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Abstract

In this paper, we study the stability of sets for a class of impulsive stochastic functional
differential equations. By employing piecewise continuous Lyapunov functions with
Razumikhin methods, some sufficient conditions are established to guarantee the
stability of sets of impulsive stochastic functional differential equations and we also
show that the impulses play an important role in the stability of stochastic functional
differential equations. Three examples are presented to illustrate the effectiveness of
the results obtained.
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1 Introduction

During the past few decades, the stability theory of stochastic differential equations and
impulsive differential equations has been developed very quickly; see for instance [1-15].
A lot of stability criteria on impulsive stochastic differential equations have also been re-
ported (see [16—23] and the references therein). Almost all of them mainly focus on the
stability of the zero solution, but there is very little of research addressing the stability of
sets.

The concept of stability of sets of nonlinear systems, which includes as a special case
stability in the sense of Lyapunov (see Krasovskii [24]; Rouche et al. [25]), such as stability
of the trivial solution, stability of the solution, stability with respect to part of the vari-
ables and so on, has become one of the most important issues in the stability theory of
nonlinear systems [26—28]. The theoretical works of the stability of sets with respect to
nonlinear ordinary differential equations may be traced back to Yoshizawa [29-31] in the
previous century. The research to the stability of sets of impulsive differential equations
can be found in [15, 32—35]. For stochastic differential equations and impulsive stochastic
differential equations, we refer the reader to [11, 36—39] and the references therein.

In this paper, we shall extend the Razumikhin method developed in 7, 14, 40] to investi-
gate the stability of sets for a class of impulsive stochastic functional differential equations.
Meanwhile, our results show that the impulsive effects play an important part in the sta-
bility for stochastic functional differential equations, that is, an unstable stochastic delay
system can be successfully stabilized by impulses.
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The rest of this paper is organized as follows. Some preliminary notes are given in Sec-
tion 2. Several theorems on stability of sets of impulsive stochastic functional differential
equation are established in Section 3. In Section 4, three examples are presented to illus-
trate the applications of the results obtained.

2 Preliminaries
Throughout this paper, we use the following notations.

Let (2, F, {Ft}>0, P) be a complete probability space with a natural filtration {F;};>¢ sat-
isfying the usual conditions (i.e. it is right continuous and F, contains all P-null sets), and
E[-] stand for the correspondent expectation operator with respect to the given probability
measure P. Let W(t) = (Wi(2),..., W,.(t))T be an m-dimensional Wiener process defined
on a complete probability space with a natural filtration. Let | - | denote the Euclidean norm
in R”.

Let T > 0 and PC([-7,0; R") = {¢ : [-7,0] — R” | ¢(¢) is continuous everywhere ex-
cept at the points ¢ = f; € [y, 00), ¢(£{) and ¢(£;) exist with ¢(¢;) = ¢ ()} with the norm
@1l = sup_, g0 1¢(0)], where ¢(¢*) and ¢(¢) denote the right-hand and left-hand limits
of function ¢ () at ¢.

Denote PCﬁ’TO ([-7,0]; R") by the family of all bounded, F,-measurable, PC([-t, 0]; R")-
valued random variables. For p > 0, denote by PCI;_-t([—r, 0]; R") the family of all F;-mea-
surable PC([-T, 0]; R")-valued random variables ¢ such that E||¢||? < co.

In this paper, we shall consider the following impulsive stochastic functional differential
equation:

ax(t) = f(t,xe) dt + g(t,x,) AW (L), t>to,t#
Ax(ty) = It x(E), =tk €L, (2.1)
Xy () =&(s), se[-7,0],

where Z* is the set of all positive integers, £ = {£(s) : -7 <s <0} € PC?_-O([—I, O, R™), x(¢) =
1 (8), %2(8), ..., %, ()], and &, = {x(t + ) : =t <0 < 0}, x(t;) = limy,_, o- x(tx + h), x(tx) =
limy_, o+ x(tx + h), tx (k=1,2,...) are impulsive moments satisfying 0 <y <t <--- <l <
tre1 < -+ Withlimg, o0 G = +00, Ax(ty) = x(£5) —x(t;) = x(tx) —x(¢; ) represents the jump in
the state x at £; with I determining the size of the jump. f : [£, 00) x PC([-7,0]; R") — R”
and g : [£p,00) X PC([-7,0]; R") — R are Borel measurable, and I; € C(R* x R”,R").

