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1 Introduction

Let D = {z € C: |z| < 1} be the open unit disk in the complex plane C and H (D) the class of
all analytic functions on . Let ¢ be an analytic self-map of D and ¢ € H(D). The weighted
composition operator W, ;, on H(DD) is defined by

Wouf (2) = ¥ (2)f (¢(2)), zeD.

If ¥ = 1, it becomes the composition operator, usually denoted by C,,. If ¢(z) = z, it be-
comes the multiplication operator, usually denoted by My,. Hence, since W,, , = M, C,, it
is a product-type operator. A standard problem is to provide function theoretic charac-
terizations when ¢ and v induce a bounded or compact weighted composition operator
(see, e.g., [1-5] and the references therein).

A systematic study of other product-type operators started by Stevic et al. since the
publication of papers [6] and [7]. Before that there were a few papers in the topic, e.g., [8].
The differentiation operator on H(D) is defined by

Df(2)=f(z), zeD.

The next two product-type operators DC,, and C,D, attracted some attention first (see,
e.g., [9-12] and the references therein). The publication of [7] attracted some attention in
product-type operators involving integral-type ones (see, e.g., [13—17] and the references
therein). Since that time there has been a great interest in various product-type operators
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on spaces of holomorphic functions. For example, the six product-type operators from
Bergman spaces to Bloch type spaces

Mm,C,pD,  MyDC,  C,M,D, C,DMy,, DC,My,, DMyC, (1)

were studied by Sharma in [18]. The next product-type operators W, ,D and DW,,,,
which were considered in [19] and [20], are included in (1) as the first and sixth opera-
tors, respectively. For some other product-type operators, see, e.g., [14, 21-29] and the
references therein.

In order to treat operators in (1) in a unified manner, Stevi¢ and Sharma introduced the
following so-called Stevi¢-Sharma operator:

Ty in0f (2) = Uif (0(2) + ¥2(2)f (0(2)), f € HD). ()

For example, in [30] and [31] the operator was studied on the weighted Bergman space.
By using Stevi¢-Sharma operator all six possible products of composition, multiplica-
tion, and differentiation operators can be obtained. More specifically we have

MyCoD=Toye  MyDCy=Toyy e CoMyD = Toyop,ps

CoDMy = Tyrop,yop,pr DMy Cyp =Ty yy'p» DCyMy =Ty ope'yop.p-

Furthermore, by using this operator all possible difference operators of product-type op-
erators in (1) can also be obtained. For example

My, CoD = My, DCy = Top,—yrg'pr My, CoD = CoMy, D = To,p1—yy00,05

My, CyD - CyDMy, = T—wéow,m—moww My, CyD - DMy, C,, = wag,m—wwcw

My,C,D-DC,My, =T

o Whopn-ginopwr My DCyp = CoMyy D = To,p1 /300,05

M,,DC, - C,DMy, = T

— Y00, Y1¢'~ 200,07 M¢'1DC¢ _DM¢'2 C‘/’ = T—Vfﬁ,(llfl—lﬂz)

[

My, DCy — DCy My, = T—w’wﬁow,mwﬂw’llnow,w'

CoMy,D — CuDMyy = T_yy g, (py—try)op.r

CoMy,D - DMy, C, = T—wﬁ,ww—ww’,w’

CoMy,D - DC, My, = T*(ﬂ"//ﬁcw,llllowﬂﬂ/'//zmﬂ»(ﬁ’

CyDMy, - DMy, C, = Tw{orp—wé,%ow—wzw,w’

CoDMy, - DCyMy, = Tl/f{ow—w/wzwmow—w’xbzow,w’

