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1 Introduction

Let p be a fixed odd prime number. Throughout this paper, Z,, Q, and C, will denote
the ring of p-adic integers, the field of p-adic rational numbers and the completion of
the algebraic closure of QQ,. Let v, be the normalized exponential valuation of C, with
Iply = pr® = 1%. Let UID(Zy) be the space of uniformly differentiable functions on Z,. For
f € UD(Z,,), the bosonic p-adic integral on Z, is defined by

I(f) = i Sfx) dpo(x)
N1
= lim Z(;f(x)uo(x +p"Z,)
PN-1
"l S0 h

Thus, by (1.1), we get

Io(fi) = L (f) +f'(0), wherefi(x) =f(x +1) (see [1-4]). (1.2)
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The fermionic p-adic integral on Z,, is defined by Kim as

Li(f) = . S dp_(x)
N1

= lim Zf(x)ﬂ—l(x +PNZP)
x=0

N—oo

N1

= lim ;Oﬂac)(—l) :
Thus, from (1.3), we have

Ly(f) = ~La(f) +2/(0)  (see [1]).

From (1.2) and (1.4), we can derive the following equations:

n-1 n-1
Io(fu) = Io(f) = E (), 1_1(ﬂ1)+(—1)”‘11_1(f)=2§ f(),
=0 =0

where f,,(x) = f(x + ), f'()) = L2, (see [1, 4, 5]).
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1.3)

(1.4)

(1.5)

As is well known, the Bernoulli polynomials of order r (€ N) are defined by the generat-

ing function

t r o0 tn
At ML
(et_1) € = ;:0 B, (x)n! (see [1, 6]).

(1.6)

When x = 0, BS,’) = BEI)(O) are called the Bernoulli numbers of order r. In particular, if

r=1,B,(x) = BS,D(x) are called the ordinary Bernoulli polynomials.
The Euler polynomials of order r are also given by the generating function

2 r [o¢] () t"
Xt _ r
(et+1) e¥ = EOE,, (x)—n! (see [1, 6]).
=

(1.7)

When x = 0, EY) = E2(0) are called the Euler numbers of order . In particular, if r = 1,

then E,(x) = E;l)(x) are called the ordinary Euler polynomials.
The Daehee polynomials of order r are defined by the generating function

(log(l +1)

; )r(1+t)x=;ij>(x)g (see [7]).

(1.8)

When x = 0, D = DY(0) are called the Daehee numbers of order r. In particular, if 7 = 1,
then D,(x) = D(y,l)(x) are called the ordinary Daehee polynomials. Now, we introduce the

Changhee polynomials of order r given by the generating function

(1.9)
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When x = 0, Ch") = Chff)(O) are called the Changhee numbers of order r. In particular,
if r =1, then Chy,(x) = Chs)(x) are called the ordinary Changhee polynomials.

Recently, Korobov introduced the special polynomials given by the generating function

At

TSIl ZK x| x (1 e N) (see [8-12]). (1.10)

n=0

Note that lim; .o K, (x | A) = b,,(x), where b, (x) are the Bernoulli polynomials of the sec-
ond kind defined by the generating function

t . 0 ﬁ
(—log(1+ t)>(1+t) = nzzo:bn(x) — (see[7,13)) (1.11)

In this paper, we define the higher-order Korobov polynomials given by the generating

function

At " N ) ¢
(7(t+1)*—1> (L+1) —;Kn (e 2)— (112)

Whenx =0, K,(,r) ) = K,(,’) (0 | 1) are called the Korobov numbers of order r. In particular,
ifr =1, then K,(A) = K,(,D(O | &) = K,(0 | &) are called the ordinary Korobov numbers. Now,
we consider the Korobov-type Changhee polynomials which are called the A-Changhee
polynomials as follows:

(ﬁ)(ut ZCh (x|k)—. (1.13)

When x = 0, Ch,(A) = Ch,(0 | A) are called A-Changhee numbers. Note that
lim,_,; Ch,(x | A) = Ch,(x), lim;_, ¢ Ch,(x | A) = (x),;, where

X)p=xx-1)---(x—n+1)= ZSl n,Dx"  (see [7]).

For r € N, the A-Changhee polynomials of order r are defined by the generating function

2 ' x - r "

n=0

The Stirling numbers of the second kind are defined by the generating function
(e -1)"=n! Zsz(z n) (see [7,13]). (115)

The Korobov polynomials (of the first kind) were introduced in [10] as the degener-
ate version of the Bernoulli polynomials of the second kind. In recent years, many re-
searchers studied various kinds of degenerate versions of some familiar polynomials like
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Bernoulli polynomials, Euler polynomials and their variants by means of generating func-
tions, p-adic integrals and umbral calculus (see [1, 6, 12, 14]).

