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Abstract
In this paper, a new Monod type chemostat model with delay and impulsive input on
two substrates is considered. By using the global attractivity of a k times periodically
pulsed input chemostat model, we obtain the bound of the system. By the means of
a fixed point in a Poincaré map for the discrete dynamical system, we obtain a
semi-trivial periodic solution; further, we establish the sufficient conditions for the
global attractivity of the semi-trivial periodic solution. Using the theory on delay
functional and impulsive differential equations, we obtain a sufficient condition with
time delay for the permanence of the system.
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1 Introduction and the model
The chemostat is an important laboratory apparatus to study the growth of microorgan-
ism in a continuous environment. It has begun to occupy an increasing central role in
ecological studies. As a tool in biotechnology, the chemostat plays an important role in
bio-processing and the chemostat has many applications in waste water treatment, pro-
duction by genetically altered organisms, etc. Chemostats with periodic inputs are stud-
ied in [–], those with periodic washout rate in [, ], and those with periodic input and
washout in []. The structure assigned to the organisms in the model accounts for the de-
pendence of the growth on the past history of the cells, and hence it is capable of predicting
the lag phases and transient oscillations observed in experiments. Many authors have di-
rectly incorporated time delays in the modeling equations and, as a result, the models take
the form of delay differential equations [–].

Many scholars pointed out that it was necessary and important to consider models with
periodic perturbations, since these models might be quite naturally exposed in many real
world phenomena (for instance, food supply, mating habits, harvesting). In fact, almost
perturbations occur in a more-or-less periodic fashion. However, there are some other
perturbations such as fires, floods, and drainage of sewage which are not suitable to be con-
sidered continuous. These perturbations bring sudden changes to the system. A chemo-
stat model with time delays was first studied by Caperon [] based on some experimental
data. Unfortunately, the model proposed by Caperon created the possibility of a negative
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concentration of the substrate (nutrient). To correct this, Bush and Cook [] investigated
a model of the growth of one microorganism in the chemostat with a delay in the intrinsic
growth rate of the organism but with no delay in the nutrient equation. They have also es-
tablished that oscillations are possible in their model. Systems with sudden perturbations
are involved in the impulsive differential equation, which have been studied intensively
and systematically in [, ].

In this paper, we want to introduce and study a delayed Monod model system in a
chemostat with periodically pulsed substrate and nutrient recycling on two substrates.
The model takes the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = –DS(t) – μS(t)x(t)
δ(k+S(t)) , t �= nT , n ∈ Z+,

Ṡ(t) = –DS(t) – μS(t)x(t)
δ(k+S(t)) , t �= nT , n ∈ Z+,

ẋ(t) = –Dx(t) + e–Dτ μS(t–τ)x(t–τ)
k+S(t–τ)

+ e–Dτ μS(t–τ)x(t–τ)
k+S(t–τ) , t �= nT , n ∈ Z+,

S(t+) = S(t) + p, t = nT , n ∈ Z+,
S(t+) = S(t) + p, t = nT , n ∈ Z+,
x(t+) = x(t), t = nT , n ∈ Z+,

(.)

where S(t), S(t) represent the concentrations of limiting substrates at time t, x(t) denotes
the plankton concentration at time t, D is the washout rate; pi (i = , ) denotes the input
concentration of the limiting of pulsing; μ and μ are the uptake constants of the plank-
ton; δ is the yield of the plankton per unit mass of the first substrate; δ is the yield of
the plankton per unit mass of the second substrate. The constant τi ≥  (i = , ) denotes
the time delay involved in the biomass depending on the conversion of nutrient to viable
biomass. The positive constant, e–Dτi (i = , ), is required, because it is assumed that the
current change in biomass depends on the amount of nutrient consumed in τi (i = , )
units of time in the past by the microorganisms that were in the growth vessel at that time
and managed to remain in the growth vessel for the τ (i = , ) units of time required to
process the nutrient.

2 Preliminaries
In this section, we will give some notations and lemmas which will be used for our main
results.

Let R+ = [,∞), R
+ = {(x, x, x) ∈ R : x > , x > , x > }. S(nT+) = limt→nT+ S(t),

S(nT+) = limt→nT+ S(t), x(nT+) = limt→nT+ x(t), S(t), S(t) are left-continuous at t = nT ,
x(t) is continuous at t = nT .

