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Abstract
An SIR epidemic model is investigated and analyzed based on incorporating an
incubation time delay and a general nonlinear incidence rate, where the growth of
susceptible individuals is governed by the logistic equation. The threshold parameter
σ0 is defined to determine whether the disease dies out in the population. The model
always has the trivial equilibrium and the disease-free equilibrium whereas it admits
the endemic equilibrium if σ0 exceeds one. The disease-free equilibrium is globally
asymptotically stable if σ0 is less than one, while it is unstable if σ0 is greater than one.
By applying the time delay as a bifurcation parameter, the local stability of the
endemic equilibrium is studied and the condition which is absolutely stable or
conditionally stable is established. Furthermore, a Hopf bifurcation occurs under
certain conditions. Numerical simulations are carried out to illustrate the main results.
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1 Introduction
Mathematical models have been become the important tools in investigating transmis-
sion and control of infectious diseases. To better understand the transmission pattern of
infectious disease, a great many epidemic models have been formulated (see [–] and
references therein). Recently, Takeuchi et al. [] developed a delayed SIR epidemic model
with bilinear incidence rate in order to investigate the spread of vector diseases, and Mc-
Cluskey [] discussed the global stability of equilibria for the system. In , Wang et
al. [] analyzed the following SIR vector disease model with incubation time delay and
logistic growth rate with carrying capacity K :

dS(t)
dt

= rS(t)
(

 –
S(t)
K

)
– βS(t)I(t – τ ),

dI(t)
dt

= βS(t)I(t – τ ) – (μ + γ )I(t), ()

dR(t)
dt

= γ I(t) – μR(t).

S(t), I(t), and R(t) are the numbers of susceptible, infective and recovered host individu-
als at time t, respectively. r denotes the intrinsic birth rate. β denotes the average number
of contacts per infective per unit time. τ is the incubation time. μ and μ represent the
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death rate of infective and recovered, respectively. γ is the recovered rate of infective indi-
viduals. It is reasonable to assume that all the parameters are positive constants. Wang et
al. [] presented the dynamic properties of system (). The global stability of the disease-
free equilibrium is derived when the basic reproduction number R is less than unity. The
unique endemic equilibrium is absolutely stable when  < R < , and it is conditionally
stable when R > . Moreover, the existence of a Hopf bifurcation is given.

Because of considering the behavioral changes of susceptible individuals, Zhang et al.
[] extended system () and proposed the following vector disease model with saturated
incidence rate:

dS(t)
dt

= rS(t)
(

 –
S(t)
K

)
– β

S(t)
 + αS(t)

I(t – τ ),

dI(t)
dt

= β
S(t)

 + αS(t)
I(t – τ ) – (μ + γ )I(t), ()

dR(t)
dt

= γ I(t) – μR(t),

where the parameters r, β , τ , μ, μ, and γ are the same meanings as that defined in model
(), and α ≥  is a constant in order to represent the saturation effect. The global dynam-
ics for model () was investigated. If R is less than one, the disease-free equilibrium is
globally asymptotically stable; while the unique endemic equilibrium may be stable or un-
stable under some conditions if R is greater than one. Furthermore, the Hopf bifurcation
emerges if other conditions are satisfied when R is greater than one.

Although the bilinear incidence rate was frequently used in the literature of mathemati-
cal modeling, there are plenty of reasons why this bilinear incidence rate may require mod-
ification [, ]. For example, the saturated incidence rate of the form βS(t)I(t)

+αI(t) or βS(t)I(t)
+αS(t) was

formulated as crowding effects of infective or behavioral changes of susceptible individu-
als were considered [, , , , –]. Moreover, other forms of nonlinear incidence
rates are often developed in many papers (for details one can refer to [, , –, ]).
Motivated by those works, in the present paper, we attempt to extend system () or ()
to a more general incidence rate of the form βF(S(t))I(t – τ ). It is assumed that function
F is continuous on [,∞) and continuously differentiable on (,∞), which satisfies the
following hypothesis. Furthermore, it is assumed F(S) is strictly monotonically increasing
on [, +∞) with F() = .

