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Abstract
In this paper, we consider the almost periodic dynamics of a multispecies
Lotka-Volterra mutualism system with time varying delays on time scales. By
establishing some dynamic inequalities on time scales, a permanence result for the
model is obtained. Furthermore, by means of the almost periodic functional hull
theory on time scales and Lyapunov functional, some criteria are obtained for the
existence, uniqueness and global attractivity of almost periodic solutions of the
model. Our results complement and extend some scientific work in recent years.
Finally, an example is given to illustrate the main results.
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1 Introduction
Recently, there have been many scholars concerned with the dynamics of the mutualism
model. Topics such as permanence, global attractivity, and periodicity of mutualism sys-
tems governed by differential equations were extensively investigated (see [–]). For ex-
ample, in [], the author studied the existence of positive periodic solutions of the peri-
odic mutualism model

{ dx(t)
dt = x(t)[ r(t)K(t)+r(t)α(t)x(t–τ(t))

+x(t–τ(t)) – r(t)x(t – σ(t))],
dx(t)

dt = x(t)[ r(t)K(t)+r(t)α(t)x(t–τ(t))
+x(t–τ(t)) – r(t)x(t – σ(t))],

(.)

where ri, Ki,αi ∈ C(R,R+), αi > Ki, i = , , τi,σi ∈ C(R,R+), i = , , ri, Ki, αi, τi, σi (i = , )
are functions of period ω > .

However, in applications, if the various constituent components of the temporally
nonuniform environment are with incommensurable periods, then one has to consider
the environment to be almost periodic since there is no a priori reason to expect the exis-
tence of periodic solutions. Hence, if we consider the effects of the environmental factors,
almost periodicity is sometimes more realistic and more general than periodicity. In re-
cent years, the almost periodic solution of the models in biological populations has been
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studied extensively (see [–] and the references cited therein). In addition, some recent
attention was on the permanence and global stability of discrete mutualism system, and
many excellent results have been derived (see [–]). For example, in [], the authors
considered the following discrete multispecies Lotka-Volterra mutualism system:

xi(k + ) = xi(k) exp

{
ai(k) – bi(k)xi(k) +

n∑
j=,j �=i

cij(k)
xj(k)

dij + xj(k)

}
, (.)

where i = , , . . . , xi(k) stand for the densities of species xi at the kth generation, ai(k) rep-
resent the natural growth rates of species xi at the kth generation, bi(k) are the intraspecific
effects of the kth generation of species xi on own population, cij(k) measure the interspe-
cific mutualism effects of the kth generation of species xj on species xi (i, j = , , . . . , n,
i �= j), and dij (≥ ) are positive control constants. By means of the theory of difference
inequality and Lyapunov function, they established sufficient conditions for the existence
and uniformly asymptotic stability of a unique positive almost periodic solution to sys-
tem (.).

Furthermore, so many processes, both natural and manmade, in biology, medicine,
chemistry, physics, engineering, economics, etc. involve time delays. Time delays occur
so often, so if we ignore them, we ignore reality. Generally, the meaning of time delay is
that some time elapses between causes and their effects (for instance, in population dy-
namics, individuals always need some time to mature, or in medicine, infectious diseases
have incubation periods). Specially, in the real world, the delays in differential equations
of biological phenomena are usually time varying. Thus, it is worthwhile continuing to
study the existence and stability of a unique almost periodic solution of the multispecies
Lotka-Volterra mutualism system with time varying delays.

Since permanence is one of the most important topics in the study of population dy-
namics, one of the most interesting questions in mathematical biology concerns the sur-
vival of species in ecological models. Biologically, when a system of interacting species is
persistent in a suitable sense, it means that all the species survive in the long term. It is
reasonable to ask for conditions under which the system is permanent.

Also, as we know, the study of dynamical systems on time scales is now an active area
of research. The theory of times scales has received a lot of attention which was intro-
duced by Stefan Hilger in his PhD thesis in , providing a rich theory that unifies
and extends continuous and discrete analysis []. In fact, both continuous and discrete
systems are very important in implementation and applications. But it is troublesome to
study the dynamics for continuous and discrete systems respectively. Therefore, it is sig-
nificant to study that on time scales which can unify the continuous and discrete situa-
tions.

Motivated by the above reasons, in this paper, we are concerned with the following mul-
tispecies Lotka-Volterra mutualism system with time varying delays on time scales:

x�
i (t) = ai(t) – bi(t)exi(t–τi(t)) +

n∑
j=,j �=i

cij(t)
exj(t–δj(t))

dij + exj(t–δj(t)) ,

i = , , . . . , n, t ≥ t, t, t ∈ T, (.)

where T is an almost periodic time scale.
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Remark . Let yi(t) = exi(t), if T = R, then system (.) is reduced to the following system:

yi(t) = yi(t)

{
ai(t) – bi(t)yi

(
t – τi(t)

)
+

n∑
j=,j �=i

cij(t)
yj(t – δj(t))

dij + yj(t – δj(t))

}
,

i = , , . . . , n, t ∈R, (.)

which is a generalization of (.). If T = Z, then system (.) is reduced to the following
system:

yi(k + ) = yi(k) exp

{
ai(k) – bi(k)yi

(
k – τi(k)

)
+

n∑
j=,j �=i

cij(k)
yj(k – δj(k))

dij + yj(k – δj(k))

}
,

i = , , . . . , t ∈ Z, (.)

let τi(k) = , δj(k) = , then system (.) is reduced to system (.).

By the biological meaning, we will focus our discussion on the positive solutions of sys-
tem (.). So, it is assumed that the initial condition of system (.) is of the form

xi(s) = ϕi(s) ≥ , ϕi(t) > , s ∈ [t – θ , t]T, i = , , . . . , n, (.)

where θ = max{τ+, δ+}, τ+ = max≤i≤n supt∈T{τi(t)}, τ– = min≤i≤n inft∈T{τi(t)}, δ+ =
max≤j≤n supt∈T{δj(t)}, δ– = min≤j≤n inft∈T{δj(t)}.

For convenience, we denote

f l = inf
t∈T

∣∣f (t)
∣∣, f u = sup

t∈T

∣∣f (t)
∣∣.

Throughout this paper, we assume that:

(H) ai(t), bi(t), cij(t), τi(t), δj(t) are all almost periodic functions such that al
i > , bl

i > ,
cl

ij > , τ– >  and δ– > ; dij > , t – τi(t) ∈ T and t – δj(t) ∈ T for t ∈ T, i, j = , , . . . , n,
j �= i.

(H) τ� = max≤i≤n supt∈T{τ�
i (t)}, δ� = max≤j≤n supt∈T{δ�

j (t)} and  – τ� > ,  – δ� > .

To the best of our knowledge, there is no paper published on the permanence, the exis-
tence and uniqueness of globally attractive almost periodic solutions to systems (.) and
(.). The main purpose of this paper is, by establishing some dynamic inequalities on
time scales, to discuss the permanence of system (.) and, by using the almost periodic
functional hull theory on time scales, to establish criteria for the existence and unique-
ness of globally attractive almost periodic solutions of system (.). For the preliminary
work which has investigated the permanence, the existence and uniqueness of globally
attractive almost periodic solutions to almost periodic systems governed by differential
or difference equations by using the almost periodic functional hull theory, we refer the
reader to [–].

The paper is organized as follows. In Section , we introduce some basic definitions,
necessary lemmas and establish some dynamic inequalities on time scales which will be
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used in later sections. In Section , we discuss the permanence of system (.). In Sec-
tion , we consider the global attractivity of almost periodic solutions of system (.) by
means of Lyapunov functional. In Section , some sufficient conditions are obtained for
the existence of positive almost periodic solutions of system (.) by use of the almost
periodic functional hull theory on time scales. The main results in Sections  and  are
illustrated by giving an example in Section .

2 Preliminaries
In this section, we shall recall some basic definitions, lemmas which are used in what
follows.

A time scale T is an arbitrary nonempty closed subset of the real numbers, the forward
and backward jump operators σ ,ρ : T → T and the forward graininess μ : T → R

+ are
defined, respectively, by

σ (t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t} and μ(t) = σ (t) – t.

A point t ∈ T is called left-dense if t > infT and ρ(t) = t, left-scattered if ρ(t) < t, right-
dense if t < supT and σ (t) = t, and right-scattered if σ (t) > t. If T has a left-scattered maxi-
mum m, then T

k = T \ {m}; otherwise Tk = T. If T has a right-scattered minimum m, then
Tk = T \ {m}; otherwise Tk = T.

A function f : T→R is right-dense continuous provided it is continuous at right-dense
point in T and its left-side limits exist at left-dense points in T. If f is continuous at each
right-dense point and each left-dense point, then f is said to be a continuous function
on T.

For y : T →R and t ∈ T
k , we define the delta derivative of y(t), y�(t) to be the number (if

it exists) with the property that for a given ε > , there exists a neighborhood U of t such
that

∣∣[y
(
σ (t)

)
– y(s)

]
– y�(t)

[
σ (t) – s

]∣∣ < ε
∣∣σ (t) – s

∣∣
for all s ∈ U .