DMy, Cp = DCoMy, = Tyt g0/ ¢/ nop

etc., where Y1, ¥, € H(D). In this paper we characterize the boundedness and compactness
of the Stevi¢-Sharma operator from the Zygmund space to the Bloch-Orlicz space. As
the applications of our main results, readers can obtain some characterizations for the
boundedness and compactness for all six product-type operators in (1), as well as above
mentioned differences operators from the Zygmund space to the Bloch-Orlicz space.
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Now we present the needed spaces and some facts. For « > 0, the weighted Zygmund
space Z, consists of all f € H(D) such that

sup(l - |z|2)av/’(z)| < 00.

zeD

It is a Banach space with the norm
Ifllz, = |[f(0)] + |f'(0)] + suﬂg(l —121*)"|f"(2)].
ze

When « =1, this space is the Zygmund space and is denoted by Z [32]. From Zygmund’s
theorem (see Theorem 5.3 in [33]), we know that f € Z if and only if f is continuous on D
and

i(0+h) i0-h)) _ 9f (el
wp SETLf D) 2]
h>0,0eR h

For some results on Zygmund-type spaces and some concrete operators on them, see, for
example, [15, 23, 32] and the references therein.

Recently, the Bloch-Orlicz space was introduced in [4] by Ramos Ferndndez. More pre-
cisely, let ¥ be a strictly increasing convex function such that ¥(0) = 0. From these con-
ditions it follows that lim;_, ;o W(£) = +00. The Bloch-Orlicz space associated with the
function W, denoted by BY, is the class of all f € H(DD) such that

sup(1- |z|2)\P(k[f/(z)’) <00

zeD

for some X > 0 depending on f. The Minkowski functional

Iflle = inf{k> 0:Sy (J;_() < 1}

defines a seminorm for BY, where
Su(f) =sup(1-|z1*)¥(|f(2)]).
zeD
Moreover, BY is a Banach space with the norm

e = [f O]+ Ifllw-

In fact, Ramos Ferndndez in [4] proved that BY is isometrically equal to 1y -Bloch space,
where

Z)=———, zeD.
My (2) "pfl(ﬁ)

Thus, for f € BY it follows that

Ifllge = |f(0)| + sup 1w (@)|f' (@)



Jiang Advances in Difference Equations (2015) 2015:228 Page 4 of 12

This equivalent norm is useful to us for the study of operator Ty, 4, , from the Zyg-
mund space to the Bloch-Orlicz space. It is obvious to see that if W(¢) = ¥ with p > 0,
then the space BY coincides with the weighted Bloch space B%, where a = 1/p. Also, if
W (t) = tlog(l + t), then BY coincides with the Log-Bloch space (see [34]). For the gener-
alization of the Log-Bloch spaces, see, for example, [35, 36].

Let X and Y be Banach spaces. It is said that a linear operator L : X — Y is bounded if
there exists a positive constant K such that

ILf Iy = KIIf llx

for all f € X. The operator L : X — Y is said to be compact if it maps bounded sets into
relatively compact sets. It is well known that the norm of operator L : Z — BY is defined
by

ILlz—pv = sup [Lfpw
IFlz=<1
and written by ||L||.
Throughout this paper, a positive constant C may differ from one occurrence to the

other. The notation a < b means that there exists a positive constant C such that a < Cb.
When a < b and b < a, we write a >~ b.

2 Main results and proofs
In order to characterize the compactness, we need the following result, which is proved
in a standard way [5]. So, the proof is omitted.

Lemmal Let ¢ be an analytic self-map of D and ', ¥, € H(D). Then the bounded opera-
tor Ty, o+ 2 — BY is compact if and only if for every bounded sequence {f;}jen in Z such
that f; — O uniformly on every compact subset of D as j — o0, it follows that

1im (| Ty, ofll gv = 0.
]*)OO

We state the following useful result whose first estimate was essentially proved in [37],
while the second essentially follows from the point evaluation estimate for the Bloch func-
tions (see, e.g., [38]). See also [2].

Lemma 2 Foreach f € Z and z € D, it follows that
, e
[f@|<Iflz and |f'(2)] <log = V=

The following lemma was proved in [37], Lemma 2.5.