Definition 2.1 An R”-valued stochastic process x(¢) is called a solution of the problem
(2.1) corresponding to initial value o, if
(i) w: [0 — 1,0 + B) for some B (0 < B < o0) is continuous for
telo—t,0 + B\t k=1,2,...}, x(t;) and x(¢;) exist with x(¢}) = () for
ty € [0 — 1,0 + B), and {x}>4, is F;-adapted;
(i) {f(t,x)} € L'([to,00);R") and {g(t,%,)} € L*([to, 00]; R™™);
(iii) x(z) satisfies (2.1).
We denote the solution of the initial problem (2.1) by x(¢; 0, &), and we denote by [0 —
7,0 + ) the maximal right interval in which the solution x(¢; 0, &) is defined.

Let M C [tp — T,00) x R”. We introduce the following notations:

M(@t)={xeR": (t,x) e M}, te€[ty—1,00);

M(t,e) = {x eR”: d(x,M(t)) <€,€> 0},
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where
d(x,M(t)) = inf E|x—
( ( )) yl ) | 9

is the distance between x and the set M(¢);
Mo(t,€) = {9 € PC([-7,0;R") : do (¢, M(t)) < €,€ > 0},
where

do(go,M(t)): IBa)%]d(w(s),M(t+s)) and wePC([—r,O];R”).

We assume that the following conditions (H;)-(H,) are satisfied, so that the initial value
problem (2.1) has one unique solution.

(Hy) Forall ¥ € PC([-7,0];R") and k € Z*, the limits

lim  f(¢¢) :f(t,:, W), lim

(t: ): L»
()= (b 0 o ? g(E5ov)

exist.

(H2) f and g satisfy the locally Lipschitz condition in ¢ on each compact set in PC([-7, 0];
R”). More precisely, for every a € [ty,0 + ) and every compact set G € PC([-7,0];
R™), there exists a constant L = L(a, G) such that

If(t,0) —f(&¥)| V |gt,9) — gt ¥)| <Lllg - v,

whenever t € [ty,a) and ¢,V € G.
(Hs) For any p > 0 there exists 0 < p; < p, such that

x € M(t, ;) impliesthat x+ (¢, x) € M(¢, p)

forallke Z*.
(Ha) f(t,x:),g(t,x;) € PC([ty,0), R") for x; € PC([o — T,00),R").

For any ¢ >t and k > 0, let PC,. = {¢p € PC([-7,0; R") : ||| < «}.
We shall say that condition (A) is fulfilled if the following conditions hold:

(A1) for each t € [ty, 00) the set M(¢) is not empty;
(Ag) for any compact subset F of [£g,00) x R” there exists a constant K > 0 depending on
F such that if (t,x), (¢, x) € F, then the following inequality holds:
|d(x, M(t)) —d(x,M())| <Kl|t-¢|;
(As) if for solution x(¢; 0, &) there exists & > 0 satisfying

d(x(t0,8),M(t,p)) <h<oco fortelo,o+p),

where p is a constant, then x(¢; 0, ) is defined in the interval [0, 00).
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Definition 2.2 A function V(¢,x) : [ty — T,00) x M(t, p) — R* belongs to the class vy if

(By) V is continuous on each of the set ([to — 7, f0] U [tx-1, £x)) X M(t, p) for all x € M(t, p)
and for k € Z*, the limit lim(t,y)%(t;,x) V(t,y) = V(t;,x) exists;

(B2) V is locally Lipschitz in x € M(t, p), V(¢,0) = 0 for (¢t,x) € M and V(¢,x) > 0 for
(t,x) & M.

Definition 2.3 For each V € vy, we define the operator LV from R* x R” to R by

LV(t, ) = Vi(t,x) + Vi(t,x)f (¢, d)

1
+ trace[g” (¢, ) Vix (£, %)g(t, )],

where
AV (t,x)
‘/t(t’ x) = 9t ’
aV(t, av(t,

Vx(t,x):< ( x)ﬁ"', ( x)))

8x1 axn

2V (t,x)

Vix(t, %) = | ———— .