If y is continuous, then y is right-dense continuous, and if y is delta differentiable at t,
then y is continuous at t.

Let f be right-dense continuous, if F�(t) = f (t), then we define the delta integral by

∫ s

r
f (t)�t = F(s) – F(r), r, s ∈ T.

Lemma . [] Assume f , g : T →R are delta differentiable at t ∈ Tk , then
(i) (f + g)�(t) = f �(t) + g�(t);

(ii) (fg)�(t) = f �(t)g(t) + f σ (t)g�(t) = f (t)g�(t) + f �(t)gσ (t);
(iii) if g(t)gσ (t) �= , then ( f

g )� = f �(t)g(t)–f (t)g�(t)
g(t)gσ (t) ;

(iv) if f and f � are continuous, then (
∫ t

a f (t, s)�s)� = f (σ (t), t) +
∫ t

a f �(t, s)�s.

A function p : T→R is called regressive provided  + μ(t)p(t) �=  for all t ∈ T
k . The set

of all regressive and rd-continuous functions p : T → R will be denoted by R = R(T) =
R(T,R). We define the set R+ = R+(T,R) = {p ∈R :  + μ(t)p(t) > ,∀t ∈ T}.
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If r ∈R, then the generalized exponential function er is defined by

er(t, s) = exp

{∫ t

s
ξμ(τ )

(
r(τ )

)
�τ

}

for all s, t ∈ T, with the cylinder transformation

ξh(z) =

{
Log(+hz)

h , h �= ,
z, h = .

Let p, q : T→R be two regressive functions, we define

p ⊕ q = p + q + μpq, 	p = –
p

 + μp
, p 	 q = p ⊕ (	q) =

p – q
 + μq

.

Then the generalized exponential function has the following properties.

Lemma . [] Assume that p, q : T →R are two regressive functions, then
(i) e(t, s) ≡  and ep(t, t) ≡ ;

(ii) ep(σ (t), s) = ( + μ(t)p(t))ep(t, s);
(iii) ep(t, s) = /ep(s, t) = e	p(s, t);
(iv) ep(t, s)ep(s, r) = ep(t, r);
(v) ep(t, s)eq(t, s) = ep⊕q(t, s);

(vi) ep(t, s)/eq(t, s) = ep	q(t, s);
(vii) ( 

ep(t,s) )� = –p(t)
eσ

p (t,s) .

Lemma . [] Let f : T→R be a continuously increasing function and f (t) >  for t ∈ T,
then

f �(t)
f σ (t)

≤ [
ln

(
f (t)

)]� ≤ f �(t)
f (t)

.

Definition . [] A time scale T is called an almost periodic time scale if

 = {τ ∈R : t ± τ ∈ T,∀t ∈ T} �= {}.

Throughout this paper, En denotes R
n or C

n, D denotes an open set in E
n or D = E

n,
and S denotes an arbitrary compact subset of D.

Definition . [] Let T be an almost periodic time scale. A function f ∈ C(T× D,En)
is called an almost periodic function in t ∈ T uniformly for x ∈ D if the ε-translation set
of f ,

E{ε, f , S} =
{

t ∈  :
∣∣f (t + τ , x) – f (t, x)

∣∣ < ε,∀(t, x) ∈ T× S
}

is a relatively dense set in T for all ε >  and for each compact subset S of D; that is, for
any given ε >  and for each compact subset S of D, there exists a constant l(ε, S) >  such
that each interval of length l(ε, S) contains τ (ε, S) ∈ E{ε, f , S} such that

∣∣f (t + τ , x) – f (t, x)
∣∣ < ε, ∀(t, x) ∈ T× S.



Li and Wang Advances in Difference Equations  (2015) 2015:230 Page 6 of 29

τ is called the ε-translation number of f and l(ε, S) is called the inclusion length of
E{ε, f , S}.

For convenience, we denote AP(T) = {f : f ∈ C(T,En), f is almost periodic} and intro-
duce some notations: let α = {αn} and β = {βn} be two sequences. Then β ⊂ α means that
β is a subsequence of α, α + β = {αn + βn}, –α = {–αn}. α and β are common subsequences
of α′ and β ′, respectively, which means that αn = α′

n(k) and βn = β ′
n(k) for some given func-

tion n(k).
We will introduce the translation operator T , Tαf (t, x) = g(t, x), which means that

g(t, x) = limn→+∞ f (t + αn, x) and is written only when the limit exists. The mode of con-
vergence, for example, pointwise, uniform, and so forth, will be specified at each use of
the symbol.

Definition . [] Let f ∈ C(T×D,En), H(f ) = {g : T×D → E
n | there exists α ∈  such

that Tαf (t, x) = g(t, x) exists uniformly on T× S} is called the hull of f .

Lemma . [] If f (t, x) is almost periodic in t ∈ T uniformly for x ∈ D, then, for any
g(t, x) ∈ H(f ), g(t, x) is almost periodic in t ∈ T uniformly for x ∈ D.

Lemma . [] If f (t, x) is almost periodic in t ∈ T uniformly for x ∈ D, denote F(t, x) =∫ t
 f (s, x)�s, then F(t, x) is almost periodic in t ∈ T uniformly for x ∈ D if and only if F(t, x)

is bounded on T× S.

Lemma . [] A function f (t, x) is almost periodic in t ∈ T uniformly for x ∈ D if and
only if from every pair of sequences α′ ⊂ , β ′ ⊂  one can extract common subsequences
α ⊂ α′, β ⊂ β ′ such that

Tα+β f (t, x) = TαTβ f (t, x).

Lemma . [] A function f (t) is almost periodic if and only if for any sequence {α′
n} ⊂ 

there exists a subsequence {αn} ⊂ {α′
n} such that f (t + αn) converges uniformly on t ∈ T as

n → ∞. Furthermore, the limit function is also almost periodic.

Consider the following equation:

x�(t) = f (t, x), t ∈ T (.)

and the corresponding hull equation

x�(t) = g(t, x), t ∈ T, (.)

where f : T× S → E
n, f (t, x) is almost periodic in t uniformly for x ∈ S, g(t, x) ∈ H(f ).

Similar to the proof of Theorem . in [], one can easily get the following.

Lemma . Let f (t, x) ∈ C(T × S,En) be an almost periodic in t uniformly for x ∈ S. For
every g(t, x) ∈ H(f ), the hull equation (.) has a unique solution, then these solutions are
almost periodic.
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Definition . Suppose that ϕ(t) is any solution of (.) on T. ϕ(t) is said to be a strictly
positive solution on T if for t ∈ T,

 < inf
t∈T

ϕ(t) ≤ sup
t∈T

ϕ(t) < ∞.

Lemma . If each of the hull equations of system (.) has a unique strictly positive solu-
tion, then system (.) has a unique strictly positive almost periodic solution.

Proof Suppose that ϕ(t) is a strictly positive solution of system (.). Since f is almost
periodic in t uniformly for x ∈ S, by Lemma ., for any sequences α′,β ′ ⊂ , there exist
common subsequences α ⊂ α′, β ⊂ β ′ such that Tα+β f (t, x) = TαTβ f (t, x) holds uniformly
in t for x ∈ S, Tα+βϕ(t) and TαTβϕ(t) uniformly exist on a compact set of T. Then Tα+βϕ(t)
and TαTβϕ(t) are solutions of the equation

x�(t) = Tα+β f (t, x), t ∈ T,

which is the common hull equation of system (.), with respect to α and β , respectively.
Therefore, we have Tα+βϕ(t) = TαTβϕ(t), then by Lemma ., ϕ(t) is an almost periodic
solution of (.). Since α ⊂ α′ ⊂  and limn→∞ α′

n = +∞, Tαf (t, x) = g(t, x) exists uniformly
in t ∈ T for x ∈ S. For the sequence α ⊂ α′, we conclude that Tαϕ(t) = ψ(t) exists uniformly
in t ∈ T. According to the uniqueness of the solution and Tαψ(t) = ψ(t), one obtains that
ϕ(t) = ψ(t). The proof is completed. �

Lemma . [] Assume that a ∈ R and t ∈ T, if a ∈ R+ on T
k , then ea(t, t) >  for all

t ∈ T.

Lemma . Assume that x(t) >  on T, –b ∈ R+, b ≥ , a, d > , t – τ (t) ∈ T, where τ :
T →R

+ is an rd-continuous function and τ̄ = supt∈T{τ (t)}.
(i) If x�(t) ≤ xσ (t)(b – ax(t – τ (t))) + d for t ≥ t, t ∈ T, with the initial condition

x(t) = φ(t) ≥  for t ∈ [t – τ̄ , t]T and φ(t) > , then

lim sup
t→+∞

x(t) ≤ –
d
b

+
(

d
b

+ x̄
)

exp

{
–

τ̄ log( – bμ̄)
μ̄

}
:= M,

where μ̄ = supθ∈T{μ(θ )} and x̄ is the unique positive root of x(ax – b) – d = .
Especially, if d = , then

M =
b
a

exp

{
–

τ̄ log( – bμ̄)
μ̄

}
.