Lemma 3 Let {f;}jen be a bounded sequence in Z which uniformly converges to zero on
compact subsets of D as j — oco. Then

lim sup|f(z)| = 0.

] zeD
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For w € D and 1/2 < |w| < 1, we define the function

ful2) = (z— %) [(1 +log - _ewz)z 4 1].

By using this function, the test functions in the Zygmund space can be obtained as follows:

-1
2@ =, (2) (mg ﬁ) ,

e -1 z e
(@) = £u(2) <log — W) - [ roe

From [9] we have the next result on the functions g, and #,,.

da.

Lemma4 LetweDandl1/2 < |w|<1. Then

e 2w w
' (w) = log ——, (W) = ———, Ww) = ——.
&) ST W &(w) w2 w(w) e
Moreover,
sup [lgwllz S 1L, sup ||hyllz S 1.
1/2<|w|<1 1/2<|w|<1

Now we characterize the boundedness of the operator Ty, 4, , : Z — BY.

Theorem 1 Let ¢ be an analytic self-map of D and yn, v, € HD). Then the following
statements are equivalent.

(i) The operator Ty, y,,: Z — BY is bounded.

(i) The functions Y1, ¥y, and ¢ satisfy the following conditions:

M = suguw(Z)lw{(Z)l <00,

’ ’ e
My = ilelg 1w (2)|Y1(2)¢ (2) + ¥y (2)| log “lo@E < 00,
and
M = su me @Y @Nle' @I

zeD 1-lp(2)|
Moreover, if the operator Ty, 4, , : Z — BY is nonzero and bounded, then
I T]/jlyw2'¢|| ~1+M;+ My + Ms.

Proof (i) = (ii). Suppose that Ty, y,, : £ — BY isbounded. For a fixed w € D and |p(w)| >
1/2,let f(z) = hyw)(2) — c1 + ¢2, where

e -1 p(w) e
€1 = Zop(w) ((/)(W)) :ftﬂ(W) (¢(W)) (IOg W) ’ C = ,/o log m
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Then by Lemma 4

o)

Flew) =/ (em) =0, f"(pw)) = Hly (0 (w)) = T loE

By using the boundedness of Ty, y,, : £ — BY to the function f, we have

_ e W)loW)l [ (w)lle"(w)|

Ms(w): 1 |p(w)2 = Mq;(W)|(T,/,1,,/,2,¢,f)/(W)| =C] Twl,ww Il 3)
from which we get
sup M3(2) < Cl[ Ty pn0ll- (4)
lp(2)>1/2
From (4) it follows that
pw (@) (2)]l¢'(2)]
e <2 sup Ms(2) = Cll Ty el (5)

lo(2)]>1/2 1-|p(2))? T @12

Let /1p(z) =1 € Z. Then by the boundedness of Ty, y,, : £ — BY, we obtain

My = sup ny ()| Y] @] < 1Ty paeholl < ClI Ty pm0ll- (6)
zeD

Considering /,(z) = z € Z, by the boundedness of Ty, y,, : £ — B we have
sup 1w (2| (2)0(2) + ¥1(2)¢' (2) + ¥3(2)| < Cll Ty ll- @)
zE

From (6), (7), the boundedness of ¢, and the triangle inequality, we obtain

Ly:= sup pw(@)[V1@)¢' (2) + ¥3(2)| < Cl Tyl (8)

Considering /;(z) = z2 € Z, we have

sup 1w @)Y (9(2)" + 2119 (2) + ¥5(2)9(2) + 29229 (2)| < Cll Tyl (9)

From (6), (8), (9), the boundedness of ¢2, and the triangle inequality, we get
Ly:= sugm(Z)lwz(Z)l |¢'(2)| < ClI Tyl (10)
zZ€E

Then from (10) we have

sup ww (2)[¥a(2)] ¢’ (2)] < ClITyrpmll (11)

lp(2)<1/2 1-le(2)?