Lemma . ([, ]) Consider the following impulse differential inequalities:

ω′(t) ≤ (≥) p(t)ω(t) + q(t), t �= tk ,

ω
(
t+
k
) ≤ (≥) dkω(tk) + bk , t = tk , k ∈ N ,

where p(t), q(t) ∈ C(R+, R), dk ≥ , and bk are constants.
Assume:

(A) the sequence tk satisfies  ≤ t < t < t < · · · , with limt→∞ tk = ∞;
(A) ω ∈ PC′(R+, R) and ω(t) is left-continuous at tk , k ∈ N .
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Then

ω ≤ (≥) ω(t)�t<tk <tdk exp

(∫ t

t

p(s) ds
)

+
∑

t<tk <t

(

�tk <tj<tdj exp

(∫ t

tk

p(s) ds
))

bk

+
∫ t

t

�s<tk <tdk exp

(∫ t

s
p(θ )dθ

)

q(s) ds, t ≥ t. (.)

Consider the following system:
{

Ṡ(t) = –DS(t), t �= nT (i = , ), n ∈ Z+,
S(t+) = S(t) + pi, t = nT (i = , ), n ∈ Z+.

(.)

Lemma . System (.) has a positive periodic solution u∗
i (t) = pi exp(–D(t–nT))

–exp(–DT) for all t ∈
(nT , (n + )T], n ∈ Z+, which is globally uniformly attractive.

The proofs of Lemmas . and . are simple, we omit them here.

Lemma . ([]) Consider the following delay differential equation:

x(t)
dt

= rx(t – τ) + rx(t – τ) – rx(t),

where r, r, r, τ, τ are all positive constants and x(t) >  for t ∈ [–τ , ].
(i) If r + r < r, then limt→∞ x(t) = .

(ii) If r + r > r, then limt→∞ x(t) = +∞.
Consider the following system:

{
Ṡ(t) = –S(t), t �= nT + τi (i = , , . . . , k), n ∈ Z+,
S(t+) = S(t) + pi, t = nT + τi (i = , , . . . , k), n ∈ Z+,

(.)

where T is the period of the impulsive effect and τ =  < τ < τ < · · · < k = T are for the k
times of impulsive effects per period T .

Lemma . The subsystem (.) has a positive periodic solution S̃(t) and for every solution
S(t) of (.) we have |S(t) – S̃(t)| →  as t → ∞, where

⎧
⎨

⎩

S̃(t) = S+
i exp(–(t – nT – τi–)), t ∈ (nT + τi–, nT + τi],

S̃() = S+
 =

∑k
j= pj exp((–T+τj))

–exp(–T) , Si = S+
i– exp(–pi), i = , , . . . , k.

Lemma . Let (S(t), S(t), x(t)) be any solution of system (.) with initial values
(S(+), S(+), x()) ∈ R

+. There exists a constant L >  such that S(t) < L, S(t) < L,
x(t) < L.

Proof Let (S(t), S(t), x(t)) be any solution of system (.) with initial value (S(+), S(+),
x()) ∈ R

+. Define a function

V (t) = δe–Dτ S(t – τ) + δe–Dτ S(t – τ) + x(t).
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The upper right derivative of V (t) along the trajectories of (.) is

{
V̇ (t) = –DV (t), t �= nT + τi (i = , ), n ∈ Z+,
V (t+) = V (t) + δie–Dτi pi, t = nT + τi (i = , ), n ∈ Z+.

Without loss of generality, we assume that τ > τ. From the system (.), it is easy to see
there exists a M such that

S(t) < M, S(t) < M, x(t) < M,

as t ∈ [, τ]. V (t) is for  times of the impulsive effects per period T as t ∈ (τ,∞). Because
τ > τ, there exists a n such that

τ ∗


.= nT + τ ∈ (τ, τ + T].

Let

τ̄ = τ ∗
 – τ, τ̄ = T – τ̄,

p̄ =
δe–Dτ e–Dτ̄ p + δe–Dτ p

 – e–DT , p̄ =
δe–Dτ e–Dτ̄ p + δe–Dτ p

 – e–DT .

By Lemma ., we obtain

{
V (t) = p̄e–D(t–nT–τ), (nT + τ, τ + nT + τ ∗

 ],
V (t) = p̄e–D(t–τ+nT+τ∗

 ), (τ + nT + τ ∗
 , (n + )T + τ].

So, we obtain V (t) ≤ p as t → ∞. Here p = max{p̄, p̄}. According to the definition of V (t),
it can be seen that S(t) < peDτ

δ
, S(t) < peDτ

δ
, x(t) < p as t → ∞. Let L = max{ peDτ

δ
, peDτ

δ
, p}.

This completes the proof. �

3 Main results
In this section, we investigate the extinction of the microorganism species, that is, mi-
croorganisms are entirely absent from the chemostat permanently, i.e.,

x(t) = , t ≥ . (.)