8961 axj nxn

We shall give the definitions of stability of the set M with respect to system (2.1).

Definition 2.4 The set M with respect to the solution of system (2.1) is said to be:

(S1) stable, if for any o > £, @ > 0, and € > 0, there is a §(c, €,) > 0 such that £ € PC, N
My(o,8) implies that x(¢,0,&) € M(¢, €) for t > o;

(S2) uniformly stable, if the § in (S;) is independent of o;

(S3) asymptotically stable, if it is stable and for any o > £y and « > 0, there exists a § =
8(o, ) such that & € PC, N My(o,8) implies that x(¢,0,&) — M(¢) as t — o0;

(S4) uniformly asymptotically stable, if it is uniformly stable, and for any « > 0 there exists
a 8(ar) > 0, such that for any € > 0 there is a T(¢,,8) > 0 such that o > £, and & €
PC, N My(o,8) implies that x(t,0,§) € M(t,e) fort >0 + T.

In order to obtain our results, we will use the following function classes:

K = {u € C(R*,R*) :u(0) = 0, u(s) is strictly increasing in s};
K, = {u c C(R*,R*) :u(0) =0, u(s) > 0 for s > 0};
K; = {u € C(R*,R*) :u(0) = 0, u(s) > s for s > 0, u(s) is strictly increasing in s}.
3 Main results
In this section, we present and prove our main results on uniform stability and asymptotic

stability of the sets of system (2.1) by utilizing piecewise continuous Lyapunov functions

with Razumickhin methods.

Theorem 3.1 Let conditions (A) and (H1)-(Ha) be satisfied and suppose that there exist
functions V € vy, a,b € Ki, c € Ky, P € K3, and the following conditions are fulfilled:
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(i) a(d(x, M(t))) < EV(t,x) < b(d(x, M(¢))) for all (¢,x) € [to — T,00) X M(t, p);

(i) ELV(t,x(£)) < n(t)c(EV (¢, x(¢))), t # tr, whenever EV(t + s,x(t + 5)) < P(EV (¢, x(¢)))
for —t <s <0, where x(t) is any solution of system (2.1), and n : [ty, 00) — R* is
locally integrable;

(i) EV (trox + Ik(tx, %)) < PYEV (8, %)) for each k € Z*, and all x € M(¢, p1), where P~
is the inverse of the function P;

(iv) supgeg+{tk — tk-1} < 00, and fP/tl(u) % - ;f_l n(s)ds > 0 for all u € (0,00), k € Z*.

Then the set M is uniformly stable with respect to the solution of system (2.1).

Proof For any given € > 0, « > 0, without loss of generality, we assume that € < p;. We can
choose § = §(¢,a) > 0 such that P(b(5)) < a(e) and § < . From b(8) < P(b(8)) < a(€) < b(¢)
we know that § < €.

For o > ty, § € PC, N My(0,9), let x(¢) = x(¢; 0, &) be the solution of system (2.1), where
o € [ty-1,t,) for some m € Z*. Then, for 0 — 1 <t < o, from condition (i) we have

a(d(x(2), M(1))) < EV(£,x(0)) < b(d(x(2), M(2))) < b(5) < P(b(8)) < ale). (3.1)

From the above inequality, we obtain d(x(t), M(t)) <€ foro -t <t <o.

Next, we will prove d(x(¢), M(t)) < € for t € [0,0 + B). Suppose, on the contrary, that
d(x(t), M(¢)) > € for some t € [0,0 + B). Then let £ = inf{o <t <o + B | d(x(£), M(2)) > €).
Note that d(x(c), M(0)) < €, we see that £ > o, d(x(t), M(t)) < € < py, for t € [0 — 7,£) and
either d(x(£), M(2)) = € or d(x(2), M(£)) > € and £ = £; for some k.

