(t), 0<y«<l,

h(t) >
Z, y>1
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(C6) f e C(T x R,R) and there exists a function g € Cq(T, (0, 00)) such that
uf (t, u) > g(O)u’*;
(C7) When 0 < y <1, it always satisfies

/OO q(t)At < 0.

to

Definition 1.1 A solution x of (1) is said to have a generalized zero at t* € T if
x(t*)x(o (t*)) < 0, and it is said to be nonoscillatory on T if there exists £y € T such that
x(t)x(o (¢)) > 0 for all £ > £. Otherwise, it is oscillatory. Equation (1) is said to be oscillatory

if all solutions of (1) are oscillatory.

In 1988, the theory of time scales was introduced by Hilger in his Ph.D. thesis [1] to unify
continuous and discrete analysis; see also [2]. Since then, the theory had received a lot of
attention. The details of time scales can be found in [3—6] and are omitted here.

There has been many achievements of the study of oscillation of nonlinear dynamic
equations on time scales in the last few years; see [7—16] and the references therein. Hassan
[8], Erbe et al. [7], and Zhang and Wang [16] gave some oscillation criteria successively for
the third-order nonlinear delay dynamic equation

(@[ (rex*®)°17)* +£(tx(x (1)) =0.

Saker et al. [13] studied the oscillation of the second-order damped dynamic equation
(a)x2(0)) " + p(O)x () + q(8)(f 0 a”) = 0

Qiu and Wang [10] considered second-order nonlinear dynamic equation
(p@O)Y (x(®)k 0 x2 (1) +£ (£, %(a (1)) = 0.

Employing a generalized Riccati transformation

P)Y (x(t)k o x4(2)
x(t)

u(t) = A(t) +B(t),

the authors established some Kamenev-type oscillation criteria. $enel [14] investigated
the oscillation of the second-order nonlinear dynamic equation of the form

(r®) (2 ®)") " + pO) (1) +£(t,x(2(®))) = 0. (2)

Qiu and Wang [11] corrected some mistakes in [14] and established correct oscillation
criteria for (2). Yu and Wang [15] considered the third-order nonlinear dynamic equation

(L((L(xﬂ(t))‘“)A)az)A +q(@)f (x(t)) =0 3)

ax(t) \\ ai1(¢)

under the condition ¢y, = 1, and they established some sufficient conditions which guar-
antee that every solution x of (3) oscillates or converges to zero on a time scale T. Li et al.
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[9] studied the second-order neutral delay differential equation

(r®)(Z®)°) +qt)f (x(c(®)) =0, t>t>0,

where z(t) = x(t) — p(t)x(z (t)) and « > 0 is the ratio of two odd integers. Qiu [12] obtained
some significant results for the existence of nonoscillatory solutions to the third-order
nonlinear neutral dynamic equation of the form

(n (@) (@) (x®) + p)x(2(8))*)*)? +£(t,2(h(2))) =0,

where lim;_, o, p(£) = po € (-1,1).

In this paper, motivated by [9, 10, 12, 14, 15], we will establish oscillation criteria of (1),
which are more general than (3), by a generalized Riccati transformation, and give two
examples to show the significance of the results.

For the sake of simplicity, we denote (a,b) N T = (a, b)1 throughout the paper, where
a,b e R, and [a, b]r, [a, b)T, (a, b]r are similar notations.