Here in this paper we introduce two Korobov-type polynomials obtained from the same
function, namely the one by performing bosonic p-adic integrals on Z, and the other
by carrying out fermionic p-adic integrals on Z,. In addition, we consider their higher-
order versions and some mixed-types of them by considering multivariate p-adic inte-
grals. In conclusion, we will obtain some connections between these new polynomials
and Bernoulli polynomials, Euler polynomials, Daehee numbers and Bernoulli numbers
of the second kind.

2 Korobov-type polynomials
For 1 € N, by (1.2), we get

Alog(1+¢)
Q+p)*-1

At log(1 +¢t) .
(1+t)’\—1>< t )(1”)

(
_ (imx | A)j—j) (iDm%mz)

/ L+ 27 dproly) = 140"
Zyp

tn

n!

( <n)K[(x | A.)Dn_l) —tn . (2.1)
[ n!
n=0 \ /=0

Kilx | A)Dn_zm%n,)

From (2.1), we have

Ay + % 1 /n
/z( n )dﬂo@)jg(,)Kz(xu)Dm. .

Therefore, by (2.2), we obtain the following theorem.

Theorem 2.1 For n > 0, we have

n

Ay +x 1 n
/Zp( ., )dﬂo@)=;Z<I)Kz(xlk)Dn_l.

© =0

Now, we observe that

[ 03+t = 3D [ G2 diaoy)
Zp 1=0 Zp
n !
_ l x
- ;Sl(n,l))» /Zp (y+ /\) dpio(y)
= ZSl(n, l)le;<;>. (2.3)
=0
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Therefore by (2.3), we obtain the following corollary.

Corollary 2.2 For n > 0, we have

ZSlnlABl( ) Z(';)Kl(xu)z)n_,

1=0
From (2.1), we have

n

(o)
t At
K, A)—=———(@1+8)
D Kolel 0 = g0

¢ Ay+x
(—bg(“t)) / (1+ 0" dyuo(y)
( S ht )(Z/ (M“rx)mdlto(y)—)
=0

-y (Z (:l) - lzojsl(m, DA'B, G)) % (2.4)

n=0 \m=0

Therefore, by (2.4), we obtain the following corollary.

Corollary 2.3 For n > 0, we have

Ky(x|2)=) <:;)bn_m Y Si(m, 1)A13,<;>.
=0

m=0

By replacing ¢ by ¢’ — 1 in (1.10), we get

o t m t
-1 Aet -1
S e KD,
— m! eM—1
At x e -1
— (%At
_e’\‘—le t
> 2\t \ [ 1 ¢
= A'B |l = ) — —_—
(Z (A)m!><21+ll‘>
m=0 =0
o0 n
1 t"
B G EaL 25)
l AMI+1 ] n!
n=0 \ [=0
On the other hand,

3 (x|k 1< xu Sz(lm
E ( E K, (x| 1)Sa(n, m)) (2.6)

n=0 \m=0

Therefore, by (2.5) and (2.6), we obtain the following theorem.
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Theorem 2.4 For n > 0, we have

- n X 1 n
2B, (2 ) — = Koo | )80 )
§<l> l()»)l+1 r; (x| A)Sa(n, m)

It is easy to show that

-1
[ fwdinots) - o [ faranduot) @em, (27)
4 a=0 P

By (2.7), we get

/Zp(1+t“duo Z/ (1+ 0@ dpug(x)

d-1
1
=2 W™ [ A+ ey dpo@)
a=0 Zp
d-1
1 Adlog(l +1t)
=— 14 =~ 2.8
DI (238)
On the other hand,
M Alog(1 +¢)
[ e duot - LS (29)
Zy (1 + t) —
Thus, by (2.8) and (2.9), we get
d-1
AL 1 Adt
—— 1+t == — 1+, 2.10
Qi 1Y d;(1+t)*d—1( D) (2.10)

Therefore, by (1.10) and (2.10), we obtain the following theorem.

Theorem 2.5 Forn > 0 and d € N, we have
1 &
Ku(x|2) = - > Ky(ar +x | Ad).

a=0

From (1.5), we can derive the following equation:

n-1
/ L+ 0" duo@) - | 1+ dpolx) =rlogl+£) Y 1+t (neN). (211)
Zp 1=0

Zp

Thus, by (2.11), we get

I
/Z (1+ 0/ dyao() “g)(in”) 2(1 £y (2.12)
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From (2.12), we have

t

log(1 +12) Jz,

On the other hand,

t

log1+¢) Jz

L+ 0™ dptols) = —
n

n-1

=0 (1

1l
K
| =

3
I

n-1

0< =0

+ t)’\”

£ djuol) = (Z b/—,) (lz
=0

(1 + )M

t
K, (M| Mz)) —.
m!

m

tl
(Ax)rdppo(x) ﬁ>
Zp .

i / (M)zduo(x)>t—m,
Zp m.

