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Abstract
By employing a generalized Riccati transformation and integral averaging technique,
two Philos-type criteria are obtained which ensure that every solution of a class of
third-order neutral differential equations with distributed deviating arguments is
either oscillatory or converges to zero. These results extend and improve related
criteria reported in the literature. Two illustrative examples are provided.
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1 Introduction
Differential equations with distributed deviating arguments are often used for model-
ing various problems arising in the engineering and natural sciences. Therefore, analy-
sis of qualitative properties of solutions to such equations is crucial for applications; see
Wang []. On the basis of these background details, we investigate the oscillation and
asymptotic behavior of a third-order neutral differential equation with distributed deviat-
ing arguments

[
r(t)

([
x(t) +

∫ b

a
p(t, ξ )x

(
τ (t, ξ )

)
dξ

]′′)α]′
+

∫ d

c
q(t, ξ )f

(
x
(
σ (t, ξ )

))
dξ = ,

t ≥ t, (.)

where α ≥  is the ratio of odd positive integers. Throughout, we suppose that the follow-
ing assumptions hold.

(A) r(t) ∈ C([t,∞), (,∞)), r′(t) ≥ ,
∫ ∞

t
r–/α(s) ds = ∞;

(A) p(t, ξ ) ∈ C([t,∞) × [a, b], [,∞)),  ≤ ∫ b
a p(t, ξ ) dξ ≤ P < ;

(A) τ (t, ξ ) ∈ C([t,∞) × [a, b], R) is a nondecreasing function for ξ satisfying τ (t, ξ ) ≤ t
and lim inft→∞ τ (t, ξ ) = ∞ for ξ ∈ [a, b];

(A) q(t, ξ ) ∈ C([t,∞) × [c, d], [,∞));
(A) σ (t, ξ ) ∈ C([t,∞) × [c, d], R) is a nondecreasing function for ξ satisfying σ (t, ξ ) ≤ t

and lim inft→∞ σ (t, ξ ) = ∞ for ξ ∈ [c, d];
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(A) f (x) ∈ C(R, R) and there exists a positive constant K such that f (x)/xα ≥ K for all x �= .

Define a new function z(t) by

z(t) = x(t) +
∫ b

a
p(t, ξ )x

(
τ (t, ξ )

)
dξ .

By a solution of (.) we mean a nontrivial function x(t) ∈ C([Tx,∞), R), Tx ≥ t, which
has the properties z(t) ∈ C([Tx,∞), R) and r(t)(z′′(t))α ∈ C([Tx,∞), R) for Tx ≥ t. Our
attention is restricted to those solutions of (.) which satisfy sup{|x(t)| : t ≥ T} >  for any
T ≥ Tx. A solution x(t) of (.) is said to be oscillatory on [Tx,∞) if it is neither eventually
positive nor eventually negative. Otherwise it is called nonoscillatory. Equation (.) is
called oscillatory if all its solutions are oscillatory.

Recently, there has been much research activity concerning the oscillation and asymp-
totic properties of various classes of differential equations; see, e.g., [–] and the refer-
ences cited therein. So far, there are few results dealing with the asymptotic behavior of
third-order neutral differential equations with distributed deviating arguments, we refer
the reader to [, ]. The third-order neutral differential equation

[
r(t)

([
x(t) + p(t)x

(
τ (t)

)]′′)α]′ + q(t)f
(
x
(
σ (t)

))
= 

and its special cases have been studied by Baculíková and Džurina [, ], Candan [], Grace
et al. [], Jiang and Li [], and Li et al. []. Using Riccati transformation, Zhang et al. []
considered a class of third-order neutral differential equations

[
r(t)

(
x(t) +

∫ b

a
p(t, ξ )x

(
τ (t, ξ )

)
dξ

)′′]′
+

∫ d

c
q(t, ξ )f

(
x
(
σ (t, ξ )

))
dξ = , (.)

and they obtained several Philos-type (see []) criteria for (.), whereas Şenel and Utku
[] studied (.).

In the study of oscillation of differential equations, there are two techniques which are
used to reduce the higher-order equations to the first-order Riccati equations (or inequal-
ities). One of them is the Riccati transformation technique which has been recently ex-
tended to dynamic equations on time scales; see, e.g., Şenel and Utku []. The other one
is termed the generalized Riccati transformation technique; we refer the reader to Li [],
Li et al. [], Li and Saker [], and the related references cited therein. In particular, Li
[] used the generalized Riccati substitution and established several oscillation criteria
for a second-order ordinary differential equation

(
r(t)x′(t)

)′ + q(t)x(t) = .