From (5) and (11) we finally have M3 < oc.
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Now we prove that M, < oc. For a fixed w € D and |p(w)| > 1/2, let g(2) = gou)(2) — c1

Then
2ew) =0,  &(pw))=log ——— " (p(w)) = _2o(w)
' 1-lp(w))’ 1— [o(w)2
By using the boundedness of Ty, y,, : £ — BY, we have
e p(w)a(w)e'(w)

o (W)|(Yv1(w)@' (w) + 95 (w)) log 1= lgw)P e lp(w)|?

= o (W) (T 92.08) W)| < ClI Ty 0l (12)

From (4), (12), and the triangle inequality, it follows that

/ / e
wWMwﬂM¢UW+¢JWHbgT—r77F_ZNhWO+QHM¢wH
< C” T\/q,l//z,(p”’ (13)
and then
sup  wy(@)|V12)¢ (2) + ¥ (2)| log 5 < Cll Ty 0l (14)
lp(@)I>1/2 ~lo ( ]
From (8), we obtain
sup  pw(2)|[Y1(2)¢'(2) + wz(Z)Ilog S <L log C < ClITyppmsll- (15)
lp(2)|<1/2 —le ( ]

Hence, from (14) and (15) we have M, < oco.
(ii) = (i). By Lemma 2, for all f € Z we have

0@ (T .0f) )|
= uw @Y @) (0(@) + (V1(D¢'(2) + ¥3(2)f (0(2)) + ¥2(2)¢' ()" (0(2)) |
< we @ ([ @||f (0(2)| + [¥1(2)¢' (2) + ¥ (2) || (¢(2))|
+ 2@ |¢' @ |f" (¢(2))])
< My + My + Ms)||f | =- (16)

It is clear that
| T2 O)] = CIlf |- (17)
Hence from (16) and (17) it follows that Ty, y,» : £ — BY is bounded.
Suppose that the operator Ty, y,, : £ — BY is nonzero and bounded. Then from the

proof of (i) = (ii) it is not hard to see that

M+ My + Mz S Ty 0l (18)
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Since the operator Ty, y,, : £ — BY is nonzero, we have || Ty, y,, || > 0. From this we can
find a positive constant C such that 1 < C|| Ty, y,,,|l, which means that

LS 1Tyl (19)
Then combing (18) and (19) gives

1+ M+ My + Mz S Tyl (20)
It is clear from (16) and (17) that

N Ty 0 ll ST+ My + My + Ms. (21)

Hence from (20) and (21) the asymptotic expression of || Ty, y, .| follows. The proof is
finished. 0

Next we characterize the compactness of operator Ty, 4, , : Z — BY.

Theorem 2 Let ¢ be an analytic self-map of D and Y, y, € H(D). Then the following
statements are equivalent.

(i) The operator Ty, y,,: Z — BY is compact.

(i) The functions Y, ¥y, and ¢ satisfy the following conditions:

M :=sup ;L\p(z)‘wl/(zﬂ < 00,

zeD

Ly:= sup 1w (2)|¥1(2)¢' (2) + ¥5(2)| < o0,

Ly:= SUEI;N\P(Z)’WZ(Z)‘ l¢'(@)] < o0,

glrg - 1w (2)|¥1(2)¢' (2) + V5 (2)| log % =0,

lo( - lp(2)|2

and

1w @Y 2)ll¢' (@)
lo(z)| =1~ 1-lp(2)?

Proof (i) = (ii). Suppose that (i) holds. Then it is clear that the operator Ty, y,, : £ — BY
is bounded. In the proof of Theorem 1, we have shown that M; < oo, L; < 00 and L; < 0o.
Consider a sequence {¢(z;)}ien in D such that |p(z;)| = 17 as i — oo. If such a sequence
does not exist, then the last two conditions (ii) obviously hold. We may suppose, without
loss of generality, that |¢(z;)| > 1/2 for all i € N. Using this sequence, we define the function

sequence

e -1 e 2z 3 e
ﬁ(z)zf"”(z")(z)(l(’gl—wzi)ﬁ) _(l°g1—|w(zl»)|2) /ok’g oow ™
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Then from a calculation we see that sup;y ||fi/[| z < C and f; — 0 uniformly on every com-
pact subset of D as i — 0. So by Lemma 1

lim [Ty, y.0fil gv = 0.
11— 00
Moreover, we have

¢(z)

file)=0,  f'(p(z))= 1 ez)?