Then the delayed SIR vector disease model can be written as

dS(t)
dt

= rS(t)
(

 –
S(t)
K

)
– βF

(
S(t)

)
I(t – τ ),

dI(t)
dt

= βF
(
S(t)

)
I(t – τ ) – (μ + γ )I(t), ()

dR(t)
dt

= γ I(t) – μR(t).

It should be noted that the general nonlinear incidence rate in system () includes some
special cases. If F(S) = S, then it becomes the classical bilinear incidence rate, which has
been investigated by Wang et al. []. If F(S) = Sq (q > ), then the incidence rate is used
in []. If F(S) = S

+αS , it becomes the saturated one, which has been discussed in [, ].
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For simplicity, we make system () non-dimensional by writing

S̃(t̃) =
S(t)
K

, Ĩ(t̃) =
I(t)
K

, R̃(t̃) =
R(t)
K

and

t̃ = βKt, F̃
(
S̃(t̃)

)
=

F(S(t))
K

, μ̃ =
μ

βK
,

γ̃ =
γ

βK
, μ̃ =

μ

βK
, τ̃ =

τ

βK
.

It is clear that F̃ is also strictly monotonically increasing on [, +∞) with F() = . For
notational simplicity, dropping the ˜ , system () can be turned into

dS(t)
dt

= rS(t)
(
 – S(t)

)
– F

(
S(t)

)
I(t – τ ),

dI(t)
dt

= F
(
S(t)

)
I(t – τ ) – (μ + γ )I(t), ()

dR(t)
dt

= γ I(t) – μR(t).

The rest of the paper is structured as follows. In Section , the nonnegativity and bound-
edness of the solutions are discussed. In Section , the stabilities of the trivial equilibrium
and the disease-free equilibrium are described. Section  deals with the existence and sta-
bility of the endemic equilibrium and the existence of a Hopf bifurcation. In Section , the
numerical simulations are performed, followed by a brief conclusion in Section .

2 Nonnegativity and boundedness of solutions
The initial conditions for system () take the form

S(θ ) = φ(θ ), I(θ ) = φ(θ ), R(θ ) = φ(θ ),

φi(θ ) ≥ , φi() > , i = , , ,
()

where (φ(θ ),φ(θ ),φ(θ )) ∈ C([–τ , ],R
+), here R


+ = {(x, x, x); xi ≥ , i = , , }. The

fundamental theory of functional differential equations [] implies for any initial con-
ditions (), system () has a unique solution (S(t), I(t), R(t)). The following theorem shows
that the solution is nonnegative and bounded for a positive initial value ().

Theorem . System () has a nonnegative and bounded solution with the initial value
(φ(θ ),φ(θ ),φ(θ )) ∈ C([–τ , ],R

+) and φi(θ ) ≥ , φi() > , i = , , .

Proof First we show that S(t) is nonnegative for all t ≥ . On the contrary, it is assumed
that there exists t >  such that S(t) =  and S′(t) < . Then the first equation of system
() implies S′(t) = , which is a contradiction. Therefore, it follows that S(t) ≥  for all
t ≥ .

By using the variation-of-constant formula and the step-by-step integration method,
integrating the second equation of system () from  to t for  < t ≤ τ , we obtain

I(t) = e–(μ+γ )t
(

φ() +
∫ t


F
(
S(ξ )φ(ξ – τ )e(μ+γ )ξ dξ

))
.
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It is easy to see that I(t) >  for all  ≤ t ≤ τ . Then integrating the second equation of
system () from τ to t for τ < t ≤ τ gives

I(t) = e–(μ+γ )t
(

I(τ ) +
∫ t

τ

F
(
S(ξ )I(ξ – τ )e(μ+γ )ξ dξ

))
.