In the latter case, d(x(2), M(£)) < p. From condition (Hs) we have

d(x(2), M(t)) = d(x(tx), M(tr)) = d(x(£) + Ik (b, () ), M) < p»

it follows that in either case EV(¢,#(t)) is defined for ¢ € [0 — 7, £].
For ¢ € [0, 1] define

EV(t) = EV (£,x(t)). (3.2)
Then for ¢ € [0 — 7, ], by condition (i), we get

a(d(x(0), M(2))) < EV(2) < b(d(x(t), M(2))).
Let £ = inf{¢ € [0,%] | EV(£) > a(e)}. Since EV(0) < a(e) and EV(£) > a(e), it follows that
te(o,t) and EV(t) < a(e) for t € [0 — 7,). We claim that EV(£) = a(€) and that f # t; for
any k. In fact, if EV/(£) > al(e), £ = t for some k, by condition (iii) we have

a(e) <EV(E) <P EV(£)) <EV(F) < ale),
which is contradiction. Thus f # &, for any &, and that in turn implies EV () = a(e), since
EV/(¢) is continuous at £ for f + &.

Now let us first consider the case t,,_1 < f < t,,. Let £ = sup{t € [0,] | EV(¢) < P (a(¢))}.

Since EV(c) < PX(a(e)), EV (%) = ale) > PX(a(€)), and EV(t) is continuous on [o, ], we
have f € (0,%), EV(£) = P"X(a(¢)), and EV(¢) > P~Ya(e)) for ¢t € [£, £].



Xu and He Advances in Difference Equations (2015) 2015:201 Page 6 of 13

Fort € [t,£] and —7 <5 <0, we have
EV(t+5) < ale) = P(P™(ale))) < P(EV(2)).
From condition (ii), we obtain
ELV(t) < n()c(EV (1))

for all ¢ € [£,f]. Integrating the above differential inequality yields

EV(?) ds t b
— d ds. 3.3
ﬁwacu)ﬁﬂiﬂ” ssl'lmw ) (3.3)

-

On the other hand, by condition (iv), we obtain

EV (%) ds a(e) ds tm
/ — = / —_—> / n(s)ds,
v € Jpiaey cs)  Ji,,

which is in contradiction with (3.3).
Now, assume that #; < f < tx,; for some k € Z* and k > m. Then by condition (iii) we
have

EV(t) <P(EV(5)) < P (ale)).

Let £ = sup{t € [t,£] | EV(¢) < PX(a(€))}. Then t € (t, 1), EV(f) = P (a(€)), and EV () >
P Ya(e)) for t € [£,t]. Therefore, for ¢ € [t,£] and -7 < s < 0, we have

EV(t+s)<ale) = P(P_ (a(e))) < P(EV(t)).
Then, by condition (ii), we have
ELV(t) < n(t)c(EV(t)) forallt € [4,7].

Integrating the above differential inequality yields

EVD g 3 7381
/ ——S/nwﬁsf n(s) ds. (3.4)
EV(@E € (s) 3 173

On the other hand, by condition (iv), we have

EV() ds a(e) ds tral
/ — = / — > / n(s)ds,
v <8)  Jpiae) cs) Sy

which is in contradiction with (3.4). So in either case, we get a contradiction, so we obtain

d(x(t,0,8),M(t)) <€ forteo,o+p).
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From condition (A3) we know that [o,0 + B) = [0, 00), hence x(¢) € M(t,¢), for all t > o,
which implies that the set M is uniformly stable with respect to the solution of system
(2.1). The proof of Theorem 3.1 is complete. d

Remark 3.1 From Theorem 3.1, we know that impulsive perturbations may cause uniform
stability even if the unperturbed system is unstable.

The following result on the asymptotical stability of sets will reveal that impulsive per-
turbation make stable systems asymptotically stable.

Theorem 3.2 Let conditions (A) and (Hy)-(Ha) be satisfied and suppose that there exist
functions V € vy, a,b € K3, hx € C(R*,R") for k € Z*, and the following conditions are
fulfilled:
(i) a(d(x,M(t))) <EV(t,x) < b(d(x, M(t))) for all (t,x) € [ty — T,00) X M(t, p);
(ii) EV(tx,x + Ii(tr, %)) — EV (t;,%) < = (EV(t;, %)) for all k € Z* and x € M(t, p1);
(iii) for any solution x(t) of system (2.1), ELV (¢,x) < 0;, and for any ¢ > to, and r > 0,
there exists {ry} such that EV (t,x) > r for t > o implies that h(EV (¢, %)) > 1y;
where r > 0 with ) po; 1% = 00.
Then the set M with respect to the solution of system (2.1) is uniformly stable and asymp-
totically stable.