2 Preliminary results
To establish the oscillation criteria of (1), we give six lemmas in this section.

Lemma 2.1 Suppose that x(t) is an eventually positive solution of (1), and there exists a
constant a > 0 such that lim;_, o, z(t) = a. Then we have

lim x(¢) = .
t—00 1 - Po

Proof Suppose that x(¢) is an eventually positive solution of (1). In view of (C3) and (C5),
there exist T € [ty,00)r and pg < p1 < 1 such that x(¢) > 0, x(g(¢)) > 0, and p(t) < p; for
t € [T,00)T. We claim that x(¢) is bounded on [T, 00)T. Assume not; then there exists
{t,} € [T, 00)r with £, — 00 as n — 00 such that

x(t,) = max x(f) and lim x(t,) = oo.
te[TotulT n—00
Noting that g(¢) < ¢, we have

2(tn) = x(tn) — p(ta)x(g(62)) = (1 = p1)x(t,) — 00

as n — o0, which contradicts the fact that lim;_, o, z(¢) = a. Therefore, x(¢) is bounded.
Then assume that

limsupx(£) =x and liminfx(¢) = x.
t—00 =00

Since 0 < pg < 1, we have
a>x—-pox and a<x-pox,

which implies that ¥ < x. So ¥ = x, and we see that lim;_, o x(£) exists and lim;_, o, x(¢) =
al(1 - po). The proof is complete. O



Qiu Advances in Difference Equations (2015) 2015:299 Page 4 of 16

Lemma 2.2 Assume that x(t) is an eventually positive solution of (1), then there exists a
sufficiently large T € [to, 00)r such that, for t € [T, 00)r, we have

(ra(8)(z2())* >0
and
Z22@)>0 or Z2(t)<0.
Proof Suppose that x(¢) is an eventually positive solution of (1). From (C3) and (C5), there

exist t € [ty, 00)T and po < p1 < 1 such that x(¢) > 0, x(g(¢)) > 0, x(h(¢)) > 0, and p(t) <y
for t € [t;,00)T. By (1) and (C6), it follows that, for ¢ € [, 00),

(@ (0 (22©)))")* = ~f (L.x(h(2))) < 0. (4)

Hence, r1(£)((r2(£)(z2())72)?)" is strictly decreasing on [}, 00)T. We claim that
n@®((nO@E®)?)*)" >0, telt,o0)r. 5)

Assume not; then there exists ¢, € [t;, 00)T such that

rl(t)((rz(t)(zA(L‘))yZ)A)V1 <0

for t € [ty,00)T. So there exists a constant ¢ < 0 and we have 3 € [f,00)r such that
n @) ((r2(£) (22 (£))2)2) < ¢ for t € [t3,00), which means that

1n
(rz(t)(zA(t))”)%(hL(t)) , L€ [t3,00)T. (6)

Substituting s for ¢, and integrating (6) from #3 to ¢ € [0 (¢3), 00)T, we obtain

n@(240)" < r(ts)(2° ()" + ™M / I/A :

t3 1] 1/1(5)

Letting ¢ — oo, by (C1) we have ry(£)(z#(£))”> — —o0. Then there exists ¢4 € [t3,00)T such
that ry(£)(z2(£))"? < ra(ts)(22(£4))"? < O for ¢ € [t4, 00)T, which implies that

220 < i (ta)2% (ta) -

7)

()

Substituting s for ¢, and integrating (7) from ¢4 to ¢ € [0(¢4), 00)T, we obtain

26) - 2(t) < A2 ()20 (1) / %S()
L4 2

Letting ¢ — oo, by (C1) we have z(f) — —oo. Then there exists ¢5 € [t4,00)T such that
z(t) <0 or

x(t) < p(O)x(g(1)) < pix(g(t)), t € [t5,00)r.
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By (C4), we can choose some positive integer ko such that ¢i € [£5,00)T for all k > ky. Then

for any k > ko + 1, we have

x(c) < prx(glen)) = prx(ean) < pix(glean)) = pialers) < - -

<y 0x(gleren)) = Py Oxlery)-
The inequality above implies that limg_, o x(ck) = 0. It follows that
Aim z(c) =0,
and this contradicts lim,_, o, z(£) = —00. So (5) holds, which implies that
(rz(t)(zA(t))n)A >0, te[t,o0)T.