Note that I(t) >  for all τ ≤ t ≤ τ and this process can easily be carried on. It implies
that for all t > , we have I(t) > .

From the third equation of system (), we obtain

R(t) = e–μt
(

φ() +
∫ t


γ I(ξ )eμξ dξ

)
,

which shows R(t) is nonnegative for all t > .
Next we prove that the solutions of system () are ultimately uniformly bounded for

all t ≥ . It follows from the first equation of system () that S′(t) ≤ rS(t)( – S(t)), which
implies lim supt→∞ S(t) ≤ . Then for sufficiently large t, adding the equations of system
() yields

d(S(t) + I(t) + R(t))
dt

= rS(t)
(
 – S(t)

)
– μI(t) – μR(t)

≤ rS(t) – μI(t) – μR(t)

= (r + )S(t) – S(t) – μI(t) – μR(t)

≤ (r + )S(t) – μm
(
S(t) + I(t) + R(t)

)
≤ (r + ) – μm

(
S(t) + I(t) + R(t)

)
,

where μm = min{,μ,μ}. Then we have lim supt→∞(S(t) + I(t) + R(t)) ≤ r+
μm

. Therefore,
S(t), I(t), R(t) are ultimately uniformly bounded. The proof is completed. �

3 Stabilities of the trivial equilibrium and the disease-free equilibrium
In this section, we restrict our attention to the stability of the trivial equilibrium and the
disease-free equilibrium. Let

σ =
F()

μ + γ
. ()

It will be a threshold parameter.
Before the main results are established, the following lemma will be given first.

Lemma . (see []) Consider the equation

u′(t) = au(t – τ ) – bu(t), ()

where a, b, τ > , and u(t) >  for –τ ≤ t ≤ . We have
(i) if a < b, then limt→∞ u(t) = ;

(ii) if a > b, then limt→∞ u(t) = +∞.



Liu Advances in Difference Equations  (2015) 2015:329 Page 5 of 11

The characteristic equation at an arbitrary equilibrium (S̄, Ī, R̄) is given by

(λ + μ)
[(

λ + F ′(S̄)Ī – r( – S̄)
)(

λ + μ + γ – F(S̄)e–λτ
)

+ F(S̄)F ′(S̄)Īe–λτ
]

= . ()

Theorem . The trivial equilibrium E of system () is always unstable.

Proof At the equilibrium E(, , ), the characteristic equation () reduces to

(λ + μ)(λ – r)(λ + μ + γ ) = . ()

It is obvious that () has a positive root λ = r, therefore E is unstable. �

Theorem . If σ < , the disease-free equilibrium E for system () is globally asymptot-
ically stable; and if σ > , the disease-free equilibrium E for system () is unstable.

Proof The characteristic equation () at E = (, , ) becomes

(λ + μ)(λ + r)
(
λ + μ + γ – F()e–λτ

)
= . ()

Assume that σ < . Equation () has roots –μ < , –r < , and the root of the equation
λ+μ +γ – F()e–λτ = . Let G(λ) = λ+μ +γ – F()e–λτ . Suppose Re(λ) ≥ , then G(λ) = 
implies

Re(λ) = –(μ + γ ) + F()e– Re(λ)τ cos Im(λ)τ

= (μ + γ )
[
σe– Re(λ)τ cos Im(λ)τ – 

]
≤ (μ + γ )

(
σe– Re(λ)τ – 

)
≤ (μ + γ )(σ – ) < ,

which is a contradiction. Then it follows that E is locally asymptotically stable.
Now it is sufficient to prove E is globally attractive if σ < . From the first equation for

system (), it follows that

dS(t)
dt

≤ rS(t)
(
 – S(t)

)
, ()

which implies lim supt→∞ S(t) ≤ . It indicates that for sufficiently large t, there exists a
small ε >  such that S(t) <  + ε and F( + ε) < μ + γ because of σ = F()

μ+γ
< . Then for

sufficiently large t, because of the monotonicity of the function F(S), the second equation
for system () can be rewritten as

dI(t)
dt

≤ F( + ε)I(t – τ ) – (μ + γ )I(t). ()

By F( + ε) < μ + γ and Lemma ., we get lim supt→∞ I(t) ≤ , which implies I(t) →  as
t → ∞. By the theory of asymptotic autonomous systems [], it then follows that S(t) → 
and R(t) →  as t → ∞. The first part of the proof is completed.