(ii) If x�(t) ≥ xσ (t)(b – ax(t – τ (t))) + d for t ≥ t, t ∈ T, with the initial condition
x(t) = φ(t) ≥  for t ∈ [t – τ̄ , t]T, φ(t) >  and there exists a positive constant N > 
such that lim supt→+∞ x(t) ≤ N < +∞, then

lim inf
t→+∞ x(t) ≥ b

a
e–aN τ̄ := m.

Proof The proof of (i). It is obvious that there exists a unique positive root of the equation
x(ax – b) – d = . Suppose that lim supt→+∞ x(t) = +∞. Then there exists a subsequence
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{tk}∞k= ⊂ T with tk → +∞ as k → +∞ such that

lim
k→+∞

x(tk) = +∞, xσ (tk) ≥ x̄, x�(t)|t=tk ≥ , k = , , . . . .

Thus, we have

xσ (tk)
(
b – ax

(
tk – τ (tk)

))
+ d ≥ ,

so

x
(
tk – τ (tk)

) ≤ 
a

(
b +

d
xσ (tk)

)
≤ 

a

(
b +

d
x̄

)
= x̄, k = , , . . . . (.)

Consider the following inequality:

x�(t) ≤ bxσ (t) + d, with x
(
t∗

)

> , t∗
 ≥ t.

Notice that

[
x(t)e–b

(
t, t∗


)]� = e–b

(
t, t∗


)
x�(t) – be–b

(
t, t∗


)
xσ (t)

= e–b
(
t, t∗


)(

x�(t) – bxσ (t)
)

≤ de–b
(
t, t∗


)
. (.)

Integrating inequality (.) from t∗
 to t, we have

e–b
(
t, t∗


)
x(t) – x

(
t∗

) ≤

∫ t

t∗
de–b

(
θ , t∗


)
�θ

= –
d
b

∫ t

t∗

[
e–b

(
θ , t∗


)]�

�θ

= –
d
b
[
e–b

(
t, t∗


)

– 
]
,

then

x(t) ≤ –
d
b

+
(

d
b

+ x
(
t∗

))

e	(–b)
(
t, t∗


)
. (.)

In view of (.) and (.), we obtain

x(tk) ≤ –
d
b

+
(

d
b

+ x
(
tk – τ (tk)

))
e	(–b)

(
tk , tk – τ (tk)

)

≤ –
d
b

+
(

d
b

+ x̄
)

e	(–b)
(
tk , tk – τ (tk)

)
, k = , , . . . . (.)

For every θ ∈ T, if μ(θ ) = , then

ξμ

(	(–b)
)

= 	(–b) =
b

 – μ(θ )b
= b,
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if μ(θ ) �= , then

ξμ

(	(–b)
)

=
log( + bμ(θ )

–μ(θ )b )
μ(θ )

= –
log( – bμ(θ ))

μ(θ )
≤ –

log( – bμ̄)
μ̄

(> b).

Hence, for every θ ∈ T, we have
∫ tk

tk –τ (tk )
ξμ

(	(–b)
)
�θ ≤ max

{∫ tk

tk –τ (tk )
b�θ ,

∫ tk

tk –τ (tk )
–

log( – bμ̄)
μ̄

�θ

}

= –
τ (tk) log( – bμ̄)

μ̄

≤ –
τ̄ log( – bμ̄)

μ̄
, k = , , . . . .

Thus

e	(–b)
(
tk , tk – τ (tk)

) ≤ exp

{
–

τ̄ log( – bμ̄)
μ̄

}
, k = , , . . . . (.)

It follows from (.) and (.) that

x(tk) ≤ –
d
b

+
(

d
b

+ x̄
)

exp

{
–

τ̄ log( – bμ̄)
μ̄

}
= M, k = , , . . . ,

then

lim sup
k→+∞

x(tk) ≤ M.

Especially, if d = , then x̄ = b
a , we can easily know that

M =
b
a

exp

{
–

τ̄ log( – bμ̄)
μ̄

}
.

Hence lim supk→+∞ x(tk) < +∞. This contradicts the assumption.
We claim

lim sup
t→+∞

x(t) ≤ M.

Otherwise,

lim sup
t→+∞

x(t) > M,

there exists ε such that x(t) > M + ε for any t ∈ T. So we can choose {tk}∞k= ⊂ T such that

x(tk) > M + ε, xσ (tk) ≥ x̄, x�(t)|t=tk ≥ , k = , , . . . .

By a similar process as above, we can derive that

x(tk) ≤ M,

which is a contradiction. Hence, our claim holds.
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The proof of (ii). Suppose that lim inft→+∞ x(t) = . Then there exists a subsequence
{t̃k}∞ ⊂ T with t̃k → +∞ as k → +∞ such that

lim
k→+∞

x(t̃k) = , x�(t)|t=t̃k ≤ , k = , , . . . .

We have b – ax(t̃k – τ (t̃k)) ≤ , then x(t̃k – τ (t̃k)) ≥ b
a . For any positive constant ε small

enough, it follows from lim supt→+∞ x(t) ≤ N that there exists large enough T such that

x(t) ≤ N + ε, t > T,

then x(t̃k – τ (t̃k)) ≤ N + ε for t̃k > T + τ (t̃k). So we have

x�(t̃k) ≥ xσ (t̃k)
(
b – ax

(
t̃k – τ (t̃k)

))
+ d

≥ xσ (t̃k)
(
b – ax

(
t̃k – τ (t̃k)

))
≥ –a(N + ε)xσ (t̃k), k = , , . . . . (.)

Consider the following inequality:

x�(t) ≥ –a(N + ε)xσ (t), with x
(
t∗

)

> , t∗
 ≥ t.

For t > t∗
 ≥ t, we have

x(t) ≥ x
(
t∗

)
e	(a(N+ε))

(
t, t∗


)
. (.)

From (.) and (.), we obtain

x(t̃k) ≥ x
(
t̃k – τ (t̃k)

)
e	(a(N+ε))

(
t̃k , t̃k – τ (t̃k)

)
. (.)

For every θ ∈ T, if μ(θ ) = , then

ξμ

(	(
a(N + ε)

))
= 	(

a(N + ε)
)

= –
a(N + ε)

 + μ(θ )a(N + ε)
= –a(N + ε),

if μ(θ ) �= , then

ξμ

(	(
a(N + ε)

))
=

log( – a(N+ε)μ(θ )
+μ(θ )a(N+ε) )
μ(θ )

= –
log( + a(N + ε)μ(θ ))

μ(θ )
≥ –a(N + ε).

Hence, for every θ ∈ T, we have

∫ t̃k

t̃k –τ (t̃k )
ξμ

(	(
a(N + ε)

))
�θ ≥

∫ t̃k

t̃k –τ (t̃k )
–a(N + ε)�θ

= –a(N + ε)τ (t̃k)

≥ –a(N + ε)τ̄ , k = , , . . . ,
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so

exp

{∫ t̃k

t̃k –τ (t̃k )
ξμ

(	(
a(N + ε)

))}
�θ ≥ e–a(N+ε)τ̄ , k = , , . . . .

Thus

e	(a(N+ε))
(
t̃k , t̃k – τ (t̃k)

) ≥ e–a(N+ε)τ̄ , k = , , . . . . (.)

By use of (.) and (.), we obtain

x(t̃k) ≥ x
(
t̃k – τ (t̃k)

)
e–a(N+ε)τ̄ ≥ b

a
e–a(N+ε)τ̄ , k = , , . . . .

Letting ε → , then

lim inf
k→+∞

x(t̃k) ≥ b
a

e–aN τ̄ = m, k = , , . . . .

Similarly, we can get

lim inf
t→+∞ x(t) ≥ m.

The proof of Lemma . is completed. �

Similar to the proof of Lemma ., we can easily obtain the following results.

Lemma . Assume that x(t) >  on T, b ≥ , a, d > , t – τ (t) ∈ T, where τ (t) : T → R
+

is an rd-continuous function and τ̄ = supt∈T{τ (t)}.
(i) If x�(t) ≤ x(t)(b – ax(t – τ (t))) + d for t ≥ t, t ∈ T, with initial condition

x(t) = φ(t) ≥  for t ∈ [t – τ , t]T, φ(t) > , then

lim sup
t→+∞

x(t) ≤ –
d
b

+
(

d
b

+ x̄
)

ebτ̄ := M̃,

where x̄ is the unique positive root of x(ax – b) – d = .
Especially, if d = , then

M̃ =
b
a

ebτ̄ .

(ii) If x�(t) ≥ x(t)(b – ax(t – τ (t))) + d for t ≥ t, t ∈ T, with initial condition
x(t) = φ(t) ≥  for t ∈ [t – τ , t]T, φ(t) >  and there exists a positive constant Ñ > 
such that lim supt→+∞ x(t) ≤ Ñ < +∞ and –aÑ ∈R+, then

lim inf
t→+∞ x(t) ≥ b

a
exp

{
τ̄ log( – aÑμ̄)

μ̄

}
:= m̃,

where μ̄ = supθ∈T{μ(θ )}.
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Proof The proof of (i). Suppose that lim supt→+∞ x(t) = +∞. Then there exists a subse-
quence {tk}∞k= ⊂ T with tk → +∞ as k → +∞ such that

lim
k→+∞

x(tk) = +∞, x(tk) ≥ x̄, x�(t)|t=tk ≥ , k = , , . . . .