Therefore, r,(t)(z2(t))”? is strictly increasing on [t;,00)t. It follows that r,(£)(z4(¢))”? is

eventually positive or r5(£)(z2(£))”? < 0 on [¢;,00)r. Lemma 2.2 is proved. O

Lemma 2.3 Assume that x(t) is an eventually positive solution of (1), then z(t) is eventually
positive or lim,_, o, x(¢) = 0.

Proof Suppose that x(¢) is an eventually positive solution of (1), by Lemma 2.2 there exists
4 € [to, 00)T such that z2(¢) > 0 or z2(¢) < 0, t € [, 00)T.

(i) z2(¢) > 0, t € [t;,00)T. Then it follows that z(¢) is eventually positive or eventually
negative. If z(t) is eventually positive, the lemma is proved. If z(¢) is eventually negative,
we see that lim;_, » z(f) exists. Assume that lim;, o z(t) < 0. Similarly as in the proof of
Lemma 2.2, we will have the contradiction. Hence, lim;_, o, z(¢) = 0. Then it follows that
lim;_, o %(t) = 0 by Lemma 2.1.

(ii) z2(£) < 0, £ € [t1, 00)T. Similarly, we see that z(¢) is eventually positive or eventually
negative. Assume that z(¢) is eventually negative, there exists a constant ¢ < 0 and we have
ty € [t1,00)T such that z(¢) < ¢, t € [3,00)T. It will cause a similar contradiction as in the
proof of Lemma 2.2. Hence, z(¢) is eventually positive and the lemma is proved.

The proof is complete. d

Lemma 2.4 For 0 < y <1, assume that x(t) is an eventually positive solution of (1), and

z(t), z2(t) are both eventually positive. Then there exists t, € [ty, 00)t such that

AOVT 8w\ e a-y)ly
(Za(t)) _a(t)—<7(t)> (/t q(s)As) , telt, o)

where

o As

Proof Suppose that x(¢) is an eventually positive solution of (1), and z(t), z*(t) are both
eventually positive, then there exists #; € [ty, 00) such that x(¢) > 0, x(g(¢)) > 0, x(h(¢)) > 0,
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z(t) > 0, and z4(¢) > 0 for ¢t € [t;,00)r. By Lemma 2.2 we have
(@0 ()?)* >0, teln,o0)r.
By z2(¢) > 0 and z(¢) = x(t) — p(t)x(g(t)) < x(¢), it follows that, for ¢ € [£;,00)r,

(n@((n0)(22©))*)")*
=~/ (6x(h(0))) < g0 (WD) < ~q() (D)) < 4O (0(1)) <0. ®)

Substituting s for ¢, and integrating (8) from ¢ € [, 00)T to 00, we obtain

n(@)((ra(6) (22 )™)Y = / q(s)z” (0 (s)) As > 2" (o (1)) / q(s)As.

As r (&) ((ra(£)(z2(£))72)2)" is strictly decreasing on [, 00)T, we have, for ¢ € [0 (£,), 00)T,

t In o)
rz(t)(zA(t))VZ — Vg(tl)(ZA(tl))yz +/ r (S)(}"z(S)(ZA(S))V )A As

4 /" (s)

> /() (ra(6) (22 () ) f 1

n 1" (s)
o0 1in ) Iin
> 8(t) (z” (o(t)) / q(s)As) =8(8)z" (o(t)) (/ q(s)As) .

Hence, when 0 < y < 1, we have

A 1/ya 00 Uy
20 () ([ e

which implies that

A 1-
(Z (t)> e, telt oo

27 (t)
Lemma 2.4 is proved. O

Lemma 2.5 For y > 1, assume that x(t) is an eventually positive solution of (1), and z*(¢)
is eventually negative. If it satisfies

/ q(t) At = oo, 9)
]

then lim;_, o x(£) = 0.