Hence we get

ww (z) 1V ()¢’ ()¢ (2)|
1-o(z)?

— 1w (20| @) [fi(@ @) || < 1Ty pmefill -

From this, Lemmas 1 and 3, and since M is finite, we obtain

- pw()Ya(@)lle(z)]
S e e

On the other hand, take the sequence gi(z) = g,()(2) — ¢, i € N, where ¢; = gz (¢(2)).
Then sup,y lIgillz < C,

&(z) = 2¢(z;)

g(e@) =0, g(e() =log S @

e
1-le(z))*

Hence we have

2¢(zi)
1w (2) | (V1(20)9' (20) + ¥5(2)) log . |;(Z,)|2 t T |(/:0((Zz?)|2 < I Tyy,v208ll 5o -

By the compactness Ty, y,  : £ — BY, Lemma 1 and (22), we get

Jim o) ¥a(a)e @) + Vi log s =0

(ii) = (i). We first prove that Ty, y,, : £ — BY is bounded. We observe that the condi-
tions in (ii) imply that for every ¢ > 0, there is an 1 € (0,1), such that forany z € K = {z €

D:|p(2)| > n}

Ri(2) = 11w (@) |1 ()¢ (2) + ¥ (2)| log wﬁ <e (23)
and

_ re@Ya@)l¢'(2)]

Ry(z) := 11012 <e (24)

From the fact L; < 0o and (23), we obtain
/ / e e
M, = ilglgm(Z)l%(Z)w (2) + ¥3(2)| log Tipp =€ thilee
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From the fact L, < 0o and (24), we also obtain

k@) Y(2)lle’ ()] Ly
M e =T

Hence from Theorem 1 it follows that the operator Ty, y,, : £ — BY is bounded.

In order to prove that the operator Ty, y,, : £ — BY is compact, by Lemma 1 we just
need to prove that, if {f;};cn is a sequence in Z such that sup, .y ||fillz <M and f; - 0
uniformly on any compact subset of D as i — 0o, then

Hm (| Ty, ofill g = 0.
11— 00
For such a chosen ¢ and 7, by using (23), (24), and Lemma 2 we have

16w (@) (Tyy,,0f2) ()]
= 1 @Y @i (p(2) + (11 @) + V3 @)f} (¢(2)) + ¢ DY@ (9(2)|
<@ (¥ @|fi(¢@)] + [¥1(2¢' @) + Y3 |f (¢(2) |
+ o' @[ If (¢())
= My suplfi(@)] + (sup+ sup e (@] (/@) + Y3 If (0(2)]

zeD zeK  zeD\K

+(sup+ sup e @|¢'@| w21 (02|

zeK zeD\K
<2¢ + My suplfi(z)| + Ly sup |f/(2)| + Ly sup |f/'(2)|. (25)
zeD lz<n

lz1<n

Since f; — uniformly on compact subsets of I as i — oo implies that for each k € N,
fi(k) — 0 uniformly on compact subsets of D as i — oo, from (25) and Lemma 3 we get

lim sup Mq,(z)|(T,/,1,,/,2,¢ﬁ)/(z)| =0.

11— 00 zeD
It is clear that

lliTJ TI/fl,llfz,wﬁ(O)| =0. (26)
From (25) and (26) we obtain

5 (1 Ty, g o v = 0. (27)

Hence from (27) and Lemma 1, we see that Ty, y,, : £ — BY is compact. The proof is
finished. O
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