Thus, we have

x(tk)
(
b – ax

(
tk – τ (tk)

))
+ d ≥ ,

so

x
(
tk – τ (tk)

) ≤ 
a

(
b +

d
x(tk)

)
≤ 

a

(
b +

d
x̄

)
= x̄, k = , , . . . . (.)

Consider the following inequality:

x�(t) ≤ bx(t) + d, with x
(
t∗

)

> , t∗
 ≥ t.

Notice that

[
x(t)e	b

(
t, t∗


)]� = e	b

(
σ (t), t∗


)
x�(t) – be	b

(
σ (t), t∗


)
x(t)

= e	b
(
σ (t), t∗


)(

x�(t) – bx(t)
)

≤ de	b
(
t, t∗


)
. (.)

Integrating inequality (.) from t∗
 to t, we have

e	b
(
t, t∗


)
x(t) – x

(
t∗

) ≤

∫ t

t∗
de	b

(
σ (τ ), t∗


)
�τ

= –
d
b

∫ t

t∗

[
e	b

(
τ , t∗


)]�

�τ

= –
d
b
[
e	b

(
t, t∗


)

– 
]
,

then

x(t) ≤ –
d
b

+
(

d
b

+ x
(
t∗

))

eb
(
t, t∗


)
. (.)

In view of (.) and (.), we obtain

x(tk) ≤ –
d
b

+
(

d
b

+ x
(
tk – τ (tk)

))
eb

(
tk , tk – τ (tk)

)

≤ –
d
b

+
(

d
b

+ x̄
)

eb
(
tk , tk – τ (tk)

)
, k = , , . . . . (.)

For every θ ∈ T, if μ(θ ) = , then

ξμ(b) = b,
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if μ(θ ) �= , then

ξμ(b) =
log( + bμ(θ ))

μ(θ )
≤ b.

Hence, for every θ ∈ T, we have

∫ tk

tk –τ (tk )
ξμ(b)�θ ≤

∫ tk

tk –τ (tk )
b�θ ≤ bτ (tk) ≤ bτ̄ , k = , , . . . ,

so

exp

{∫ tk

tk –τ (tk )
ξμ(b)

}
�θ ≤ ebτ̄ , k = , , . . . .

Thus

eb
(
tk , tk – τ (tk)

) ≤ ebτ̄ , k = , , . . . . (.)

It follows from (.) and (.) that

x(tk) ≤ –
d
b

+
(

d
b

+ x̄
)

ebτ̄ = M̃, k = , , . . . ,

then

lim sup
k→+∞

x(tk) ≤ M̃.

Especially, if d = , then x̄ = b
a , we can easily know that

M̃ =
b
a

ebτ̄ .

Hence lim supk→+∞ x(tk) < +∞. This contradicts the assumption.
Similarly, we can get

lim sup
t→+∞

x(t) ≤ M̃.

The proof of (ii). Suppose that lim inft→+∞ x(t) = . Then there exists a subsequence
{t̃k}∞ ⊂ T with t̃k → +∞ as k → +∞ such that

lim
k→+∞

x(t̃k) = , x�(t)|t=t̃k ≤ , k = , , . . . .

We have b – ax(t̃k – τ (t̃k)) ≤ , then x(t̃k – τ (t̃k)) ≥ b
a . For any positive constant ε small

enough, it follows from lim supt→+∞ x(t) ≤ Ñ that there exists large enough T such that

x(t) ≤ Ñ + ε, t > T,
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then x(t̃k – τ (t̃k)) ≤ Ñ + ε for t̃k > T + τ (t̃k) and b – a(Ñ + ε) ≤ . So we have

x�(t̃k) ≥ x(t̃k)
(
b – ax

(
t̃k – τ (t̃k)

))
+ d

≥ x(t̃k)
(
b – ax

(
t̃k – τ (t̃k)

))
≥ –a(Ñ + ε)x(t̃k), k = , , . . . . (.)

Consider the following inequality:

x�(t) ≥ –a(Ñ + ε)x(t), with x
(
t∗

)

> , t∗
 ≥ t.

For t > t∗
 ≥ t, we have

x(t) ≥ x
(
t∗

)
e–a(Ñ+ε)

(
t, t∗


)
. (.)

From (.) and (.), we obtain

x(t̃k) ≥ x
(
t̃k – τ (t̃k)

)
e–a(N+ε)

(
t̃k , t̃k – τ (t̃k)

)
. (.)

For every θ ∈ T, if μ(θ ) = , then

ξμ

(
–a(Ñ + ε)

)
= –a(Ñ + ε),

if μ(θ ) �= , then

ξμ

(
–a(Ñ + ε)

)
=

log( – a(Ñ + ε)μ(θ ))
μ(θ )

≥ log( – a(Ñ + ε)μ̄)
μ̄

(
< –a(Ñ + ε)

)
.

Hence, for every θ ∈ T, we have

∫ t̃k

t̃k –τ (t̃k )
ξμ

(
–a(Ñ + ε)

)
�θ

≥ min

{∫ t̃k

t̃k –τ (t̃k )
–a(Ñ + ε)�θ ,

∫ t̃k

t̃k –τ (t̃k )

log( – a(Ñ + ε)μ̄)
μ̄

�θ

}

=
τ (t̃k) log( – a(Ñ + ε)μ̄)

μ̄

≥ τ̄ log( – a(Ñ + ε)μ̄)
μ̄

, k = , , . . . ,

so

exp

{∫ t̃k

t̃k –τ (t̃k )
ξμ

(
–a(Ñ + ε)

)}
�θ ≥ exp

{
τ̄ log( – a(Ñ + ε)μ̄)

μ̄

}
, k = , , . . . .
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Thus

e–a(Ñ+ε)
(
t̃k , t̃k – τ (t̃k)

) ≥ exp

{
τ̄ log( – a(Ñ + ε)μ̄)

μ̄

}
, k = , , . . . . (.)

By use of (.) and (.), we obtain

x(t̃k) ≥ x
(
t̃k – τ (t̃k)

)
exp

{
τ̄ log( – a(Ñ + ε)μ̄)

μ̄

}

≥ b
a

exp

{
τ̄ log( – a(Ñ + ε)μ̄)

μ̄

}
, k = , , . . . .

Letting ε → , we have

lim inf
k→+∞

x(t̃k) ≥ b
a

exp

{
τ̄ log( – aÑμ̄)

μ̄

}
= m̃, k = , , . . . .

Similarly, we can get

lim inf
t→+∞ x(t) ≥ m̃.

The proof of Lemma . is completed. �

3 Permanence
In this section, we give our main results about the permanence of system (.). For conve-
nience, we introduce the following notations:

xM
i = ln

{au
i +

∑n
j=,j �=i cu

ij

bl
i

exp

{
–

τ+ log( – (au
i +

∑n
j=,j �=i cu

ij)μ̄)
μ̄

}}
,

xm
i = ln

{
al

i
bu

i
exp

{
τ+ log( – bu

i exM
i μ̄)

μ̄

}}
, i = , , . . . , n,

where μ̄ = supt∈T{μ(t)}.

(H) al
i exp{ τ+ log(–bu

i exM
i μ̄)

μ̄
} > bu

i , –(au
i +

∑n
j=,j �=i cu

ij) ∈R+ and –bu
i exM

i ∈R+, i = , , . . . , n.

Lemma . Assume that (H)-(H) hold. Let x(t) = (x(t), x(t), . . . , xn(t)) be any solution
of system (.) with initial condition (.), then

xm
i ≤ lim inf

t→+∞ xi(t) ≤ lim sup
t→+∞

xi(t) ≤ xM
i , i = , , . . . , n.

Proof Let x(t) = (x(t), x(t), . . . , xn(t)) be any solution of system (.) with initial condition
(.). From (.) it follows that

x�
i (t) ≤ au

i +
n∑

j=,j �=i

cu
ij – bl

ie
xi(t–τi(t)), i = , , . . . , n.
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Let Ni(t) = exi(t), obviously Ni(t) > , the above inequality yields that

[
ln

(
Ni(t)

)]� ≤ au
i +

n∑
j=,j �=i

cu
ij – bl

iNi
(
t – τi(t)

)
, i = , , . . . , n.

In view of Lemma ., we have

N�
i (t)

Ni(σ (t))
≤ au

i +
n∑

j=,j �=i

cu
ij – bl

iNi
(
t – τi(t)

)
,

then

N�
i (t) ≤ Ni

(
σ (t)

)[
au

i +
n∑

j=,j �=i

cu
ij – bl

iNi
(
t – τi(t)

)]
, i = , , . . . , n.

By applying Lemma ., there exists a constant T such that

Ni(t) ≤ au
i +

∑n
j=,j �=i cu

ij

bl
i

exp

{
–

τ+ log( – (au
i +

∑n
j=,j �=i cu

ij)μ̄)
μ̄

}

for t ≥ T + τ+. That is, for i = , , . . . , n,

lim sup
t→+∞

xi(t)

≤ ln

{au
i +

∑n
j=,j �=i cu

ij

bl
i

exp

{
–

τ+ log( – (au
i +

∑n
j=,j �=i cu

ij)μ̄)
μ̄

}}

= xM
i .