Proof Suppose that x(¢) is an eventually positive solution of (1) and z#(¢) is eventually
negative. By the proof of Lemma 2.3, we see that z(¢) is eventually positive. Then there

exists #; € [ty, 00)T such that x(t) > 0, x(g(¢)) > 0, x(h(t)) > 0, z(¢) > 0, and z2(¢) < 0 for
t € [t1,00)T. By Lemma 2.2 we have

(@) ()?)* >0, teln,o0)r.
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By z2(t) < 0, we claim that there exists b > 0 such that lim;_, o, z(£) = b. Assume not; then
there exists t, € [t;,00)T such that z(¢) < 0 for ¢ € [£y, 00)T. It will cause a similar contra-
diction as in the proof of Lemma 2.2. Then assuming b > 0, by (8) and z(o (¢)), z(g(¢)) > b,
we obtain

(n@ (02 0))*))? < -q)2 (5()) < -b 4(¢t). (10)
Letting v(t) = r1(£)((r2(£) (22 (£))72)? )", t € [#1, 00)T, we have v(£) > 0, and
vA(t) < =b"q(t), te [t,00)r. (11)

Substituting s for £, and integrating (11) from £ to t € [0 (), 00)T, we obtain

v(t) < v(t) = b” /tq(s)As.

i

By (9), there exists a sufficiently large ¢, € [£;,00)T such that v(t) < 0, t € [£;,00)1, which
contradicts v(t) > 0. So b = 0, and Lemma 2.5 is proved. O

Lemma 2.6 Assume that x(t) is an eventually positive solution of (1), and there exists t; €
[to, 00) such that x(t) > 0, x(g(2)) > 0, x(h(£)) > 0, z(t) > 0, and z*(t) > 0 for t € [t;,00)T.
For t € [f,00)T, define

@) (ra ()22 (1)) )"

u(t) = A = o +B(o), (12)

where A € C!y(T, (0,00)), B € C}y(T,R). Then u(t) satisfies
u (1) + A(t)q() - B2() - o(t) <0, (13)

where

AN — y A () XN (YFD) R, o<y <,

AXNO)(HGED)T — y A () 2 (UGB, =1,

Do(t) =

Proof Since x(t) is an eventually positive solution of (1), and there exists t; € [£y, 00)T such
that x(£) > 0, x(g(t)) > 0, x(h(t)) > 0, z(t) > 0, and z2(¢) > O for t € [t;,00)T, Lemmas 2.2
and 2.4 hold. Let u(¢) be defined by (12). Then, differentiating (12) and using (1), it follows
that

A(t)

2 (0)
A

' (3(3)) (n@((=0(=2@)))")” + B

__AQ | )

=~ S Ex0)) + B

AXD2 (1) - A ()

2/ (t)z" (o (¢))

u?(t) =

(n@® (O E®)))")

(M@ (O E®)))")’
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Using the fact that

f(tx(h®)) = )« (D)) = q(B)z" (h(D)) = q(£)2" (2),

we obtain

uA(8) < —A(Dq(t) + BA(2) + A (t)(”‘(t) —B(t))“

Af)

_A®) (= @®)4 (u(t) —B(t))“‘

z¥ (t) A(t) (14)

When 0 < y <1, using the Potzsche chain rule (see [5]), we have

1
()" =y [0 (2(6) + he ()22 () " dh - 22 (8) = v (27 (1)~ 24(0),

and it follows that

@ @) _ y@@) A0 @) <Z"(t)>y
70 - 20 Yo\ 20 )

By Lemmas 2.2 and 2.4, for ¢ € [, 00)T, we obtain

2 1 (t)(zA(t))V< %))”
2@ A0 @e)y \z20

5(t) ) r () ((ra(8) (22 (2))72) 47
rz(t (27 (t))°

)( 8(2) )“ (@) () ) )")°

7o (£) (27 (2))°

o( 20 ) (u(t) B(t))
ro(t) Alt

and

Z°(2)
0 =

So (14) becomes

A(t)
"1 _ o2
oo () [( ) | &

When y > 1, we have

u?(t) < -A(t)q(t) + BA(¢) +AA(t)(u(t) —B(t))"