If σ > , then G() = (μ + γ )( – σ) < . When λ → +∞, G(λ) → +∞. Then G(λ) = 
has at least one positive root. Therefore E is unstable. �
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4 The stability of endemic equilibrium and Hopf bifurcation
In this section, we pay attention to the stability of the endemic equilibrium and Hopf bi-
furcation when σ > .

Theorem . If σ > , system () admits exactly one endemic equilibrium E∗ = (S∗, I∗, R∗),
where

F
(
S∗) = μ + γ ,  < S∗ < , I∗ =

rS∗( – S∗)
F(S∗)

, R∗ =
γ

μ
I∗.

Proof At the endemic equilibrium E∗, it follows from the second equation of system ()
that F(S∗) = μ + γ . Let H(S) = F(S) – (μ + γ ). It is obvious that H() = F() – (μ + γ ) =
–(μ + γ ) < . For all S ≥ , H(S) ≥ H() = F() – (μ + γ ) = (μ + γ )(σ – ) >  because
H(S) is monotonically increasing on the interval [, +∞) and σ > . Therefore H(S) = 
has exactly one root S∗ ∈ (, ). It is not difficult to compute the expressions I∗ and R∗ from
system () at the endemic equilibrium E∗. �

By using (), the characteristic equation at endemic equilibrium E∗ = (S∗, I∗, R∗) can be
turned into

(λ + μ)
[
λ + aλ + b – e–λτ (cλ + d)

]
= , ()

where

a = μ + γ + F ′(S∗)I∗ – r
(
 – S∗),

b = (μ + γ )
[
F ′(S∗)I∗ – r

(
 – S∗)], ()

c = F
(
S∗), d = –r

(
 – S∗)F

(
S∗).

Then the characteristic roots at E∗ are –μ and the roots of the following equation:

λ + aλ + b – e–λτ (cλ + d) = . ()

Proposition . Assume σ >  and I∗F ′(S∗) > r( – S∗), then all the roots of () have a
negative real part for τ = .

Proof If the incubation time delay τ = , () yields

λ + (a – c)λ + (b – d) = . ()

It follows from the fact (μ + γ ) = F(S∗) and from () that

b – d = (μ + γ )F ′(S∗)I∗ > ,

a – c = F ′(S∗)I∗ – r
(
 – S∗).

Since I∗F ′(S∗) > r( – S∗), it is obvious that a – c > , which completes the theorem. �

Proposition . Assume σ > , then the following statements hold.
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(i) If I∗F ′(S∗) ≥ r( – S∗), then all the roots of () have a negative real part for τ > .
(ii) If I∗F ′(S∗) < r( – S∗), then there exists a monotone increasing sequence {τn}∞n=

with τ >  such that () has a pair of imaginary roots for τ = τn (n = , , , . . .).

Proof Suppose that λ = iω, ω >  is a root of (). We substitute λ = iω into () to derive

–ω + iaω + b – (cosωτ – i sinωτ )(icω + d) = . ()

Separating the real and imaginary parts gives

– ω + b = d cosωτ + cω sinωτ ,

aω = cω cosωτ – d sinωτ .
()

Squaring and adding both equations in (), we obtain

ω +
(
a – b – c)ω + b – d = . ()

By applying (), we get

a – b – c =
[
F ′(S∗)I∗ – r

(
 – S∗)] ≥ , b – d > 

and

b + d = (μ + γ )
[
F ′(S∗)I∗ – r

(
 – S∗)].