Furthermore, he proved that the equation

(

t

x′(t)
)′

+

t x(t) = 

is oscillatory and showed that the results established by the Riccati transformation tech-
nique cannot be applied.
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In the special case when α = , (.) reduces to (.). Now the following question arises.
Could we obtain new Philos-type oscillation criteria for (.) by using a generalized Riccati
transformation which differs from that of []? Motivated by Li [], Li et al. [], and Li
and Saker [], our purpose in this paper is to give a positive answer to this question. In
Section , four lemmas are given to prove the main results. In Section , we establish two
Philos-type theorems for (.). In Section , two examples and some conclusions are pre-
sented to illustrate the main results. As customary, all functional inequalities considered
in this paper are supposed to hold for all t large enough.

2 Some lemmas
Lemma . Suppose that conditions (A)-(A) are satisfied and let x(t) be a positive solu-
tion of (.). Then z(t) has only one of the following two properties:

(I) z(t) > , z′(t) > , z′′(t) > , z′′′(t) ≤ ;
(II) z(t) > , z′(t) < , z′′(t) > , z′′′(t) ≤ ,

for t ≥ t, where t ≥ t is sufficiently large.

Proof Assume that x(t) is a positive solution of (.). Then there exists a t ≥ t such that,
for t ≥ t,

x(t) > , x
(
τ (t, ξ )

)
> , ξ ∈ [a, b], and x

(
σ (t, ξ )

)
> , ξ ∈ [c, d].

From (.) and the definition of z(t), we have z(t) >  and

[
r(t)

(
z′′(t)

)α]′ = –
∫ d

c
q(t, ξ )f

(
x
(
σ (t, ξ )

))
dξ ≤ .

Thus r(t)(z′′(t))α is nonincreasing and of one sign. Therefore, z′′(t) is also of one sign and
so we have two possibilities: z′′(t) <  or z′′(t) >  for t ≥ t ≥ t. We assert that z′′(t) > 
for t ≥ t. Otherwise, there exists a constant M >  such that, for t ≥ t,

z′′(t) ≤ –M

α


r 

α (t)
< .

Integrating this inequality from t to t, we obtain

z′(t) ≤ z′(t) – M

α

∫ t

t


r 

α (s)
ds.

Letting t → ∞ and using (A), we get limt→∞ z′(t) = –∞. Thus z′(t) <  eventually. But
conditions z′′(t) <  and z′(t) <  imply that z(t) < , which contradicts our assumption
z(t) > . Hence, z′′(t) >  for t ≥ t. Furthermore, we have, for t ≥ t,

[
r(t)

(
z′′(t)

)α]′ = r′(t)
(
z′′(t)

)α + αr(t)
(
z′′(t)

)α–z′′′(t) ≤ .

This yields z′′′(t) ≤  for t ≥ t due to condition (A). Therefore, z(t) has only one of the
two properties (I) and (II). This completes the proof. �
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Lemma . Let x(t) be a positive solution of (.) and assume that corresponding z(t) has
the property (II). If

∫ ∞

t

∫ ∞

v

[


r(u)

∫ ∞

u

∫ d

c
q(s, ξ ) dξ ds

] 
α

du dv = ∞, (.)

then limt→∞ x(t) = .

Proof Let x(t) be a positive solution of (.). Since z(t) has the property (II), there exists a
finite constant l ≥  such that limt→∞ z(t) = l ≥ . We prove that l = . Assume now that
l > . Then we have l + ε > z(t) > l for all ε > . Choose  < ε < l( – P)/P. It is easy to verify
that

x(t) = z(t) –
∫ b

a
p(t, ξ )x

(
τ (t, ξ )

)
dξ

≥ l –
∫ b

a
p(t, ξ )z

(
τ (t, ξ )

)
dξ ≥ l – z

(
τ (t, a)

)∫ b

a
p(t, ξ ) dξ

≥ l – P(l + ε) = N(l + ε) > Nz(t), (.)

where N = (l – P(l + ε))/(l + ε) > . Using (A) and (.), we conclude that

[
r(t)

(
z′′(t)

)α]′ ≤ –KNα

∫ d

c
q(t, ξ )zα

(
σ (t, ξ )

)
dξ .