1
@) =y f (2(6) + hu(0)z*(0) ™ dh - 24(8) = y2 7 (022 (1),
0
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and it follows that

(@ @) _ v 0z _ yzi(t)
zZv(t) — z¥ (t) O

By Lemmas 2.2 and 2.4, for ¢ € [¢;, 00)T, we obtain

(ZA(t)y _ 1 i @oEt@)”

() i) 2 (1)
_ (S(t) r@)((ra(8)(z (1)) 4"
=\ n() 2/ (t)

( 5(t) )” (n@)((ra ()22 (2))72)4))°
rz(t) (27 (2))°

u(t) - B\’
Al )
which implies that

=6e) (59T
20 ~ \n@ Alt) '

So (14) becomes

(0 = -A0a0 +5°0) + 420 (U520

A(t)
5(t) 1y2 u(t) — B(H)\° A+)ly
(t)( z(t)> [( A@®) ) } ' 1o
By (15) and (16), (13) holds. Lemma 2.6 is proved. a

3 Main results
In this section, we establish oscillation criteria of (1) by a generalized Riccati transforma-
tion. Firstly, we give some definitions as follows.

Let Do = {s € T:s> 0} and D = {(t,s) € T?: £ > s > 0}. For any function f(¢,s): T> — R,
denote by f; the partial derivative of f with respect to s. Define

(o, B) = {(A,B) : A(s) € Cjq(Do, (0,00)),B(s) € Cq(Do,R),s € Dy };

A ={H(t,s) € C'(D,[0,00)) : H(t,t) = 0,H(£,8) > 0, Hj'(¢,5) < 0,£ > s > 0}.
These function classes will be used in the sequel. Now, we give our first theorem.

Theorem 3.1 Assume that there exist (A, B) € (7, B) and H € I such that, for any t, €
[tO! OO)'JT,

t

[H(t, s)(A(s)q(s) - BA(S)) — H3\(t,5)B° (s) — <1§1(s)]As =00, (17)

1
lim su
t—)oop H(’ 1) t
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where
ra(s) \yy (HE (6:)A° (5)+H (£,5)A% (5))?
oy(s) = 1 00 T g O<y <L
1 (28yn 1 (HZA(z,s)A”(s)+H(t,s)AA(s))1+y -1
59" HEABY Ty V==

Then (1) is oscillatory or lim;_, o, x(t) exists.

Proof Assume that (1) is not oscillatory. Without loss of generality, we may suppose that
x(¢) is an eventually positive solution of (1). Then by Lemma 2.3, we have z(¢) is eventually
positive or lim;_, o, x(£) = 0.

If lim;, o %(£) = O, the theorem is proved. While z(¢) is eventually positive, it follows
that there exists T € [tp, 0o)t such that z(t) > 0 for ¢ € [T, 00)r. By Lemma 2.2, there exists
ti € [T,00)r such that either z2(¢) > 0 or z2(¢) < 0 holds for ¢ € [t;,00). Assume that
Z2(t) > 0, t € [t;,00). Let u(t) be defined by (12). Then by Lemma 2.6, (13) holds.

Multiplying (13), where ¢ is replaced by s, by H, and integrating it with respect to s from
t; to t with ¢ € [0 (#1), c0)T, we obtain

/tH(t, s)(A(s)q(s) —BA(S))AS
< —ftH(t,s)uA(s)As+ /tH(t,s)(bo(s)As.