Firstly assume that I∗F ′(S∗) ≥ r(–S∗). Then we arrive at a –b–c >  and b+d ≥ .
That is to say, () has no positive real root ω, which is a contradiction. Therefore, all the
roots of () have negative real part for τ > . The first part of the proof is completed.

Secondly suppose I∗F ′(S∗) < r(–S∗), which indicates b+d < . Therefore, there exists
a unique positive real ω satisfying (), where

ω =

√√
(a – b – c) – (b – d)(b + d) – (a – b – c)


. ()

It should be noted that λ = –iω is also a root of (). Then () has a single pair of purely
imaginary roots ±iω. Then using (), we obtain

(ac – d)ω
 + bd =

(
cω

 + d) cosωτ ,

and it follows that

τn =


ω
arccos

(ac – d)ω
 + bd

cω
 + d +

nπ

ω
, n = , , , . . . . ()

This completes the proof of the theorem. �

We give the following proposition without any proof, since the proof is similar to that
of [].



Liu Advances in Difference Equations  (2015) 2015:329 Page 8 of 11

Proposition . If σ >  and I∗F ′(S∗) < r( – S∗), then we have the transversality con-
dition

d Re(λ(τ ))
dτ

∣∣∣∣
λ=iω

> .

Summarizing the above propositions, we obtain the following theorem.

Theorem . Assume σ > , then the following statements hold.
(i) If I∗F ′(S∗) ≥ r( – S∗), then the endemic equilibrium of system () is locally

asymptotically stable for τ ≥ .
(ii) If I∗F ′(S∗) < r( – S∗), then the endemic equilibrium of system () is locally

asymptotically stable for  ≤ τ < τ and it is unstable for τ > τ.

Remark . If both σ >  and I∗F ′(S∗) < r( – S∗) hold true, system () undergoes a
Hopf bifurcation at the endemic equilibrium E∗ when τ crosses τn (n = , , . . .).

5 Numerical results
In this section, we consider the numerical results of system () with the saturated inci-
dence rate of the form F(S) = S

+αS . That is to say, we give the numerical simulations of
system (). In system (), we set β = ., K = , r = μ = μ = ., and α = .. Then we
get the non-dimensional quantities r̃ = μ̃ = μ̃ = ., α̃ = ., and t̃ = βKt = t. Dropping
the ˜ for convenience, we obtain the following non-dimensional system corresponding to
system ():

dS(t)
dt

= rS(t)
(
 – S(t)

)
–

S(t)
 + αS(t)

I(t – τ ),

dI(t)
dt

=
S(t)

 + αS(t)
I(t – τ ) – (μ + γ )I(t), ()

dR(t)
dt

= γ I(t) – μR(t).

Therefore, we have r = μ = μ = . and α = .. If we choose γ = ., the endemic
equilibrium of system () is E∗ = (., ., .), σ = ., and τ = .
by applying (). It should also be noted that I∗F ′(S∗) = . and r( – S∗) = .,
which imply the endemic equilibrium E∗ is conditionally stable. Furthermore, we can see
that the endemic equilibrium E∗ is asymptotical stable if the time delay τ =  < τ = .
(see Figure ), while the endemic equilibrium E∗ loses its stability, Hopf bifurcation occurs,
and system () exhibits a stable period solution if τ = . > τ (see Figure ).

If γ is chosen as . and other parameters are set as in Figure , then the endemic
equilibrium is E∗ = (., ., .), σ = ., and I∗F ′(S∗) = . > r( –
S∗) = ., which imply the condition (i) of Theorem . is satisfied. Moreover, from
Figure , we can see the endemic equilibrium E∗ is globally asymptotically stable although
τ = . > τ.