On the other hand, from (.) it follows that

x�
i (t) ≥ al

i – bu
i exi(t–τi(t)), i = , , . . . , n.

Let Ni(t) = exi(t), obviously Ni(t) > , then the above inequality yields that

[
ln

(
Ni(t)

)]� ≥ al
i – bu

i Ni
(
t – τi(t)

)
.

In view of Lemma ., we have

N�
i (t)

Ni(t)
≥ al

i – bu
i Ni

(
t – τi(t)

)
,

then

N�
i (t) ≥ Ni(t)

[
al

i – bu
i Ni

(
t – τi(t)

)]
, i = , , . . . , n.

By applying Lemma . and al
i exp{ τ+ log(–bu

i exM
i μ̄)

μ̄
} > bu

i , there exists a constant T such
that

Ni(t) ≥ al
i

bu
i

exp

{
τ+ log( – bu

i exM
i μ̄)

μ̄

}
, i = , , . . . , n
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for t ≥ T + τ+. Therefore,

lim inf
t→+∞ xi(t) ≥ ln

{
al

i
bu

i
exp

{
τ+ log( – bu

i exM
i μ̄)

μ̄

}}
= xm

i , i = , , . . . , n.

The proof is complete. �

Theorem . Assume that (H)-(H) hold, then system (.) with initial condition (.) is
permanent.

4 Global attractivity
In this section, we study the global attractivity of system (.).

Definition . System (.) is said to be globally attractive if any two positive solu-
tions x(t) = (x(t), x(t), . . . , xn(t)) with initial value ϕ(s) = (ϕ(s),ϕ(s), . . . ,ϕn(s)) and y(t) =
(y(t), y(t), . . . , yn(t)) with initial value ψ(s) = (ψ(s),ψ(s), . . . ,ψn(s)) of system (.) satisfy

lim
t→∞

∣∣xi(t) – yi(t)
∣∣ = , i = , , . . . , n.

Theorem . Assume that (H)-(H) hold. Suppose further that

(H) γi > , where i = , , . . . , n,

γi = bl
ie

xm
i – μ̄

(
bu

i exM
i

) –
(bu

i exM
i )[μ̄bu

i exM
i + ](τ+ – τ–)

 – τ�

–
n∑

j=,j �=i

(cu
ije

xM
j )(μ̄bu

i exM
i + )(δ+ – δ–)

(dij + exm
j )( – δ�)

–
n∑

j=,j �=i

cu
jie

xM
i (μ̄bu

j exM
j + )

(dji + exm
i )

×
[

 +
bu

j exM
j (τ+ + δ+ – δ–)

 – δ�
+

exM
i bu

i (τ+ + δ+ – τ–)
 – τ�

]
,

where xm
i , xM

i are defined in Lemma . and μ̄ = supt∈T{μ(t)}.

Then system (.) is globally attractive.

Proof Assume that x(t) = (x(t), x(t), . . . , xn(t)) and y(t) = (y(t), y(t), . . . , yn(t)) are any
solutions of system (.) with the initial values ϕ(s) = (ϕ(s),ϕ(s), . . . ,ϕn(s)) and ψ(s) =
(ψ(s),ψ(s), . . . ,ψn(s)), respectively. In view of system (.), we have

⎧⎪⎨
⎪⎩

x�
i (t) = ai(t) – bi(t)exi(t–τi(t)) +

∑n
j=,j �=i cij(t) exj(t–δj(t))

dij+exj(t–δj(t)) , i = , , . . . , n,

y�
i (t) = ai(t) – bi(t)eyi(t–τi(t)) +

∑n
j=,j �=i cij(t) eyj(t–δj(t))

dij+eyj(t–δj(t)) , i = , , . . . , n,

then
(
xi(t) – yi(t)

)�

= –bi(t)
[
exi(t–τi(t)) – eyi(t–τi(t))]

+
n∑

j=,j �=i

cij(t)
(

exj(t–δj(t))

dij + exj(t–δj(t)) –
eyj(t–δj(t))

dij + eyj(t–δj(t))

)
, i = , , . . . , n. (.)
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Using the mean value theorem, we get

⎧⎨
⎩

exi(t–τi(t)) – eyi(t–τi(t)) = eξi(t)(xi(t – τi(t)) – yi(t – τi(t))),
exj(t–δj(t))

dij+exj(t–δj(t)) – eyj(t–δj(t))

dij+eyj(t–δj(t)) = eηj(t)

(dij+eηj(t))
(xj(t – δj(t)) – yj(t – δj(t))), (.)

where ξi(t) lies between xi(t – τi(t)) and yi(t – τi(t)), ηj(t) lies between xj(t – δj(t)) and
yj(t – δj(t)), i, j = , , . . . , n, i �= j. Then, by use of (.), (.) can be written as

(
xi(t) – yi(t)

)�

= –bi(t)eξi(t)(xi(t – τi) – yi(t – τi)
)

+
n∑

j=,j �=i

cij(t)
eηj(t)

(dij + eηj(t))

(
xj(t – δj) – yj(t – δj)

)
, i = , , . . . , n.

Let ui(t) = xi(t) – yi(t), then

u�
i (t) = –bi(t)eξi(t)ui

(
t – τi(t)

)
+

n∑
j=,j �=i

cij(t)
eηj(t)

(dij + eηj(t))
uj

(
t – δj(t)

)
,

i = , , . . . , n.

Consider the Lyapunov function

V (t) =
n∑

i=

Vi(t),

Vi(t) = Vi(t) + Vi(t) + Vi(t) + Vi(t) + Vi(t),

where

Vi(t) =
∣∣ui(t)

∣∣,
Vi(t) =

(bu
i exM

i )[μ̄bu
i exM

i + ]
 – τ�

∫ –τ–

–τ+

∫ t

s+t

∣∣ui(r)
∣∣�r�s,

Vi(t) =
n∑

j=,j �=i

cu
ije

xM
j bu

i exM
i [μ̄bu

i exM
i + ]

(dij + exm
j )( – δ�)

∫ –δ–

–τ+–δ+

∫ t

s+t

∣∣uj(r)
∣∣�r�s,

Vi(t) =
n∑

j=,j �=i

cu
ije

xM
j bu

j (μ̄bu
i exM

i + )

(dij + exm
j )( – τ�)

∫ –τ–

–τ+–δ+

∫ t

s+t

∣∣uj(r)
∣∣�r�s,

Vi(t) =
n∑

j=,j �=i

(cu
ije

xM
j )(μ̄bu

i exM
i + )

(dij + exm
j )( – δ�)

∫ –δ–

–δ+

∫ t

s+t

∣∣ui(r)
∣∣�r�s,

then

D+V �
i (t)

≤ sign
(
uσ

i (t)
)
u�

i (t)
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= sign
(
uσ

i (t)
)[

–bi(t)eξi(t)ui
(
t – τi(t)

)
+

n∑
j=,j �=i

cij(t)
eηj(t)

(dij + eηj(t))
uj

(
t – δj(t)

)]

= – sign
(
uσ

i (t)
)
bi(t)eξi(t)[ui(t) + ui

(
t – τi(t)

)
– ui(t)

]

+
n∑

j=,j �=i

cij(t)
eηj(t)

(dij + eηj(t))
sign

(
uσ

i (t)
)[

uj(t) + uj
(
t – δj(t)

)
– uj(t)

]

≤ –bi(t)eξi(t) sign
(
uσ

i (t)
)
ui(t) + bu

i exM
i

∫ t

t–τi(t)

∣∣u�
i (s)

∣∣�s

+
n∑

j=,j �=i

cu
ij

exM
j

(dij + exm
j )

∣∣uj(t)
∣∣ +

n∑
j=,j �=i

cu
ij

exM
j

(dij + exm
j )

∫ t

t–δj(t)

∣∣u�
j (s)

∣∣�s

≤ –bi(t)eξi(t) sign
(
uσ

i (t)
)[

uσ
i (t) – μ(t)u�

i (t)
]

+ bu
i exM

i

∫ t

t–τi(t)

∣∣u�
i (s)

∣∣�s

+
n∑

j=,j �=i

cu
ij

exM
j

(dij + exm
j )

∣∣uj(t)
∣∣ +

n∑
j=,j �=i

cu
ij

exM
j

(dij + exm
j )

∫ t

t–δj(t)

∣∣u�
j (s)

∣∣�s

≤ –bl
ie

xm
i
∣∣ui(t) + μ(t)u�

i (t)
∣∣ + μ̄bu

i exM
i

∣∣u�
i (t)

∣∣ + bu
i exM

i

∫ t

t–τi(t)

∣∣u�
i (s)

∣∣�s

+
n∑

j=,j �=i

cu
ij

exM
j

(dij + exm
j )

∣∣uj(t)
∣∣ +

n∑
j=,j �=i

cu
ij

exM
j

(dij + exm
j )

∫ t

t–δj(t)

∣∣u�
j (s)

∣∣�s

≤ –bl
ie

xm
i
∣∣ui(t)