Proof At first, we show that the set M is uniform stability.

For given € > 0 (¢ < p1), o > 0, we choose a §(¢,a) > 0 such that b(8) < a(e) and § < .
For any o > ty and § € PC, N My(0,9), let x(£) = x(t; 0, &) be the solution of system (2.1).
We will show that x(t) € M(¢,¢) for t € [o,0 + B).

Set EV/(t) = EV(t,x(t)), where o € [t,,_1,t,) for some m € Z*. Then condition (iii) im-
plies that ELV(¢) < 0 for ¢ € [0, 0 + B) N ([0, tn) U (Ure,[tk-1,8))), k € Z*.

By condition (ii) we have EV/(¢;)) - EV(¢;) <0 forallo <t; <o + B. Thus EV(¢t) is non-
increasing on [0,0 + ). From condition (i) it follows that

a(d(x(t),M(t))) <EV(t) <EV(o) <b(S) < ale)

for o <t <o + B. From condition (A3) we obtain [o,0 + ) = [0, 00). Since d(x(¢), M(¢)) <
€, for all ¢ > o, this implies that x(t) € M(¢,€) for t > 0. That is, the set M is uniformly
stable with respect to the solution of system (2.1).

Next we shall prove that the set M is asymptotically stable.

From conditions (ii), (iii), and EV(t) > 0, we note that EV/(¢) is non-increasing on the
interval [0, 00). So the limit lim;_, o, EV/(£) exists.

Assume o € [t,,1,t,,] for some m € Z*. Set lim;_, o, EV(¢t) = r > 0, one can easily see that
EV(t) > r for t > 0. Then by condition (iii), it follows that there is a sequence {ry} with
ry > 0 for k € Z*, which implies that /1 (EV (¢, %)) > ri with Z,‘il I = 0Q.

By conditions (ii) and (iii) we get

EV(t)<EV(o)+ »_ (EV()-EV(t))

o =<tr=<t

<EV(o)- ) m(EV(%))

o<ty <t

<EV(o)- Y n—-00 (t— o0),

o=<ty=<t
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which is a contradiction. Hence we have r = 0, which implies that a(d(x, M(¢))) — 0 as
t — oo. That is, x(t) — M(t) as t — o0o. The proof of Theorem 3.2 is complete. O

Theorem 3.3 Let conditions (A) and (Hy)-(Ha) be satisfied and suppose that there exist
functions V € vy, a,b € K3, Y, C € Ky, and the following conditions are fulfilled:
(i) a(d(x,M(t))) < EV(t,x) < b(d(x, M(2))) for all (¢,x) € [to — T,00) X M(t, p);
(ii) EV(tk,x + I(tr, %)) < Y (EV (8, %)), for all K € Z*, and x € M(X, p);
(iii) for any solution x(t) of system (2.1), ELV (¢,x) < —0(t)C(EV (¢, x)) for t # tx, where
0 : [ty, 00) = R* is locally intergrade, and there exists o, such that for any
u € (0, o),

Vi) g e
—_— - 0(s)ds < -y,
/H Cls) /xkl

where yi > 0 with )2, yi = 00.
Then the set M with respect to the solution of system (2.1) is uniformly stable and asymp-
totically stable.

Proof Without loss of generality, for any given € > 0, « > 0, we can assume that € < p;. We
choose a B:0 < 8 <min{a(e), o} such that ¥ (s) < a(e) for 0 <s < B and for all k € Z*.

Set 8 = §(¢, ) > 0 be such that b(8) < 8 and § < . Let x(¢) = x(¢; 0, &) be the solution of
system (2.1), where o > £y and & € PC, N My(0,8). At first, we show that

x(t) e M(t,e) fortelo,o+p). (3.5)

Set EV(t) = EV(¢t,x(t)) and o € [t,,,_1, L) for some m € Z*.
By condition (iii), we get ELV (¢,x) < 0 for o <t < t,,. It follows that

EV(t) <EV(c) <b(8)< B <ale)
for o <t < t. So for o < ¢t < t,,, we have x(¢t) € M(t,¢). Thus if (3.5) is not true, then
there exists a £ € [¢, tx.+1) for some k € Z*, k > m such that x(¢) € M(¢,¢€) foro <t <t and
x(t) ¢ M(¢, €). Using conditions (ii) and (iii), we have, for i=m,m +1,..., k-1,