Noting that z(t) has the property (II) and using (A), we have

[
r(t)

(
z′′(t)

)α]′ ≤ –KNαzα
(
σ (t, d)

)∫ d

c
q(t, ξ ) dξ = –q(t)zα

(
σ(t)

)
, (.)

where q(t) = KNα
∫ d

c q(t, ξ ) dξ and σ(t) = σ (t, d). Integrating inequality (.) from t to ∞,
we obtain

r(t)
(
z′′(t)

)α ≥
∫ ∞

t
q(s)zα

(
σ(s)

)
ds.

By virtue of z(σ(t)) ≥ l,

z′′(t) ≥ l
[


r(t)

∫ ∞

t
q(s) ds

] 
α

. (.)

Integrating inequality (.) from t to ∞, we have

–z′(t) ≥ l
∫ ∞

t

[


r(u)

∫ ∞

u
q(s) ds

] 
α

du.

Integrating the latter inequality from t to ∞, we obtain

z(t) ≥ l
∫ ∞

t

∫ ∞

v

[


r(u)

∫ ∞

u
q(s) ds

] 
α

du dv,
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which contradicts (.). Hence l =  and limt→∞ z(t) = . Then it follows from  ≤ x(t) ≤
z(t) that limt→∞ x(t) = . The proof is complete. �

Lemma . ([], Lemma ) Assume that u(t) > , u′(t) > , and u′′(t) <  for t ≥ t. If
σ (t) ∈ C([t,∞), [,∞)), σ (t) ≤ t, and limt→∞ σ (t) = ∞, then, for every β ∈ (, ), there
exists a Tβ ≥ t such that, for t ≥ Tβ ,

u
(
σ (t)

) ≥ β
σ (t)

t
u(t).

Lemma . Assume that u(t) > , u′(t) > , u′′(t) > , and u′′′(t) ≤  for t ≥ t. Then, for
every γ ∈ (, ), there exists a Tγ ≥ t such that, for t ≥ Tγ ,

u(t) ≥ 

γ tu′(t).

Proof The proof is similar to that of Baculíková and Džurina ([], Lemma ), and hence it
is omitted. �

3 Main results
Let

D =
{

(t, s) ∈ R : t ≥ s ≥ t
}

and D =
{

(t, s) ∈ R : t > s ≥ t
}

.

The function H(t, s) ∈ C(D, R) is said to belong to the class X (denoted by H ∈ X) if it
satisfies

(i) H(t, t) = , t ≥ t, H(t, s) > , (t, s) ∈ D;
(ii) ∂H(t, s)/∂s ≤ , there exist ρ(t) ∈ C([t,∞), (,∞)), b(t) ∈ C([t,∞), [,∞)), and

h(t, s) ∈ C(D, R) satisfying

–
∂H(t, s)

∂s
= H(t, s)

[
ρ ′(s)
ρ(s)

+ (α + )b

α (s)

]
+ h(t, s).

Theorem . Assume that conditions (A)-(A) and (.) are satisfied. If there exists a
function H ∈ X such that, for some β ∈ (, ) and γ ∈ (, ),

lim sup
t→∞


H(t, t)

∫ t

t

[
H(t, s)ψ(s) –


(α + )α+

ρ(s)r(s)|h(t, s)|α+

Hα(t, s)

]
ds = ∞, (.)

where σ(t) = σ (t, c) and

ψ(t) = K( – P)αρ(t)
(



βγ

σ 
 (t)
t

)α ∫ d

c
q(t, ξ ) dξ

+ ρ(t)r(t)b+ 
α (t) – ρ(t)

(
r(t)b(t)

)′, (.)

then every solution x(t) of (.) is either oscillatory or satisfies limt→∞ x(t) = .

Proof Assume that (.) has a nonoscillatory solution x(t). Without loss of generality, we
may assume that x(t) is an eventually positive solution of (.). By Lemma ., we observe
that z(t) satisfies either (I) or (II) for t ≥ t. We consider each of two cases separately.
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Suppose first that z(t) has the property (I). Then we obtain

x(t) = z(t) –
∫ b

a
p(t, ξ )x

(
τ (t, ξ )

)
dξ

≥ z(t) –
∫ b

a
p(t, ξ )z

(
τ (t, ξ )

)
dξ ≥ z(t) – z

(
τ (t, b)

)∫ b

a
p(t, ξ ) dξ

≥
(

 –
∫ b

a
p(t, ξ ) dξ

)
z(t) ≥ ( – P)z(t). (.)