∣∣ + μ̄bu
i exM

i
∣∣u�

i (t)
∣∣ + bu

i exM
i

∫ t

t–τi(t)

∣∣u�
i (s)

∣∣�s

+
n∑

j=,j �=i

cu
ij

exM
j

(dij + exm
j )

∣∣uj(t)
∣∣ +

n∑
j=,j �=i

cu
ij

exM
j

(dij + exm
j )

∫ t

t–δj(t)

∣∣u�
j (s)

∣∣�s

≤ –bl
ie

xm
i
∣∣ui(t)

∣∣ + μ̄bu
i exM

i

∣∣∣∣∣–bi(t)eξi(t)ui
(
t – τi(t)

)

+
n∑

j=,j �=i

cij(t)
eηj(t)

(dij + eηj(t))
uj

(
t – δj(t)

)∣∣∣∣∣ + bu
i exM

i

∫ t

t–τi(t)

∣∣u�
i (s)

∣∣�s

+
n∑

j=,j �=i

cu
ij

exM
j

(dij + exm
j )

∣∣uj(t)
∣∣ +

n∑
j=,j �=i

cu
ij

exM
j

(dij + exm
j )

∫ t

t–δj(t)

∣∣u�
j (s)

∣∣�s

≤ –bl
ie

xm
i
∣∣ui(t)

∣∣ + μ̄
(
bu

i exM
i

)∣∣ui
(
t – τi(t)

)∣∣
+

n∑
j=,j �=i

μ̄bu
i cu

ije
xM

i exM
j

(dij + exm
j )

∣∣uj
(
t – δj(t)

)∣∣

+ bu
i exM

i

∫ t

t–τi(t)

∣∣u�
i (s)

∣∣�s +
n∑

j=,j �=i

cu
ij

exM
j

(dij + exm
j )

∣∣uj(t)
∣∣
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+
n∑

j=,j �=i

cu
ij

exM
j

(dij + exm
j )

∫ t

t–δj(t)

∣∣u�
j (s)

∣∣�s

≤ –bl
ie

xm
i
∣∣ui(t)

∣∣ + μ̄
(
bu

i exM
i

)∣∣ui(t)
∣∣ + μ̄

(
bu

i exM
i

)
∫ t

t–τi(t)

∣∣u�
i (s)

∣∣�s

+ bu
i exM

i

∫ t

t–τi(t)

∣∣u�
i (s)

∣∣�s +
n∑

j=,j �=i

μ̄bu
i cu

ije
xM

i exM
j

(dij + exm
j )

∣∣uj(t)
∣∣

+
n∑

j=,j �=i

cu
ij

exM
j

(dij + exm
j )

∣∣uj(t)
∣∣ +

n∑
j=,j �=i

μ̄bu
i cu

ije
xM

i exM
j

(dij + exm
j )

∫ t

t–δj(t)

∣∣u�
j (s)

∣∣�s

+
n∑

j=,j �=i

cu
ij

exM
j

(dij + exm
j )

∫ t

t–δj(t)

∣∣u�
j (s)

∣∣�s

≤ –bl
ie

xm
i
∣∣ui(t)

∣∣ + μ̄
(
bu

i exM
i

)∣∣ui(t)
∣∣ +

[
μ̄

(
bu

i exM
i

) + bu
i exM

i
] ∫ t

t–τi(t)

∣∣u�
i (s)

∣∣�s

+
n∑

j=,j �=i

cu
ije

xM
j (μ̄bu

i exM
i + )

(dij + exm
j )

∣∣uj(t)
∣∣

+
n∑

j=,j �=i

cu
ije

xM
j (μ̄bu

i exM
i + )

(dij + exm
j )

∫ t

t–δj(t)

∣∣u�
j (s)

∣∣�s

≤ –bl
ie

xm
i
∣∣ui(t)

∣∣ + μ̄
(
bu

i exM
i

)∣∣ui(t)
∣∣

+ bu
i exM

i
[
μ̄bu

i exM
i + 

] ∫ t

t–τi(t)

∣∣∣∣∣–bi(s)eξi(s)ui
(
s – τi(s)

)

+
n∑

j=,j �=i

cij(s)eηj(s)

(dij + eηj(s))
uj

(
s – δj(s)

)∣∣∣∣∣�s +
n∑

j=,j �=i

cu
ije

xM
j (μ̄bu

i exM
i + )

(dij + exm
j )

∣∣uj(t)
∣∣

+
n∑

j=,j �=i

cu
ije

xM
j (μ̄bu

i exM
i + )

(dij + exm
j )

∫ t

t–δj(t)

∣∣∣∣∣–bj(s)eξj(s)uj
(
s – τj(t)

)

+
n∑

i=,j �=i

cji(s)eηi(s)

(dji + eηi(s)) ui
(
s – δi(t)

)∣∣∣∣∣�s

≤ –bl
ie

xm
i
∣∣ui(t)

∣∣ + μ̄
(
bu

i exM
i

)∣∣ui(t)
∣∣

+
(
bu

i exM
i

)[μ̄bu
i exM

i + 
] ∫ t

t–τi(t)

∣∣ui
(
s – τi(s)

)∣∣�s

+
n∑

j=,j �=i

cu
ije

xM
j bu

i exM
i [μ̄bu

i exM
i + ]

(dij + exm
j )

∫ t

t–τi(t)

∣∣uj
(
s – δj(s)

)∣∣�s

+
n∑

j=,j �=i

cu
ije

xM
j (μ̄bu

i exM
i + )

(dij + exm
j )

∣∣uj(t)
∣∣
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+
n∑

j=,j �=i

cu
ije

xM
j bu

j (μ̄bu
i exM

i + )

(dij + exm
j )

∫ t

t–δj(t)

∣∣uj
(
s – τj(t)

)∣∣�s

+
(cu

ije
xM

j )(μ̄bu
i exM

i + )

(dij + exm
j )

∫ t

t–δj(t)

∣∣ui
(
s – δi(t)

)∣∣�s

≤ –bl
ie

xm
i
∣∣ui(t)

∣∣ + μ̄
(
bu

i exM
i

)∣∣ui(t)
∣∣

+
(bu

i exM
i )[μ̄bu

i exM
i + ]

 – τ�

∫ –τ–

–τ+

∣∣ui(s + t)
∣∣�s

+
n∑

j=,j �=i

cu
ije

xM
j bu

i exM
i [μ̄bu

i exM
i + ]

(dij + exm
j )( – δ�)

∫ –δ–

–τ+–δ+

∣∣uj(s + t)
∣∣�s

+
n∑

j=,j �=i

cu
ije

xM
j (μ̄bu

i exM
i + )

(dij + exm
j )

∣∣uj(t)
∣∣

+
n∑

j=,j �=i

cu
ije

xM
j bu

j (μ̄bu
i exM

i + )

(dij + exm
j )( – τ�)

∫ –τ–

–τ+–δ+

∣∣uj(s + t)
∣∣�s

+
n∑

j=,j �=i

(cu
ije

xM
j )(μ̄bu

i exM
i + )

(dij + exm
j )( – δ�)

∫ –δ–

–δ+

∣∣ui(s + t)
∣∣�s, (.)

D+V �
i (t) =

(bu
i exM

i )[μ̄bu
i exM

i + ]
 – τ�

∫ –τ–

–τ+

[∣∣ui(t)
∣∣ –

∣∣ui(t + s)
∣∣]�s

=
(bu

i exM
i )[μ̄bu

i exM
i + ](τ+ – τ–)

 – τ�

∣∣ui(t)
∣∣

–
(bu

i exM
i )[μ̄bu

i exM
i + ]

 – τ�

∫ –τ–

–τ+

∣∣ui(t + s)
∣∣�s, (.)

D+V �
i (t) =

n∑
j=,j �=i

cu
ije

xM
j bu

i exM
i [μ̄bu

i exM
i + ]

(dij + exm
j )( – δ�)

∫ –δ–

–τ+–δ+

[∣∣uj(t)
∣∣ –

∣∣uj(t + s)
∣∣]�s

=
n∑

j=,j �=i

cu
ije

xM
j bu

i exM
i [μ̄bu

i exM
i + ](τ+ + δ+ – δ–)

(dij + exm
j )( – δ�)

∣∣uj(t)
∣∣

–
n∑

j=,j �=i

cu
ije

xM
j bu

i exM
i [μ̄bu

i exM
i + ]

(dij + exm
j )( – δ�)

∫ –δ–

–τ+–δ+

∣∣uj(t + s)
∣∣�s, (.)