This is motivated by the fact that x∗ =  is an equilibrium solution for the variable x(t), as
it leaves us with x′(t) = . Under these conditions, we show below that the nutrient con-
centration oscillates with period T in synchronization with the periodic impulsive input
of the nutrient concentration.

From the third equation of system (.), we have

x′(t) ≤ e–Dτμx(t – τ) + e–Dτμx(t – τ) – Dx(t). (.)

By Lemma ., if e–Dτμ + e–Dτμ < D, then limt→∞ x(t) = , that is, the microorganism
species becomes ultimately extinct. This shows that the specific growth of the microor-
ganism species cannot supply the loss of the microorganism species to flow out no matter
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how much the nutrient input is. Therefore, we assume e–Dτμ + e–Dτμ > D in the rest of
this paper.

For system (.), if we choose x(t) ≡  then system (.) becomes the following subsys-
tem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ṡ(t) = –DS(t), t �= nT , n ∈ Z+,
Ṡ(t) = –DS(t), t �= nT , n ∈ Z+,
S(t+) = S(t) + p, t = nT , n ∈ Z+,
S(t+) = S(t) + p, t = nT , n ∈ Z+.

The subsystem has a unique globally uniform attractive positive T-periodic solution
(u∗

 (t), u∗
(t)), which is given in (.). Hence, system (.) has a T-periodic solution

(u∗
 (t), u∗

(t), ) at which the microorganism culture fails. On the global attractivity of
(u∗

 (t), u∗
(t), ) for system (.), we have the following result.

Theorem . A periodic solution (u∗
 (t), u∗

(t), ) of system (.) is globally attractive if

μe–Dτ p
–e–DT

k + p
–e–DT

+
μe–Dτ p

–e–DT

k + p
–e–DT

– D < . (.)

Proof Let (S(t), S(t), x(t)) be any solution of system (.) with initial values (S(+), S(+),
x()) ∈ R

+, we may choose a sufficiently small positive constant ε such that

μe–Dτη

k + η
+

μe–Dτη

k + η
< D, (.)

where

η =
p

 – e–DT + ε, η =
p

 – e–DT + ε.

It follows from that the first and second equation of system (.) that S′
(t) ≤ S(t), S′

(t) ≤
S(t). So we consider the following impulse differential inequalities:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ṡ(t) ≤ –DS(t), t �= nT , n ∈ Z+,
Ṡ(t) ≤ –DS(t), t �= nT , n ∈ Z+,
S(t+) = S(t) + p, t = nT , n ∈ Z+,
S(t+) = S(t) + p, t = nT , n ∈ Z+.

By using Lemma ., we have

lim sup
t→∞

S(t) ≤ p

 – e–DT ,

lim sup
t→∞

S(t) ≤ p

 – e–DT .

Hence, there exist a positive integer n and an arbitrarily small positive constant ε such
that, for all t ≥ nT ,

S(t) ≤ p

 – e–DT + ε
.= η,

S(t) ≤ p

 – e–DT + ε
.= η.

(.)
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From (.) and the third equation of (.) we get, for t ≥ nT + τ where τ = max{τ, τ},

x′(t) ≤ μηe–Dτ

k + η
x(t – τ) +

μηe–Dτ

k + η
x(t – τ) – Dx(t). (.)

Consider the following comparison equation:

z′(t) =
μηe–Dτ

k + η
z(t – τ) +

μηe–Dτ

k + η
z(t – τ) – Dz(t). (.)

By Lemma . and (.) we obtain

lim
t→∞ z(t) = .

Since x(s) = z(s) >  for all s ∈ [–τ , ], by the comparison theorem in differential equations
and the nonnegativity of the solution (x(t) ≥ ), we have x(t) →  as t → ∞.

Without loss of generality, we may assume that  < x(t) < ε, for all t ≥ , by the first
equation of system (.), we have

S′
(t) ≥ –

(

D +
με

δk

)

S(t).

Then we have z̃ ≤ S(t) and z̃ → u∗
 (t), as ε → , where z̃(t) is a unique globally asymp-

totically stable positive periodic solution of

⎧
⎪⎨

⎪⎩

z′
(t) = –(D + με

δk
)z(t), t �= nT , n ∈ N ,

z(t+) = z(t) + p, t = nT , n ∈ N ,
z(+) = S(+).

(.)

From (.), we have, for nT < t < (n + )T ,

z̃(t) =
pe–(D+ με

δk
)(t–nT)

 – e–(D+ με

δk
)T

.

By using the comparison theorem of impulsive equations, for any ε >  there exists such
a T >  that, for t > T,

S′
(t) > z̃(t) – ε. (.)