Using (A), (A), and (.), we have

[
r(t)

(
z′′(t)

)α]′ ≤ –K
∫ d

c
q(t, ξ )xα

(
σ (t, ξ )

)
dξ

≤ –K( – P)α
∫ d

c
q(t, ξ )zα

(
σ (t, ξ )

)
dξ

≤ –K( – P)αzα
(
σ (t, c)

)∫ d

c
q(t, ξ ) dξ = –q(t)zα

(
σ(t)

)
, (.)

where q(t) = K( – P)α
∫ d

c q(t, ξ ) dξ and σ(t) = σ (t, c). Define a generalized Riccati trans-
formation ω(t) by

ω(t) = ρ(t)
[

r(t)(z′′(t))α

(z′(t))α
+ r(t)b(t)

]
, t ≥ t. (.)

Then we have ω(t) >  and

ω′(t) = ρ ′(t)
[

r(t)(z′′(t))α

(z′(t))α
+ r(t)b(t)

]
+ ρ(t)

[
r(t)(z′′(t))α

(z′(t))α
+ r(t)b(t)

]′

=
ρ ′(t)
ρ(t)

ω(t) + ρ(t)
(
r(t)b(t)

)′ + ρ(t)
[

r(t)(z′′(t))α

(z′(t))α

]′

=
ρ ′(t)
ρ(t)

ω(t) + ρ(t)
(
r(t)b(t)

)′ + ρ(t)
[r(t)(z′′(t))α]′

(z′(t))α
– αρ(t)r(t)

(
z′′(t)
z′(t)

)α+

. (.)

By virtue of (.), we conclude that

z′′(t)
z′(t)

=


r 
α (t)

(
ω(t)
ρ(t)

– r(t)b(t)
) 

α

. (.)

Combining (.), (.), and (.), we have

ω′(t) ≤ ρ ′(t)
ρ(t)

ω(t) + ρ(t)
(
r(t)b(t)

)′ – ρ(t)q(t)
zα(σ(t))
(z′(t))α

–
αρ(t)
r 

α (t)

(
ω(t)
ρ(t)

– r(t)b(t)
)+ 

α

. (.)

Using Lemma ., for every γ ∈ (, ), there exists a Tγ ≥ t such that, for t ≥ Tγ ,

z
(
σ(t)

) ≥ 

γ σ(t)z′(σ(t)

)
. (.)
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From Lemma ., for every β ∈ (, ), there exists a Tβ ≥ Tγ such that, for t ≥ Tβ ,


z′(t)

≥ βσ(t)
tz′(σ(t))

. (.)

Define

A∗ =
ω(t)
ρ(t)

and B∗ = r(t)b(t).

Using the inequality (see [])

(
A∗)+ 

α –
(
A∗ – B∗)+ 

α ≤ (
B∗) 

α

[(
 +


α

)
A∗ –


α

B∗
]

, A∗B∗ ≥ ,α =
odd
odd

≥ ,

we have

(
ω(t)
ρ(t)

– r(t)b(t)
)+ 

α

≥ ω+ 
α (t)

ρ+ 
α (t)

+

α

(
r(t)b(t)

)+ 
α –

(
 +


α

)
(r(t)b(t)) 

α

ρ(t)
ω(t). (.)

Using inequalities (.)-(.), for t ≥ T ≥ Tβ , we have

ω′(t) ≤ ρ(t)
(
r(t)b(t)

)′ – ρ(t)q(t)
(



βγ

σ 
 (t)
t

)α

– ρ(t)r(t)b+ 
α (t)

+
[

ρ ′(t)
ρ(t)

+ (α + )b

α (t)

]
ω(t) –

α

(ρ(t)r(t)) 
α

ω+ 
α (t)

= –ψ(t) + A(t)ω(t) – B(t)ω+ 
α (t), (.)

where ψ(t) is defined as in (.), A(t) = (ρ ′(t)/ρ(t))+(α+)b/α(t), and B(t) = α/(ρ(t)r(t))/α .
Multiplying inequality (.) by H(t, s) and integrating the resulting inequality from T to
t, we have

∫ t

T
H(t, s)ψ(s) ds ≤

∫ t

T
H(t, s)

(
–ω′(s) + A(s)ω(s) – B(s)ω+ 

α (s)
)

ds

= H(t, T)ω(T) +
∫ t

T

(
∂H(t, s)

∂s
+ H(t, s)A(s)

)
ω(s) ds

–
∫ t

T
H(t, s)B(s)ω+ 

α (s) ds

= H(t, T)ω(T) –
∫ t

T
h(t, s)ω(s) ds –

∫ t

T
H(t, s)B(s)ω+ 

α (s) ds

≤ H(t, T)ω(T) +
∫ t

T

[∣∣h(t, s)
∣∣ω(s) – H(t, s)B(s)ω+ 

α (s)
]

ds. (.)