ELV(t) < -0@)C(EV(Y)), ti <t<tin (3.6)
and

EV(t) < i(EV(E)). 3.7)
So by (3.7), we have

EV(tm) < Um(EV(£,)) < ¥im(b(3)) < ale). (3.8)

From (3.6) and (3.7), for i = m,m + 1, ...,k — 1, we have

EV(E,1)  ds tit1 » (3.9)
— <- 0(s)ds 3.9
/1;V(¢» C(s) — /t

i
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and

EV(ti) g VEV(E,)) g
/ = / e (3.10)
v, C6) 7 Jeve,y  CG)

Thus by (3.9) and condition (iii), we obtain

EViin) g VEVE)) 4 tinn
[ s [ e G
vy CO) T Jeve,)  Cl) g

which implies EV/(t;,1) < EV(¢;) for i =m,m +1,...,k — 1. From this and (3.8) we have
EV(ty) <--- <EV(m) < a(e). (3.12)

But by condition (i), we have a(e) < a(d(x(f), M(z))) < EV(t) < EV (&) < a(e), which is a
contradiction. Thus (3.5) holds, from condition (A3) it follows that (o — 7,0 + 8) = (0 -
7,00), hence x(£) € M(t,€), for all £ > €. So the set M is uniformly stable with respect to
the solution of system (2.1).

To prove the asymptotically stability, we observe that, from the proof of (3.11), one finds
that EV (t;,1) < EV(¢;) holds for all i > m. Thus we have lim;_, .. EV(;) = a existsand o > 0.
Ifa >0, (3.11) yields

f T : 1 (3.13)
—— <Y1, i=mm+1,.... .
vy C) "

Let ¢ = infy <s<4() C(s). From (3.13), we get
EV(ti1) <EV(t) - Cyin, i=mm+1,..., (3.14)

which implies

k-1
EV(t) SEV(tn) =€) yinn = —00

i=m

as k — o0. It is a contradiction and so @ = 0.
Since EV(t) < EV(t) for tx < t < ty41, it follows that lim,_, . EV(¢t) = 0, which yields
lim;_, oo d(x(¢, M(£))) = 0. The proof of Theorem 3.3 is complete. O

4 lllustrative examples
As an application, we consider the following examples.

Example 4.1 Consider the scalar impulsive stochastic delay differential equation:

dx(t) = (=x(2) + 1.2x(¢t — 7)) dt + \/%x(t -1)dW(t), t#tk,

(4.1)
x(t) = 0.5x(8,), k=1,2,...,

where 7 >0, f) <t <tp <+ < fx — 00 as k — 00. Assume that the following condition is
satisfied:

b — 1 < —]“1%5, for k € Z*, where ty > 0.




Xu and He Advances in Difference Equations (2015) 2015:201 Page 10 0f 13

Let M(t) = {(t,0): t € [ty — T,00)}, V(t, %) = V(%) = 0.5x2, P(s) = 4s, c(s) = s, then
EV (x + I(tx,%)) = EV(0.5x) = E(0.125x%) = P (EV (),

and for any solution x(¢) of system (4.1), such that
EV(t+s,x(t+5)) <P(EV(x(2)), -T<s=<0,t>to.

Clearly, we have Ex?(t — T) < 4Ex(t), t > ty. Hence,

ELV (x(t)) = =Ex*(£) + 1.2Ex(t)x(t — T) + 0.5 x 0.1Ex*(t — 7)

< —Ex?(t) + 2.4Ex*(¢) + 0.2Ex*(¢)

= n(t)c(EV (x(2))),
where n(t) =3.2> 0.
We have
- In0.5
KTHAS TG

and for any u >0, k € Z*,

,/pulu 6(15) /:ln(s)ds—/ (—S /tklns)ds

) x 2 x (1.6)

>-2In0.5- (

Thus all of the conditions in Theorem 3.1 are satisfied. Therefore, it follows from The-
orem 3.1 that the set M is uniformly stable with respect to the solution of the system
(4.1). The simulation result of system (4.1) is shown in Figure 1. The simulation of system
(4.1) without impulses is shown in Figure 2. From Figures 1 and 2, we find that, although
stochastic delay differential equations without impulse may be unstable, adding impulses
may lead to stability. That is, impulsive perturbations play an important role in the stability
behavior of nonlinear systems.