Noting that H(t,t) = 0, by the integration by parts formula we have

/t H(t,5)(A(s)g(s) — B*(s)) As

t

§H(t,t1)u(t1)+/ (Hf(t,s)u”(s)+H(t,s)¢0(s))As

A}

= H(t,)u(ty) + /tHZA(t,s)B”(s)As

+ /t(HzA(t, s)A° (s)(%)g + H(t, s)@o(s)) As. (18)

When 0 < y <1, we have

u(s) — B(s)

Hf(t,s)A”(s)( a0

)U + H(t,s)Dy(s)

u(s) — B(s)\°
Als) >

7 B P
_ yH(t,s)A(s)a(s)(%) [( % ) }
_ VZ(S) n (HzA(t,S)AU (s) + H(t,S)AA(s))2
= (%) 4y H(t,s)A(s)a(s)

" _ p
_VH(t,S)A(S)a(s)(%> [(%)

= (HZA(t,s)A” (s) + H(t, S)AA(S)) (




Qiu Advances in Difference Equations (2015) 2015:299

ro(s)\ " H (t,5)A° (s) + H(t,5)A%(s) ]*
- <W) 2y H(t,5)A(s)a(s) ]

- ra(s) \ " (H5\(¢,5)A° (s) + H(t,5)A%(s))?

B (%) 4y H(t,s)A(s)a(s)

When y > 1, we have

u(s) — B(s)
A(s)

Hj\(t,s)A” (S)( )U + H(t,5)Po(s)

u(s) — B(s) >”

Als)

1/ o (1+y)/
_yH(t’S)A(S)(@> Vz[<u(s)—3(s)) ] Y V'

= (HZA(L‘,S)A“ (s) + H(t, S)AA(S)) (

ra(s) A(s)

Using the inequality
rabl —at < (- 1)b,

let A = “7)', and

@ =al - VH(t,s)A(s)(&)wz [(u(s) - B(Q)"]“*”’V’

ra(s) A(s)
ploptly = Y (“_“))Vl/(w)HzA (t,5)A° (s) + H(t,5)A" (s)
T 1+y \8(s) (yH(t,9)A(s))r/0+r)

then we have
u(s) — B(s)
A(s)

_ () n 1 HA(t,5)A° (s) + H(t,5)A%(s) \ """
—(W> (H(t,s)A(s))V( l+y ) ‘

HzA(t,s)A”(s)( )U + H(t,5)Po(s)

Therefore, for all y > 0, by (18) we have
[ H(t,5)(A)q(s) - B(9) 2s
< H(t,t)u(t) + /t:HzA(t,S)B” (s)As + /t: D1(s)As,
which implies that
/n t [H{(t,5)(A(s)q(s) — B4(s)) — H3'(t,5)B° (s) - P1(s)| As < H(¢, tr)u(tr).
Hence,

m , [H(t, s)(A(s)q(s) —BA(s)) —HZA (t,8)B? (s) — <1§1(s)]As <u(f) < 00,

Page 11 of 16
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which contradicts (17). So z2(£) < 0, t € [t;,00)T, and it is clear that lim;_, o, z(¢) exists. By

Lemma 2.1 we see that lim,_, o %(¢) exists. The proof is completed. g

When y > 1, if (9) holds, we have the following corollary on the basis of Lemma 2.5 and
Theorem 3.1.

Corollary 3.2 When y > 1, assume that (9) holds and there exist (A,B) € (<, B) and
H € 7 such that, for any t; € [ty, 00)T,

1
lim su
t—>oop H(t7 tl)

/ [H(t,5)(A(s)q(s) = B*(s)) — H3'(£,5)B (s) — ®1(s)] As = 00, (19)

where

ous) = (29" 1 H\(t,5)A% (s) + H(t,5)A%(s) \ "7
e (W> (H(t,sm(s)v( 1+ ) :

Then (1) is oscillatory or lim,_, o, x(£) = 0.

Remark 3.3 In Corollary 3.2, letting (4, B) = (1,0), we can simplify (19) as

. 1 t rG\" 1 H2(t,5)\""" _
s, (10990~ (55) a1y ) Jaseee

When B =0, (12) is simplified as

u(t) = A®) “(t)((h(ti(yzé)( USRS (20)

Now we have the following theorem.