Letting C = |h(t, s)|, D = H(t, s)B(s), and using the inequality (see [])

Cω – Dω+ 
α ≤ αα

(α + )α+
Cα+

Dα
, D > ,
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we obtain

∫ t

T
H(t, s)ψ(s) ds ≤ H(t, T)ω(T) +

∫ t

T


(α + )α+

ρ(s)r(s)|h(t, s)|α+

Hα(t, s)
ds.

Hence


H(t, T)

∫ t

T

[
H(t, s)ψ(s) –


(α + )α+

ρ(s)r(s)|h(t, s)|α+

Hα(t, s)

]
ds ≤ ω(T) (.)

for all sufficiently large t, which contradicts (.).
Assume now that z(t) has the property (II). By Lemma ., we have limt→∞ x(t) = . The

proof is complete. �

It may happen that assumption (.) in Theorem . fails to hold. Consequently, Theo-
rem . cannot be applied. The following theorem provides a new oscillation criterion for
(.).

Theorem . Let conditions (A)-(A) and (.) be satisfied. Assume that there exists a
function H ∈ X such that

 < inf
s≥t

{
lim inf

t→∞
H(t, s)
H(t, t)

}
≤ ∞ (.)

and

lim sup
t→∞


H(t, t)

∫ t

t

ρ(s)r(s)|h(t, s)|α+

Hα(t, s)
ds < ∞ (.)

hold. If there exists a function ϕ(t) ∈ C([t,∞), R) such that, for all T ≥ t,

lim sup
t→∞

∫ t

t

ρ– 
α (s)r– 

α (s)
[
ϕ+(s)

] α+
α ds = ∞ (.)

and

lim sup
t→∞


H(t, T)

∫ t

T

[
H(t, s)ψ(s) –


(α + )α+

ρ(s)r(s)|h(t, s)|α+

Hα(t, s)

]
ds ≥ ϕ(T), (.)

where ψ(t) is defined by (.) and ϕ+(t) = max{ϕ(t), }, then the conclusion of Theorem .
remains intact.

Proof Assuming that z(t) has the property (I) and proceeding as in the proof of Theo-
rem ., we have (.) and (.) for all t > T . Hence, by virtue of (.),

lim sup
t→∞


H(t, T)

∫ t

T

[
H(t, s)ψ(s) –


(α + )α+

ρ(s)r(s)|h(t, s)|α+

Hα(t, s)

]
ds ≤ ω(T) (.)

for all t > T . Thus, by (.) and (.), we have

ϕ(T) ≤ ω(T) (.)
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and

lim sup
t→∞


H(t, T)

∫ t

T
H(t, s)ψ(s) ds ≥ ϕ(T). (.)

From (.), we obtain

∫ ∞

T
ρ– 

α (s)r– 
α (s)ω

α+
α (s) ds ≥

∫ ∞

T
ρ– 

α (s)r– 
α (s)

[
ϕ+(s)

] α+
α ds (.)

and hence, by (.),

∫ ∞

T
ρ– 

α (s)r– 
α (s)ω

α+
α (s) ds = ∞. (.)

To complete the proof, we show that (.) does not hold. Let

u(t) =
α

H(t, T)

∫ t

T
H(t, s)ρ– 

α (s)r– 
α (s)ω

α+
α (s) ds

and

v(t) =


H(t, T)

∫ t

T

∣∣h(t, s)
∣∣ω(s) ds

for all t > T . It follows from (.) and (.) that

lim inf
t→∞

[
u(t) – v(t)

] ≤ ω(T) – lim sup
t→∞


H(t, T)

∫ t

T
H(t, s)ψ(s) ds

≤ ω(T) – ϕ(T) < ∞. (.)

Now by (.), there exists a positive constant ξ satisfying

inf
s≥t

{
lim inf

t→∞
H(t, s)
H(t, t)

}
> ξ > . (.)