On the other hand, from the first equation of (.), it follows that

S′
(t) ≤ –DS(t).

Consider the following comparison system:

⎧
⎪⎨

⎪⎩

z′
(t) = –Dz(t), t �= nT , n ∈ N ,

z(t+) = z(t) + p, t = nT , n ∈ N ,
z(+) = S(+).

(.)
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Then we have

S(t) < z̃ + ε, (.)

as t → ∞ and z̃(t) = u∗(t), where z̃(t) is a unique positive solution of (.).
Let ε → ∞, then it follows from (.) and (.) that

u∗
 (t) – ε < S(t) < u∗

 (t) + ε (.)

for t large enough, which implies S(t) → u∗
 (t) as t → ∞.

By a similar argument to the above, we know S(t) → u∗
(t) as t → ∞. This completes

the proof. �

Theorem . The system (.) is permanent, if

p >
Dk(eDT – )
μe–Dτ – D

or

p >
Dk(eDT – )
μe–Dτ – D

.

Proof Let (S(t), S(t), x(t)) be any positive solution of system (.). Without loss of gener-
ality, we may assume that

p >
Dk(eDT – )
μe–Dτ – D

. (.)

So there is m such that

 < m <
δk

μ

(

T

ln
p(μe–Dτ – D) + Dk

Dk
– D

)

. (.)

From the third equation of system (.), we have

x′(t) ≥
(

μe–Dτ
S(t)

k + S(t)
– D

)

x(t) – μe–Dτ
d
dt

∫ t

t–τ

S(θ )x(θ )
k + S(θ )

dθ . (.)

Let

V (t) = x(t) + μe–Dτ

∫ t

t–τ

S(θ )x(θ )
k + S(θ )

dθ .

Calculating the derivative of V (t) along the solution of (.), it follows from (.) that

V ′(t) ≥ D
(

μe–Dτ
S(t)

D(k + S(t))
– 

)

x(t). (.)

For the above m we can choose a positive constant ε small enough such that

μe–Dτψ

D(k + ψ)
> , (.)
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where

ψ =
pe–(D+ μm

δk
)T

 – e–(D+ μm
δk

)T
– ε > .

For any positive constant t, we claim that the inequality x(t) < m cannot hold for all
t ≥ . Otherwise, there is a positive constant t, such that t ≥ t. From the first and fourth
equations of system (.), we have

{
Ṡ(t) ≥ –DS(t) – μS(t)m

δk
, t �= nT , n ∈ Z+,

S(t+) = S(t) + p, t = nT , n ∈ Z+.

By Lemma . there exists such a T ≥ t + τ, for t ≥ T, that

S(t) >
pe–(D+ μm

δk
)T

 – e–(D+ μm
δk

)T
– ε

.= ψ. (.)

From (.) and (.), we have

V ′(t) > D
(

μe–Dτ
ψ

D(k + ψ)
– 

)

x(t). (.)

For all t ≥ T, let

xl = min
t∈[T,T+τ]

x(t).

We show that x(t) ≥ xl for all t ≥ T. Otherwise, there exists a nonnegative constant T

such that x(t) ≥ xl for t ∈ [T, T + τ + T], x(T + τ + T) = xl , and x′(T + τ + T) ≤ .
Thus from the third equation of (.) and (.), we easily see that

x′(T + τ + T) >
[

μe–Dτ
ψ

k + ψ
– D

]

xl

= D
[

μe–Dτ
ψ

D(k + ψ)
– 

]

xl

> ,

which is a contradiction. Hence we get x(t) ≥ xl >  for all t ≥ T. From (.), we have

V ′(t) > D
(

μe–Dτ
ψ

D(k + ψ)
– 

)

xl > ,

which implies V (t) → +∞ as t → ∞. This is a contradiction to V (t) ≤ L( + μτe–Dτ ).
Therefore, for any positive constant t, the inequality x(t) < m cannot hold for all t > t.
On the one hand, if x(t) ≥ m holds true for all t large enough, then our aim is obtained.
On the other hand, x(t) is oscillatory about m. Let

m = min

{
m


, me–Dτ

}

.
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In the following, we shall show that x(t) ≥ m. There exist two positive constants t̄, ω such
that

x(t̄) = x(t̄ + ω) = m

and

x(t) < m for t̄ < t < t̄ + ω.