6 Conclusion
In this paper, a delayed SIR vector disease model with incubation time delay is established,
in which the growth of susceptible individuals follows the logistic function in the absence
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Figure 1 Temporal behavior of the infective individuals and corresponding three-dimensional phase
for system (22) with σ0 = 4.9505 and I∗F′(S∗) = 0.0795 < 2r(1 – 2S∗) = 0.1198. The initial value is set to be
(0.9, 0.3, 0.2) and τ = 1 < τ0 = 2.0288.

Figure 2 Temporal behavior of the infective individuals and corresponding three-dimensional phase
for system (22) with σ0 = 4.9505 and I∗F′(S∗) = 0.0795 < 2r(1 – 2S∗) = 0.1198. The initial value is set to be
(0.35, 0.3, 0.2) and τ = 2.5 > τ0 = 2.0288.

Figure 3 Plots of the infective individuals and corresponding three-dimensional phase for system
(22) with σ0 = 2.2002 and I∗F′(S∗) = 0.0541 > 2r(1 – 2S∗) = 0.0192. The initial value is set to be
(0.4, 0.3, 0.25) and τ = 2.5 > τ0 = 2.0288. The values of parameters are as in Figure 1 but γ = 0.35.

of disease and the more general form of the nonlinear incidence rate is considered. The
stability of the equilibria has been discussed by analyzing the roots of characteristic equa-
tions and applying the theory of asymptotic autonomous systems. It is shown that the
trivial equilibrium is always unstable. The stability of the disease-free equilibrium is com-
pletely determined by the threshold parameter σ: the disease-free equilibrium is globally
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asymptotically stable if σ <  while it is unstable if σ > . Moreover, if σ > , there exists a
unique endemic equilibrium. It is found that I∗F ′(S∗) = r( – S∗) is the condition which
determines the absolute stability or conditional stability of the endemic equilibrium. To be
specific, the endemic equilibrium is absolutely stable if I∗F ′(S∗) ≥ r( – S∗) holds true,
while it is conditionally stable if I∗F ′(S∗) < r( – S∗) is satisfied. Furthermore, there is a
certain threshold time value τ such that the endemic equilibrium is locally asymptotically
stable when  < τ < τ, whereas it is unstable when τ > τ. It is worth noting that, if σ > 
and I∗F ′(S∗) < r( – S∗), the system exhibits a Hopf bifurcation when the time delay τ

crosses τn (n = , , . . .).
References [, , , , ] have discussed the delayed SIR vector disease models with

nonlinear incidence functions. But the growth of the number of susceptible individuals is
governed by a constant rate rather than the logistic function. They have proved that the
endemic equilibrium is globally asymptotically stable for any delay and the model does
not exhibit a Hopf bifurcation, which implies that the incubation delay does not cause
any periodic oscillations. On the other hand, [, , ] have also investigated the delayed
SIR vector disease models with the logistic growth of susceptible individuals. They have
found that the endemic equilibrium is unstable and a Hopf bifurcation occurs under some
conditions for some delays. For example, Wang et al. [] investigated system () with the
incidence function F(S) = S. They have proved if R > , the endemic equilibrium is stable
when the delay τ < τ is satisfied, while the endemic equilibrium is unstable and the model
undergoes Hopf bifurcation when τ = τn, n = , , , . . . . Therefore, the logistic growth of
susceptible individuals should be more responsible for the instability of the endemic equi-
librium, and Hopf bifurcation may be the result of the logistic growth of susceptible indi-
viduals.

Wang et al. [] analyzed system () for the incidence function F(S) = S. Zhang et al.
[] also formulated system () for the incidence function F(S) = S

+αS . As a matter of fact,
two systems in the above-mentioned papers could be studied as special cases for system
(). It should be pointed out here that the threshold parameter σ defined in the present
paper is the same as R derived in [] and is equivalent to R given in []. Furthermore,
our results for the stability of equilibria extend the results in [] and []. The numerical
simulations performed further illustrate the theoretical results.
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