Theorem 3.4 Assume that there exists A € Cﬂd(Do, (0, 00)) such that, for any t; € [ty,00)T,

t

lim sup/ [A(s)q(s) - <1§2(s)]As = 00, (21)

t—00 t

where
(s) (A% (s)?

Dy(s) = 36" 1A O<y<l

2 - rz_(s))yl 1 (AA S))1+y >1

8(s) AV (s) N 1+y v

Then (1) is oscillatory or lim,_, o, x(t) exists.

Proof Assume that (1) is not oscillatory. Without loss of generality, we may suppose that
x(t) is an eventually positive solution of (1). Similarly as in the proof of Theorem 3.1, we
have z(¢) is eventually positive or lim;_, o x(£) = 0.

If lim;_, o x(¢) = O, the theorem is proved. If z(¢) is eventually positive, there exists
t € [ty,00)T such that z(¢) > 0, and either z2(¢) > 0 or z#(¢) < 0 holds for ¢ € [t;,00)T
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by Lemma 2.2. Assume that z2(¢) > 0, ¢ € [t;,00)r. Let u(¢) be defined by (20). Then by
Lemma 2.6, we have

u(t) + At)q(t) — o (t) <0,
where @y (t) is simplified as

Do(t) = {AA(t)(”(” il VA(t)Ot(t)( D437, 0<y<l,

AAO)(H) —y A(2Y )“m[(mﬂ“ﬂ/y y =1

When 0 < y <1, we have

A PNE 56) \' {4\ T
W) < —A(D)q(t) + A t)(A—) - )<%) [(M>}

) ) "
= —A(t)q(t) + < 5(0) 4yA(t)a £)

(t) T (n\" A T
_yA(t)oe(t)< t)) [(A(t) (m) m}

2(
(A4 ()2
< -A()q(t) + ( (t)) 4;A(goz G}

When y > 1, we have

» NGO 5(0) \ 7T ( u®) "1
(1) <-At)gt) + A (t)(A(t)) - yA(t)(l”z—(t)> [(M) ] .

Using the inequality
rabt —at < (L -1)b,

let A = 1*7}’, and

y o (1+y)/
A= gVl _ yA(ﬂ(%) m[(%) :| y y’

v < <t>)”/ AN

b}»—l — bl/y ,
L+y \ 8() (YA(t))r/d+r)

then we have

A n®\" 1 (A0\"
u (t)S—A(t)GI(f)‘r(m) Ar(t)(1+y) .

Therefore, for all y > 0, we always have
u’(t) < ~A(6)q(t) + (1),
which implies that

A)q(t) - P2(t) < -u’(0). (22)
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Letting ¢ be replaced by s, and integrating (22) with respect to s from #; to t € [0 (¢), 00)T,
we obtain

/ [A(s)q(s) - @2(3)]As < —/ u?(s)As = u(ty) — u(t) < u(ty) < 0o,

5]

which is a contradiction of (21). So z4(¢) < 0, t € [t;,00)T, and as before, lim,_, o, z(¢) and
lim;_, o x(¢) exist. The proof is completed. d

When y > 1,if (9) holds, from Lemma 2.5 and Theorem 3.4 we have the following result.

Corollary 3.5 When y > 1, assume that (9) holds and there exists A € Crld (Do, (0, 00)) such
that, for any t; € [ty, 00)T,

t o9 A4 1+y

Then (1) is oscillatory or lim;_, oo x(£) = 0.

Remark 3.6 It is not difficult to satisfy the conditions in Corollary 3.5. Indeed, letting
A =1, by (9) we have (23). The condition (23) can be deleted in Corollary 3.5. Therefore,
when y > 1, assume that (9) holds, then it follows that (1) is oscillatory or lim;_, o, 2(¢) = 0.