Let ξ be an any positive constant. It follows from (.) that, for all t ≥ T,

∫ t

T
ρ– 

α (s)r– 
α (s)ω

α+
α (s) ds ≥ ξ

αξ
,

where T > T is sufficiently large. Therefore, for all t ≥ T,

u(t) =
α

H(t, T)

∫ t

T
H(t, s) d

(∫ s

T
ρ– 

α (ζ )r– 
α (ζ )ω

α+
α (ζ ) dζ

)

≥ α

H(t, T)

∫ t

T

(
–

∂H(t, s)
∂s

)(∫ s

T
ρ– 

α (ζ )r– 
α (ζ )ω

α+
α (ζ ) dζ

)
ds

≥ ξ

ξH(t, T)

∫ t

T

(
–

∂H(t, s)
∂s

)
ds =

ξH(t, T)
ξH(t, T)

≥ ξH(t, T)
ξH(t, t)

.
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By (.), there exists a T ≥ T such that H(t, T)/H(t, t) ≥ ξ for all t ≥ T. Thus u(t) ≥ ξ

for all t ≥ T. Since ξ is an arbitrary constant,

lim
t→∞ u(t) = ∞. (.)

Consider now a sequence {ti}∞i= in (T ,∞) with limi→∞ ti = ∞ such that

lim
i→∞

[
u(ti) – v(ti)

]
= lim inf

t→∞
[
u(t) – v(t)

]
< ∞.

By virtue of (.), there exist a natural number N and a constant L >  such that, for all
i > N,

u(ti) – v(ti) ≤ L. (.)

It follows from (.) that

lim
i→∞ u(ti) = ∞. (.)

Combining (.) and (.), we conclude that

lim
i→∞ v(ti) = ∞ (.)

and, for i large enough,

v(ti)
u(ti)

>



. (.)

From (.) and (.), we obtain

lim
i→∞

vα+(ti)
uα(ti)

= ∞. (.)

On the other hand, by Hölder’s inequality, we have

v(ti) ≤
{

α

H(ti, T)

∫ ti

T
H(ti, s)ρ– 

α (s)r– 
α (s)ω

α+
α (s) ds

} α
α+

×
{


ααH(ti, T)

∫ ti

T

ρ(s)r(s)|h(ti, s)|α+

Hα(ti, s)
ds

} 
α+

.

Therefore, for all i large enough,

vα+(ti)
uα(ti)

≤ 
ααξH(ti, t)

∫ ti

t

ρ(s)r(s)|h(ti, s)|α+

Hα(ti, s)
ds. (.)

From (.) and (.), we deduce that

lim
i→∞


H(ti, t)

∫ ti

t

ρ(s)r(s)|h(ti, s)|α+

Hα(ti, s)
ds = ∞,
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so

lim
t→∞


H(t, t)

∫ t

t

ρ(s)r(s)|h(t, s)|α+

Hα(t, s)
ds = ∞,

which contradicts (.). Therefore, (.) cannot hold. By virtue of (.), we get

∫ ∞

T
ρ– 

α (s)r– 
α (s)

[
ϕ+(s)

] α+
α ds < ∞,

which contradicts (.).
Suppose that z(t) has the property (II). By Lemma ., we obtain limt→∞ x(t) = . This

completes the proof. �

4 Examples and conclusions
Example . For t ≥ , consider a third-order differential equation

[
t

([
x(t) +

∫ 




ξ

t x
(

t + ξ



)
dξ

]′′)]′
+

∫ 



qξ

t x
(

t + ξ



)
dξ = , (.)

where q >  is a constant. Let α = , a = /, b = , c = , d = , r(t) = t, p(t, ξ ) = ξ /(t),
τ (t, ξ ) = (t + ξ )/, q(t, ξ ) = qξ /t, and σ (t, ξ ) = (t + ξ )/. Then

∫ b

a
p(t, ξ ) dξ =

∫ 




ξ

t dξ =


t ≤ 


and σ(t) = σ (t, ) =
t


.

It is not difficult to verify that

∫ ∞




s 


ds = ∞ and

∫ ∞



∫ ∞

v

[


u

∫ ∞

u

∫ 



qξ

s dξ ds
] 


du dv = ∞.