When t̄ is large enough, the inequality S(t) > ψ holds true for t̄ < t < t̄ + ω. Since x(t) is
continuous and bounded and is not affect by the impulse, we conclude that x(t) is uni-
formly continuous. Hence there exists a constant T (with  < T < τ and T independent
of the choice t̄) such that x(t) > m

 for all t̄ < t < t̄ + T. If ω ≤ T, our aim is obtained. If
T < ω < τ, from the third equation of (.) we have x(t) ≥ –Dx(t) for t̄ < t ≤ t̄ + ω. Then
we have x(t) ≥ me–Dτ for t̄ < t < t̄ + ω ≤ t̄ + τ since x(t) = m. It is clear that x(t) ≥ m for
t̄ < t ≤ t̄ + ω. If ω > τ, then we have x(t) > m for t̄ < t ≤ t̄ + τ. We show that x(t) ≥ m for
all t̄ + τ ≤ t ≤ t̄ + ω. Otherwise, there exists a nonnegative constant t̄ such that x(t) ≥ m

for t ∈ [t̄ + τ, t̄ + ω], x(t̄ + τ + t̄) = m and x′(t̄ + τ + t̄) ≤ . Thus from the third equation
of (.) and (.), we easily see that

x′(t̄ + τ + t̄) >
[

μe–Dτ
ψ

k + ψ
– D

]

m

= D
[

μe–Dτ
ψ

D(k + ψ)
– 

]

m

> ,

which is a contradiction. Hence we get x(t) ≥ m >  for all t ∈ [t̄ + τ, t̄ + ω].
Since the interval [t̄, t̄ +ω] is arbitrarily chosen (we only need t̄ to be large), we get x(t) ≥

m for t large enough. In view of our arguments above, the choice of m is independent of
the positive solution of (.) which satisfies x(t) ≥ m for sufficiently large t.

By Lemma ., we have x(t) ≤ L for t ≥ . Hence, from the first equation of (.), we
have

S′(t) ≥ –
(

D +
μL
δk

)

S(t).

Then we have S(t) ≥ z̃(t), where z̃ is a unique globally asymptotically stable positive
periodic solution of

⎧
⎪⎨

⎪⎩

z′
(t) = –(D + μL

δk
)z(t), t �= nT , n ∈ N ,

z(t+) = z(t) + p, t = nT , n ∈ N ,
z(+) = S(+).

(.)

There exists a ε >  small enough such that, for sufficiently large t,

S(t) ≥ z̃(t) – ε ≥ pe–(D+ μL
δk

)T

 – e–(D+ μL
δk

)T
– ε

.= m.
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By a similar argument, there exists a positive constant m such that

S(t) ≥ m.

The proof is complete. �

4 Numerical analysis and discussion
In this paper, we introduce a growth time delay and pulse input nutrient into the Monod
type chemostat model, and theoretically analyze the influence of them on the extinction
of the population of the microorganism and the permanence of the system. In Section ,
we give the conditions for extinction and permanence of the microorganisms. Our main
results show that if the impulsive periodic nutrient concentration inputs p and p are
under a certain value, then the population of microorganisms will be eventually extinct.
Contrarily, if the impulsive periodic nutrient concentration input p or p is over a certain
value, it will be permanent. In this case, the microorganism is kept.

In the following, we substantiate the above results by numerical analysis. Then we ar-
bitrarily consider a hypothetical set of parameter values as μ = , μ = , δ = , δ = ,
D = ., τ = ., τ = ., T = , k = , k = . If p = ., p = ., then Theorem .
holds true, which implies that the microorganism species is extinct (see Figure (i)-(iv)). If
p = , p = , then Theorem . holds true, which implies that the microorganism species
is permanent (see Figure (i)-(iv)).

Figure 1 Behavior and phase portrait of system (1.1). Dynamical behavior of the system (1.1) with μ1 = 8,
μ2 = 10, δ1 = 1, δ2 = 1, D = 0.75, τ1 = 0.1, τ2 = 0.1, T = 1, p1 = 0.1, p2 = 0.1, k1 = 9, k2 = 4. (i) Time-series of the
nutrient S1(t) for periodic oscillation. (ii) Time-series of nutrient S2(t) for periodic oscillation. (iii) Time-series of
the microorganism population x(t) for extinction. (iv) Phase portrait of S1(t), S2(t), x(t).
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Figure 2 Behavior and phase portrait of system (1.1). Dynamical behavior of the system (1.1) with μ1 = 8,
μ2 = 10, δ1 = 1, δ2 = 1, D = 0.75, τ1 = 0.1, τ2 = 0.1, T = 2, p1 = 2, p2 = 2, k1 = 9, k2 = 4. (i) Time-series of the
nutrient S1(t) for periodic oscillation. (ii) Time-series of nutrient S2(t) for periodic oscillation. (iii) Time-series of
the microorganism population x(t) for extinction. (iv) Phase portrait of S1(t), S2(t), x(t).
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