D+V �
i (t) =

n∑
j=,j �=i

cu
ije

xM
j bu

j (μ̄bu
i exM

i + )

(dij + exm
j )( – τ�)

∫ –τ–

–τ+–δ+

[∣∣uj(t)
∣∣ –

∣∣uj(t + s)
∣∣]�s

=
n∑

j=,j �=i

cu
ije

xM
j bu

j (μ̄bu
i exM

i + )(τ+ + δ+ – τ–)

(dij + exm
j )( – τ�)

∣∣uj(t)
∣∣

–
n∑

j=,j �=i

cu
ije

xM
j bu

j (μ̄bu
i exM

i + )

(dij + exm
j )( – τ�)

∣∣uj(t + s)
∣∣�s, (.)
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D+V �
i (t) =

n∑
j=,j �=i

(cu
ije

xM
j )(μ̄bu

i exM
i + )

(dij + exm
j )( – δ�)

∫ –δ–

–δ+

[∣∣ui(t)
∣∣ –

∣∣ui(t + s)
∣∣]�s

=
n∑

j=,j �=i

(cu
ije

xM
j )(μ̄bu

i exM
i + )(δ+ – δ–)

(dij + exm
j )( – δ�)

∣∣ui(t)
∣∣

–
n∑

j=,j �=i

(cu
ije

xM
j )(μ̄bu

i exM
i + )

(dij + exm
j )( – δ�)

∫ –δi

–δj–δi

∣∣ui(t + s)
∣∣�s. (.)

In view of (.)-(.), we can obtain

D+V �
i (t)

= D+V �
i (t) + D+V �

i (t) + D+V �
i (t) + D+V �

i (t) + D+V �
i (t)

≤ –bl
ie

xm
i
∣∣ui(t)

∣∣ + μ̄
(
bu

i exM
i

)∣∣ui(t)
∣∣ +

n∑
j=,j �=i

cu
ije

xM
j (μ̄bu

i exM
i + )

(dij + exm
j )

∣∣uj(t)
∣∣

+
(bu

i exM
i )[μ̄bu

i exM
i + ](τ+ – τ–)

 – τ�

∣∣ui(t)
∣∣

+
n∑

j=,j �=i

cu
ije

xM
j bu

i exM
i [μ̄bu

i exM
i + ](τ+ + δ+ – δ–)

(dij + exm
j )( – δ�)

∣∣uj(t)
∣∣

+
n∑

j=,j �=i

cu
ije

xM
j bu

j (μ̄bu
i exM

i + )(τ+ + δ+ – τ–)

(dij + exm
j )( – τ�)

∣∣uj(t)
∣∣

+
n∑

j=,j �=i

(cu
ije

xM
j )(μ̄bu

i exM
i + )(δ+ – δ–)

(dij + exm
j )( – δ�)

∣∣ui(t)
∣∣

= –

[
bl

ie
xm

i – μ̄
(
bu

i exM
i

) –
(bu

i exM
i )[μ̄bu

i exM
i + ](τ+ – τ–)

 – τ�

–
n∑

j=,j �=i

(cu
ije

xM
j )(μ̄bu

i exM
i + )(δ+ – δ–)

(dij + exm
j )( – δ�)

]∣∣ui(t)
∣∣

+

[ n∑
j=,j �=i

cu
ije

xM
j (μ̄bu

i exM
i + )

(dij + exm
j )

+
n∑

j=,j �=i

cu
ije

xM
j bu

i exM
i [μ̄bu

i exM
i + ](τ+ + δ+ – δ–)

(dij + exm
j )( – δ�)

+
n∑

j=,j �=i

cu
ije

xM
j bu

j (μ̄bu
i exM

i + )(τ+ + δ+ – τ–)

(dij + exm
j )( – τ�)

]∣∣uj(t)
∣∣

= –

{
bl

ie
xm

i – μ̄
(
bu

i exM
i

) –
(bu

i exM
i )[μ̄bu

i exM
i + ](τ+ – τ–)

 – τ�

–
n∑

j=,j �=i

(cu
ije

xM
j )(μ̄bu

i exM
i + )(δ+ – δ–)

(dij + exm
j )( – δ�)

–
n∑

j=,j �=i

cu
jie

xM
i (μ̄bu

j exM
j + )

(dji + exm
i )

–
n∑

j=,j �=i

cu
jie

xM
i bu

j exM
j [μ̄bu

j exM
j + ](τ+ + δ+ – δ–)

(dji + exm
i )( – δ�)
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–
n∑

j=,j �=i

cu
jie

xM
i bu

i (μ̄bu
j exM

j + )(τ+ + δ+ – τ–)

(dji + exm
i )( – τ�)

}∣∣ui(t)
∣∣

= –

{
bl

ie
xm

i – μ̄
(
bu

i exM
i

) –
(bu

i exM
i )[μ̄bu

i exM
i + ](τ+ – τ–)

 – τ�

–
n∑

j=,j �=i

(cu
ije

xM
j )(μ̄bu

i exM
i + )(δ+ – δ–)

(dij + exm
j )( – δ�)

–
n∑

j=,j �=i

cu
jie

xM
i (μ̄bu

j exM
j + )

(dji + exm
i )

×
[

 +
bu

j exM
j (τ+ + δ+ – δ–)

 – δ�
+

exM
i bu

i (τ+ + δ+ – τ–)
 – τ�

]}∣∣ui(t)
∣∣

= –γi
∣∣ui(t)

∣∣. (.)

From (.), we get

D+V �(t) ≤
n∑

i=

–γi
∣∣ui(t)

∣∣, t ∈ T,

then

D+V �(t) ≤ , t ∈ T,

and hence

V (t) < V (t), t ≥ t, t ∈ T. (.)

By use of (.) and (.), we have

∫ t

t

n∑
i=

γi
∣∣ui(s)

∣∣�s ≤ V (t) – V (t), t ≥ t, t ∈ T, i = , , . . . , n.

Consequently,

∫ ∞

t

∣∣ui(s)
∣∣�s ≤ ∞, t ∈ T

and ui(t) = xi(t) – yi(t) →  for t → ∞, i = , , . . . , n. This completes the proof. �

5 Almost periodic solutions
In this section, we investigate the existence and uniqueness of almost periodic solutions
of system (.) by use of the almost periodic functional hull theory on time scales.

Let {sp} ⊂  be any sequence such that sp → +∞ as p → +∞. According to Lemma .,
taking a subsequence if necessary, we have

ai(t + sp) → a∗
i (t), bi(t + sp) → b∗

i (t), cij(t + sp) → c∗
ij(t),

τi(t + sp) → τ ∗
i (t), δj(t + sp) → δ∗

j (t), p → +∞
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for t ∈ T, i, j = , , . . . , n, i �= j. Then we get the hull equations of system (.) as follows:

x�
i (t) = a∗

i (t) – b∗
i (t)exi(t–τ∗

i (t)) +
n∑

j=,j �=i

c∗
ij(t)

exj(t–δ∗
j (t))

dij + exj(t–δ∗
j (t)) , i = , , . . . , n. (.)

By use of the almost periodic theory on time scales and Lemma ., it is easy to obtain
the following lemma.

Lemma . If system (.) satisfies (H)-(H), then the hull equations (.) also satisfy (H)-
(H).

Theorem . Assume that (H)-(H) hold, then there exists a unique strictly positive al-
most periodic solution of system (.).

Proof By Lemma ., in order to prove the existence of a unique strictly positive almost
periodic solution of system (.), we only need to prove that each hull equation of system
(.) has a unique strictly positive solution.

Firstly, we prove the existence of a strictly positive solution of hull equations (.). By the
almost periodicity of ai(t), bi(t) and cij(t), i, j = , , . . . , n, i �= j, for an arbitrary sequence
ω = {ωp} ⊂  with ωp → +∞ as p → +∞, we have, for i, j = , , . . . , n, i �= j,

a∗
i (t + ωp) → a∗

i (t), b∗
i (t + ωp) → b∗

i (t), c∗
ij(t + ωp) → c∗

ij(t),

τ ∗
i (t + ωp) → τ ∗

i (t), δ∗
j (t + ωp) → δ∗

j (t), p → +∞.

Suppose that x(t) = (x(t), x(t), . . . , xn(t)) is any solution of hull equations (.). Let ε be
an arbitrary small positive number. Since (H)-(H) hold, by the proof of Lemma ., then
there exists t ∈ T (t ≥ t) such that

xm
i – ε ≤ xi(t) ≤ xM

i + ε for t ≥ t, i = , , . . . , n.

Write xip(t) = xi(t + ωp) for t ≥ t, p = , , . . . , i = , , . . . , n. For any positive integer q, it is
easy to see that there exist sequences {xip(t) : p ≥ q} such that the sequences {xip(t)} have
subsequences, denoted by {xip(t)} again, converging on any finite interval of T as p → +∞,
respectively. Thus we have sequences {yi(t)} such that

xip(t) → yi(t) for t ∈ T, as p → +∞, i = , , . . . , n.

Since

x�
ip(t) = a∗

i (t + ωp) – b∗
i (t + ωp)exi(t+ωp–τi(t+ωp))

+
n∑

j=,j �=i

c∗
ij(t + ωp)

exj(t+ωp–δj(t+ωp))

dij + exj(t+ωp–δj(t+ωp)) ,

by use of Lemma . in [], we have

y�
i (t) = a∗

i (t) – b∗
i (t)eyi(t–τ∗

i (t)) +
n∑

j=,j �=i

c∗
ij(t)

eyj(t–δ∗
j (t))

dij + eyj(t–δ∗
j (t)) , i = , , . . . , n.
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We can easily see that y(t) = (y(t), y(t), . . . , yn(t)) is a solution of system (.) and xm
i – ε ≤

yi(t) ≤ xM
i +ε for t ∈ T, i = , , . . . , n. Since ε is an arbitrary small positive number, it follows

that xm
i ≤ yi(t) ≤ xM

i for t ∈ T, i = , , . . . , n, which implies that each of the hull equations
(.) has at least one strictly positive solution.