Therefore, the conditions (A)-(A) and (.) are satisfied. Furthermore, we choose K = ,
P = /, ρ(t) = t, b(t) = , and H(t, s) = (t – s). Then h(t, s) = (t – s)( – ts–),

ψ(t) =
(

 –



)

t
(

βγ ( t
 )

t

) ∫ 



qξ

t dξ =
q(βγ )

t
,

and

lim sup
t→∞


H(t, t)

∫ t

t

[
H(t, s)ψ(s) –


(α + )α+

ρ(s)r(s)|h(t, s)|α+

Hα(t, s)

]
ds

= lim sup
t→∞


(t – )

∫ t



[
q(βγ )


(t – s) 

s
–




s( – ts–)
]

ds

= lim sup
t→∞


(t – )

∫ t



[
q(βγ )


(
ts– – t + ts – ts + s)

–
(




ts– –



t +




ts –



ts +



s
)]

ds = ∞,
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if q > /(βγ ) for some β ∈ (, ) and γ ∈ (, ). Hence, by Theorem ., every solution
x(t) of (.) is either oscillatory or converges to zero as t → ∞ in the case where q >
,,/(,) ≈ . (by letting β = γ = /). Observe that the results reported in
[] cannot be applied to (.) since α = .

Example . For t ≥ , consider a third-order differential equation

[
x(t) +

∫ 




ξ

t x
(

t + ξ



)
dξ

]′′′
+

∫ 



qξ

t x
(

t + ξ



)
dξ = , (.)

where q >  is a constant. Let α = , a = /, b = , c = , d = , r(t) = , p(t, ξ ) = ξ /(t),
τ (t, ξ ) = (t + ξ )/, q(t, ξ ) = qξ /t, and σ (t, ξ ) = (t + ξ )/. Then

∫ b

a
p(t, ξ ) dξ =

∫ 




ξ

t dξ =


t ≤ 


and σ(t) = σ (t, ) =
t


.

It is easy to verify that

∫ ∞




r(s)

ds = ∞ and
∫ ∞



∫ ∞

v

[∫ ∞

u

∫ 


q(s, ξ ) ds

]
du dv = ∞.

Therefore, the conditions (A)-(A) and (.) are satisfied. Furthermore, we choose K = ,
P = /, ρ(t) = t, b(t) = /t, and H(t, s) = (t – s). Then h(t, s) = (t – s)( – ts–),

ψ(t) =
(

 –



)
t
(

βγ ( t
 )

t

)∫ 



qξ

t dξ + t
(


t

)

– t
(


t

)′
=

(



qβγ + 
)


t

,

and

lim sup
t→∞


H(t, t)

∫ t

t

[
H(t, s)ψ(s) –


(α + )α+

ρ(s)r(s)|h(t, s)|α+

Hα(t, s)

]
ds

= lim sup
t→∞


(t – )

∫ t



[(



qβγ + 
)

(t – s) 
s

–



s
(
 – ts–)

]
ds

= lim sup
t→∞


(t – )

∫ t



[(



qβγ + 
)(

ts– – t + s
)

–



(
s – t + ts–)]ds

= ∞,

if q > /(βγ ) for some β ∈ (, ) and γ ∈ (, ). Therefore, by Theorem ., every solution
x(t) of (.) is either oscillatory or converges to zero as t → ∞ in the case where q >
/ ≈ . (by letting β = γ = /).

Remark . With an appropriate choice of the function H , one can derive from Theorems
. and . a number of oscillation criteria for (.). For example, consider a Kamenev-type
function H(t, s) by H(t, s) = (t – s)n–, (t, s) ∈ D, where n >  is an integer. The remainder of
the details are left to the reader.

Remark . Theorems . and . reported in this paper reduce to ([], Theorems .
and .), respectively, when letting α =  and b(t) = .
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Remark . Note that Theorems . and . ensure that every solution x(t) to (.) is
either oscillatory or satisfies limt→∞ x(t) =  and, unfortunately, these results cannot dis-
tinguish solutions with different behaviors. Since the sign of the derivative z′(t) is not fixed,
it is not easy to establish sufficient conditions which guarantee that all solutions to (.)
are just oscillatory and do not satisfy limt→∞ x(t) = . Neither is it possible to use the tech-
nique exploited in this paper for proving that all solutions of (.) satisfy limt→∞ x(t) = .
Hence, these two interesting problems are left for future research.

Remark . It would be interesting to find a different method to investigate (.) when
 < α < . It would also be of interest to find another method to study (.) in the case
where

∫ ∞
t

r–/α(s) ds < ∞.
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