Therefore, by (2.13) and (2.14), we obtain the following theorem.

Theorem 2.6 Forne N, m > 0, we have

ln—l
— K,(AL| A . Si(l
n;urz)g()zzln

Remark By (1.5), we easily get

n-1 m

/Z (Mx +m), dpo(x) - fZ (M) dpo@) =Y > kSi(m, k)1,

=0 k=1

Hence, by Theorem 2.1 and (2.15), we see

> KiG | )Dyy (";) - Y KD
1=0 1=0

(7)-2
m—1 =
! I=

1

0

> Sy (m, kI

k=1

Now, we consider the multivariate p-adic integral on Z, given by

/ . (1 + t)k(x1+---+xr)+x dﬂo(xl) s dﬂo(xr)'
Zyp Zp

By (1.2) and (2.16), we get

/ o @ g ) - dpol)
Zyp Zp

|
|

Alog(l+1¢)

_l)r(l + 1)

1 +0)*
At
Q+pr-1

)r(l . t)x(ilog(i i ”)r.
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(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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Thus, by (2.17), we get
o0 t"
> KM=
s n!

At " .
(W) 1+2)
Mg ooy )
(m) /Zp /Zp (o dptolon) -+ dpo(x,)

I
i (m ob( )(Z/ /Zp()\(x“r"'+xr)+x)lduo(x1) -..duo(xr)%>

e’} n ! e " . P
- Z( > 811, k)BY <X) <l>b§,j,> —

n=0 \ /=0 k=0

By comparing the coefficients on both sides, we obtain the following theorem.

Theorem 2.7 For n > 0, we have

n
K= S wsn (7))

1=0 k=0

By replacing ¢ by ¢ —1in (1.12), we get

(’\(e - ) ZK (x|A ~1)"
_ ;Kfp(x | A);Sg(n,m)%
- Z(foy(x | S, m)) a3 (2.18)

n=0 \m=0

On the other hand,

()L(et —1))' ot
e =
eM—1

}\.t re(%)lt et—l "
et —1 t

"\ [ ¢
— 1So(l +7,7) ——
)m!)(%r 2 +rr)(l+r)!)

_ - - () n—l "
_Z<lo (+))\ 52(l+r,r)B (A) n’ (2.19)

Therefore, by (2.18) and (2.19), we obtain the following theorem.

Theorem 2.8 For n > 0, we have

D KD | MSy(mm) =) (5+2) WLSy(1+ 7,r)BY (A)

m=0 =0 \r
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From (1.3), we can derive the following equation:

/Zp(l + ) dp_(y) = as t)k (1 +1)° = Z Chy(x | A)—. (2.20)
Thus, by (2.20), we get
Ay + % 1
[ (77 )dnaor= siomtain) =0 @21
Zp n n!

We observe that

n

> t
> Chy(x]2)= =
s n!

0
- Z( () Chyy m(x)< )) ;. (2.22)
0

Therefore, by (2.21) and (2.22), we obtain the following theorem.

Theorem 2.9 For n > 0, we have

)»_)/+x 1 1 n "
-/Zp ( y )dﬂl()’) = EChn(x |A) = ; Z(x)mChn,m(A) (m)

" m=0

From (2.20), we have

> Cin e 12)° = / (L+ 0 dpua(y)
n=0 :

Zp

{_;/Zp(xym)ndu_lmg

:nij;(ijsl(n,z)xl/ <y+ —) dp 1(y)—n‘

=3 (Z Si(m, zmsl( )) £ (2.23)

n=0

By replacing ¢ by ¢’ — 1 in (1.13), we get

it 1 2
t n_ xt
ZChn(xM)E(e -1) = Si®
n=0
2 (%)u
M+l

53 En(g)mﬂ (2.24)
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On the other hand,

> Ch (xlk)— (e -1)" ZChm(xIA)ZSz(n m)—
n=0
= Z(Z Ch( | x)sz(n,m)> % (2.25)

n=0 \m=0

Therefore, by (2.23), (2.24), and (2.25), we obtain the following theorem.