Now, we prove the uniqueness of the strictly positive solution of each of the hull equa-
tions (.). Suppose that the hull equations (.) have two arbitrary strictly positive solu-
tions x∗(t) = (x∗

 (t), x∗
(t), . . . , x∗

n(t)) and y∗(t) = (y∗
 (t), y∗

(t), . . . , y∗
n(t)). Let u∗

i (t) = x∗
i (t)–y∗

i (t),
i = , , . . . , n. Consider a Lyapunov function

V ∗(t) =
n∑

i=

V ∗
i (t),

where

V ∗
i (t) = V ∗

i(t) + V ∗
i(t) + V ∗

i(t) + V ∗
i(t) + V ∗

i(t),

V ∗
i(t) =

∣∣u∗
i (t)

∣∣,
V ∗

i(t) =
(bu

i exM
i )[μ̄bu

i exM
i + ]

 – τ�

∫ –τ–

–τ+

∫ t

s+t

∣∣u∗
i (r)

∣∣�r�s,

V ∗
i(t) =

n∑
j=,j �=i

cu
ije

xM
j bu

i exM
i [μ̄bu

i exM
i + ]

(dij + exm
j )( – δ�)

∫ –δ–

–τ+–δ+

∫ t

s+t

∣∣u∗
j (r)

∣∣�r�s,

V ∗
i(t) =

n∑
j=,j �=i

cu
ije

xM
j bu

j (μ̄bu
i exM

i + )

(dij + exm
j )( – τ�)

∫ –τ–

–τ+–δ+

∫ t

s+t

∣∣u∗
j (r)

∣∣�r�s,

V ∗
i(t) =

n∑
j=,j �=i

(cu
ije

xM
j )(μ̄bu

i exM
i + )

(dij + exm
j )( – δ�)

∫ –δ–

–δ+

∫ t

s+t

∣∣u∗
i (r)

∣∣�r�s.

Similar to the proof of Theorem ., we have

D+(
V ∗)�(t) ≤ –

n∑
i=

γi
∣∣u∗

i (t)
∣∣. (.)

From (.), we get

D+(
V ∗)�(t) ≤ , t ∈ T,

and hence

V ∗(t) > V ∗(t), t ≤ t, t ∈ T.

Then we have

∫ t

t
γi

∣∣u∗
i (s)

∣∣�s ≤ V ∗(t) – V ∗(t), t ≤ t, t ∈ T, i = , , . . . , n.
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Consequently,

∫ t

–∞

∣∣u∗
i (s)

∣∣�s ≤ ∞, t ∈ T,

and u∗
i (t) = x∗

i (t) – y∗
i (t) →  for t → –∞, i = , , . . . , n.

For i = , , . . . , n, let

Pi =  +
(bu

i exM
i )[μ̄bu

i exM
i + ](τ+)

 – τ�

+
n∑

j=,j �=i

cu
ije

xM
j bu

i exM
i [μ̄bu

i exM
i + ](τ+ + δ+)

(dij + exm
j )( – δ�)

+
n∑

j=,j �=i

cu
ije

xM
j bu

j (μ̄bu
i exM

i + )(τ+ + δ+)

(dij + exm
j )( – τ�)

+
n∑

j=,j �=i

(cu
ije

xM
j )(μ̄bu

i exM
i + )(δ+)

(dij + exm
j )( – δ�)

.

For arbitrary ε > , there exists a positive integer K such that

∣∣x∗
i (t) – y∗

i (t)
∣∣ <

ε

Pi
, ∀t < –K, i = , , . . . , n.

Hence, for i, j = , , . . . , n with i �= j, one has

V ∗
i(t) ≤ ε

Pi
, ∀t < –K,

V ∗
i(t) ≤ (bu

i exM
i )[μ̄bu

i exM
i + ](τ+)

 – τ�

ε

Pi
, ∀t < –K,

V ∗
i(t) ≤

n∑
j=,j �=i

cu
ije

xM
j bu

i exM
i [μ̄bu

i exM
i + ](τ+ + δ+)

(dij + exm
j )( – δ�)

ε

Pi
, ∀t < –K,

V ∗
i(t) ≤

n∑
j=,j �=i

cu
ije

xM
j bu

j (μ̄bu
i exM

i + )(τ+ + δ+)

(dij + exm
j )( – τ�)

ε

Pi
, ∀t < –K,

V ∗
i(t) ≤

n∑
j=,j �=i

(cu
ije

xM
j )(μ̄bu

i exM
i + )(δ+)

(dij + exm
j )( – δ�)

ε

Pi
, ∀t < –K,

which imply that

V ∗(t) < ε, ∀t < –K.

So,

lim
t→–∞ V ∗(t) = .



Li and Wang Advances in Difference Equations  (2015) 2015:230 Page 27 of 29

Note that V ∗(t) is a nonincreasing nonnegative function on T and that V ∗(t) = . That is,

x∗
i (t) = y∗

i (t), t ∈ T, i = , , . . . , n.

Therefore, each of the hull equations (.) has a unique strictly positive solution. In view
of the previous discussion, any of the hull equations (.) has a unique strictly positive so-
lution. By Lemma ., system (.) has a unique strictly positive almost periodic solution.
The proof is completed. �

6 An example
Consider the following multispecies Lotka-Volterra mutualism system with time delays
on almost periodic time scale T:

x�
i (t) = ai(t) – bi(t)exi(t–τi(t))

+
∑

j=,j �=i

cij(t)
exj(t–δj(t))

dij + exj(t–δj(t)) , i = , , t ∈ T. (.)

Example . When we take T = R, then μ(t) = . Let

a(t) = . – . sin(
√

t), a(t) = . – . sin(
√

t),

b(t) = . – . cos(
√

t), b(t) = . – . sin(
√

t),

τ(t) = . – . cos t, τ(t) = . + . sin t,

δ(t) = . – . cos t, δ(t) = .,

(
cij(t)

)
× =

(
. + . sin(t) . + . cos(

√
t)

. + . cos(
√

t) . + . sin(
√

t)

)
,

(dij)× =

(
. 
 .

)
,

then

au
 = ., al

 = ., au
 = ., al

 = ., bu
 = ., bl

 = .,

bu
 = ., bl

 = ., cu
 = ., cu

 = ., cu
 = ., cu

 = .,

τ+ = ., τ– = ., δ+ = ., δ– = .,

τ� = max
≤i≤

sup
t∈R

{
τ ′

i (t)
}

= ., δ� = max
≤j≤

sup
t∈R

{
δ′

j (t)
}

= ..

By calculating, we have

xM
 = ln

{
au

 + cu


bl


exp
{(

au
 + cu


)
τ+}} ≈ ., xm

 = ln

{
al


bu


e–bu

 exM
 τ+

}
≈ .,

xM
 = ln

{
au

 + cu


bl


exp
{(

au
 + cu


)
τ+}} ≈ ., xm

 = ln

{
al


bu


e–bu

 exM
 τ+

}
≈ .,
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then

γ ≈ . > , γ ≈ . > .

Thus, (H)-(H) are satisfied. According to Theorem ., Theorem . and Theorem .,
system (.) has a unique almost periodic solution, which is globally attractive.

Example . When we take T = Z, then μ(t) = . Let

a(t) = . – . sin(
√

t), a(t) = . – . sin(
√

t),

b(t) = ., b(t) = ., τ(t) =
 + (–)t

,
, τ(t) = .,

δ(t) =
 + (–)t

,
, δ(t) = .,

(
cij(t)

)
× =

(
. + . sin(t) . + . cos(

√
t)

. + . cos(
√

t) . + . sin(
√

t)

)
,

(dij)× =

(
. 
 .

)
,

then

au
 = ., al

 = ., au
 = ., al

 = ., bu
 = bl

 = .,

bu
 = bl

 = ., cu
 = ., cu

 = ., cu
 = ., cu

 = .,

τ+ = ., τ– = ., δ+ = ., δ– = .,

τ� = max
≤i≤

sup
t∈Z

{
�τi(t)

}
= ., δ� = max

≤j≤
sup
t∈Z

{
�δj(t)

}
= ..

By calculating, we have

xM
 = ln

{
au

 + cu


bl


exp
{

–τ+ log
(
 –

(
au

 + cu


))}} ≈ .,

xm
 = ln

{
al


bu


exp

{
τ+ log

(
 – bu

 exM


)}} ≈ .,

xM
 = ln

{
au

 + cu


bl


exp
{

–τ+ log
(
 –

(
au

 + cu


))}} ≈ .,

xm
i = ln

{
al


bu


exp

{
τ+ log

(
 – bu

exM


)}} ≈ .,

then

γ ≈ . > , γ ≈ . > .

Thus, (H)-(H) are satisfied. According to Theorem ., Theorem . and Theorem .,
system (.) has a unique almost periodic solution, which is globally attractive.
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