Remark 3.7 Take ri(£) = 1/ay(t), ra(t) = 1/ay(t), i = o2, o =1, y =1, p(t) = 0, h(t) = ¢,
and f(¢t,x) = q(£)fo(x), where fy is equivalent to f in Yu and Wang [15]. It is obvious that the
conclusions in this paper extend the ones in [15]. Meanwhile, the proofs and results above
may provide some enlightenment to the study of oscillation of higher-order nonlinear dy-

namic equations with nonpositive neutral coefficients on time scales.

4 Examples
In this section, the application of our oscillation criteria will be shown in two examples.

Now we give the first example to demonstrate Theorem 3.1 (or Corollary 3.2).

Example 4.1 Let T = | J;2,[27 - 1,2#]. Consider the equation

AN 1/3\ A\ 5\ A .
G(G(("(”_%x“ ‘2)) ) ) )) +¥x“(h(t>):0, (24)

where r1(¢) = ¢, ro(t) = 1/t, p(£) = (t - 1)/2t, g(t) =t -2, » =5, . =1/3, ¥y =5/3, h(t) > ¢,
and £y = 1. By (C3) we have pg = 1/2, and by (C6) we take g(¢) = 1/t. Since

/ I/—At:/ ﬁAtZOO, / U—At:/ tBAtZOO
o 1 "(t) 1 ¢ o 1y () 1

and

[e¢] [e¢} 1
/ q(t)At:/ - At = 00,
to 1 ¢
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it is obvious that the coefficients of (24) satisfy (C1)-(C6) and (9). Letting H(t,s) = (¢ — 5)?

and (A4, B) = (s,0), we have

o As t As s
50 [ = [ 55 -0)
n 1y (s) a1

and
o) - (29 " 1 Hi (£,5)A% (s) + H(t,5)A%(s) | """
e (W) (H(t,sm(s)w( l+y )
sTo\° 1 O(s) - O(s) + (£ - )2\ 263
:<O(s4/5)> ((t—s>2s>5/3( 8/3 ) =0l
Hence,

t

[H(t, s) (A(s)q(s) -B4 (s)) — H3\(t,8)B% (s) — Dy (s)] As

lim su
t~>oop H(t, tl) t

t—>o00

= limsup ﬁ /t [(t —s)? - O(s‘26/3)]As = 00.

That is, (19) holds. By Theorem 3.1 (or Corollary 3.2) we see that (24) is oscillatory or

lim;_, o x(£) = 0.
The second example illustrates Theorem 3.4.

Example 4.2 Let T = J,-,[3",2 - 3"]. Consider the equation

1 1 t AN 5/3\ A\ 1/5\ A 2 t2
(t‘z«”((’c‘“‘z"(g))) )) ) e 00)=o

(25)

where r1(t) = 1/£2, ry(t) = /t, p(t) = 1/t, g(t) = t/3, y1 = 1/5, y» = 5/3, ¥ = 1/3, h(t) > o (t),

and £, = 1. By (C3) we have p; = 0, and by (C6) we take g(t) = 1/¢£. Since

10
/ Tﬂt=/ t AtZOO, / TAth WAtZOO
o () 1 to Ty 2(£) 1 ¢

and

oo oo 1
/ q(t)At:/ — At <00,
to 1 13

it is obvious that the coefficients of (25) satisfy (C1)-(C7). Then, letting (A, B) = (s2,0), we

obtain

t A t
0= [ [0 o),
t n

1/ -
1 I Vl(s)

8(t) 1=y)1r2 ) Q-y)y
«=(ng) (] ao)

_ <Of;1;)>2/5(0(t1))2 - 0(15),
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and
ra(s)\" (A%(5))?
@Z(S)z(%) Ty A (s)

=< NG )1/5 O(s*) =O(s_43/1°).

O(st) 4/3 - s2 - O(s11/5)

Therefore,

t—00 t—00

t t
lim supf [A(s)g(s) — D2(s)] As = lim supf [1-O(s1%)] As = co.
t 5]
That is, (21) holds. By Theorem 3.4 we see that (25) is oscillatory or lim,_, o () exists.
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