Theorem 2.10 For n > 0, we have

£(2)=n 3 Gl 15300

Chalx| 1) = Si(n, Z)MEIG).
=0

By replacing ¢ by ¢’ — 1 in (1.14), we get

n
E® (;) =27 CH) (x| 1S (m,m). (2.26)
m=0

From (1.14), we can derive the following equation:
o r
t" 2
CHx | \)— = ———) A+
Z ad )n! <(1+t)’\+1>( )
n=0
_ 2 rexlog(1+t)
- erlog(l+t) 4 1
ED X lA"(lo (1+t))n
AL/ n! B
o n
(% \ym r
E) <)L>)L ZSl(n,m)n!
n=m

( E® (’—C)Amsl(n, m)> e (2.27)
- A n!

m=0

e 10

I
(=]

m

M

I
(=]

n

Therefore, by (2.26) and (2.27), we obtain the following theorem.

Theorem 2.11 For n > 0, we have

T, - r, X m
Ch;)(xu):};Egn)(X))\ S1(n,m)

and

1 n
E;ﬂ(%) = = X Ch)(x | 1)Sa(m,m)
m=0
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Let us observe the following multivariate fermionic p-adic integral on Z,:

/ . / (1 + t)A(x1+...+xr)+x dﬂ—l(xl) . d,u—l(xr)
Zp Zp

2 4 "
- (W> 1+
Ch(x | x)ﬁ. (2.28)
n!

M

1
(=}

n

Thus, by (2.28), we get

CHD(x | A)
n!
_ /Z /Z (“’“1 +";'1+’“f) ”‘) dpa(e) - duaa()  (n=0). (2.29)
Note that
0wt (2 N oSS ” )&
HXZO:Chn (6] 3)— = ((1 T 1) 1+ = ;(§(x)mChnm(x)(m>) —
Thus, we get
ChD(x | 3) = Z(x)mCthm(k)<:q) (n>0). (2.30)

m=0

By (2.28) and (2.29), we easily get

CHP10) = [ o [ G am s ) - dias)
Zp Zp
n x )
:ZSl(n,l)k’/ / <x1+~~+xr+—) dp_a () - dp(x,)
1=0 Zp Zp A

=3 Sim DAE (;ﬁ) (231)

=0

Now, we consider the A-Changhee and Korobov mixed-type polynomials which are
given by the multivariate p-adic integral on Z, as follows:

CKT9) (x| 1)

=/ / CHD (xey + -+ + At + | M) dppo () -+ - dpuo(ocs)
Zp Zp

=y;6h£2m(x)(:1) fz fZ Gt ) dof), 032

where r,s € N.
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Now, we observe that

/ co | @M g () - dpno ()
Zp Zp

~ AL S log1+1t)\°* .
‘((1+t>k—1>( ‘ )(1”)
o0 n X X " t”

- ;(;:K} (x| A)Df),(l)) —

By (2.33), we get

/ Ay + -+ Axs + X)p dpeo(x1) - - - dino ()
ZP ZP

=3 K| mDY, ('Z)
=0

From (2.32) and (2.34), we have

CKI@ () =YY (”;) (”) ch? (WK (x| 1)DY) .
m

m=0 [=0

The generating function of CK"*)(x | 1) is given by

o0 t”
D CK x| 1) =
n!

n=0

o0
:Zf / Ch;’)()\x1+---+Axs+xlk)duo(x1)---
n=0 Zp Zp

= / .. / / ces (1 + t))»yl+-»»+Ayr+kx1+---+kxs+x
Zp ZpJZp Zp
N— e e —

r-times s-times

X du_(y) -+ dua(yr) dinox) - - - dulx)
~ 2 " Alogl+8)\°* .
- ((1+t))\+1) ((1+t))\—1> (Lo

Theorem 2.12 Forr,s € N and n > 0, we have

n m
CKEIrVS)(x | A) = Z Z (7) (Vl) Chgzm()\)l(l(s)(x | )”)Diz)—l‘
m

m=0 [=0

Page 12 0f 13

(2.33)

(2.34)

(2.35)

t}’l
dpo)
n.

(2.36)

We consider the Korobov and A-Changhee mixed-type polynomials, which are given by

KC")(x | 1) = / / KOy + -+ A +x | A)dpy(x1) - dp (), (2.37)
ZP ZP

where r,s € Nand n > 0.
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Then, by (2.37), we get

KCT) (x| 1)

= V; <:;>KZ)(X) /Zp e Zp(kxl Foee o A+ Xy Ao (K1) -+ Aoy ()
-y <Z>I(Z)(A)Ch§f)m(x | ). (2.38)
m=0

The generating function of KC"(x | 1) is given by

D KCI (x| 2) =

ti’l
n!
n=0

o0 t”
- Z/ / KO 0oxr + -+ 2t + 2 | D) dpea () -+ dpa ()~
n=0 Zp Zp n.

At "
- (m) /; i A+ )5 gy (%) - - dpey ()
p p

At " 2 s N
) ((1+t)k—1) ((1+t)'\+1> (L+ ) (2.39)
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