Figure 1 State trajectory x(t) of system (4.1) in 3 ]
(t,x) plane. ‘
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Figure 2 State trajectory x(t) of system (4.1) 9 ‘
without impulses in (t, x) plane. s {M N
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Example 4.2 Consider the scalar impulsive stochastic delay differential equation:

dx(t) = (mx(t) + nx(t — 7)) dt + (px(t) + gqu(t — 7)) dW (), tF#t,

(4.2)
x(ty) = ux(ty), k=12,...,

where 7 >0, ty <t <ty <+ < fx — 00 as k — 0o. Assume that the following condition is
satisfied:
O<u<land m+|nlu™ + 1p* + |pglu™ + Jq%u™> < 0.
Let M(t) = {(£,0) : ¢ € [t — T,00)}, V(t,%) = V(%) = 342, hye(s) = (1 — u?)s, then

EV(x + Ik(tk,x)) =EV(ux) = E<%u2x2),
EV (60 + (t0)) — BV (6,) = ~(1 - ) 3 = IV (5.,%)).
Clearly, we have Ex*(t — t) < h™2Ex*(t), t > to. Hence,

1 1
ELV(x(t)) = mEx*(t) + nEx()x(t — 7) + Eszx2(t) + pgEx(t)x(t — ) + quExz(t -1)
1 1
< mEX*(t) + |n|u ' Ex*(t) + Eszxz(t) + |pq|u’1Ex2(t) + §q2u’2Ex2(t)

1 1
= Z(m +|njut + §p2 +|pglu + quu_z)EV(x(t)) <0.

We check that for any o > £y, and r > 0, there exists {r¢} such that EV(t,x) > rfort > o
implies that i (EV (£;,x)) > ri; where ry > 0 with Y ki Tk = 00. Since i (EV(t,%) = (1 -
u?)EV (t;,x), when EV(t,x) > r for ¢ > o, then we have h(EV (&, %)) = (1 - u>)EV (&, %) >
(1-u?)r. We take ry = (1-u?)rand we have Y 77, r¢ = 0o. Thus all of the conditions in The-
orem 3.2 are satisfied. Therefore, it follows from Theorem 3.2 that the set M is uniformly

stable and asymptotically stable with respect to the solution of the system (4.2).

Example 4.3 Consider the scalar impulsive stochastic delay differential equation:

dx(t) = (ax(t) + bx(t — 1)) dt + (cx(t) + rx(t — 1)) dW(£), tHt,

(4.3)
x(t) = hxlty), k=1,2,...,
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where 7 >0, ty <t <ty <--- <ty — 00 as k — 00. Assume that the following conditions
are satisfied:

(i) 0O<h<landa+|blh™ + 1+ lerlh™ + 3r?h2 < 0;

.. _ Inh + >

(il) tx —txq > B Lo L2 for k € Z*, where £y, > 0.

Let M(t) = {(£,0) : t € [to — 7,00)}, V(t,%) = V(x) = 342, Yi(s) = ks, C(s) = s, then

EV (x + Ii(tx,x)) = EV (hx) = E(%hzﬁ) =Y (EV(®)),
and for any solution x(¢) of system (4.3), such that
EV(t+s,x(t+5)) <yx(EV(2(1)), -T1<s<0,t>t.
Clearly, we have Ex?(t — t) < h™2Ex?(t), t > to. Hence,
ELV(x(t)) = aEx*(t) + bEx(t)x(t — 1) + %czExz(t) +crEx(t)x(t —t) + %rzExz(t -1)
< aEx*(t) + |b|h Ex*(t) + %czExz(t) + |er|n Y EX (8) + %rzh_2Ex2(t)
= —O(t)C(EV(x(t))) <0,

where 6(t) = —2(a + |blh™ + ¢* + [er|lh™ + 3r*h72) > 0.
We have

Ink
a+|blht+ %cz +|er|h ! + %rzh*2

b — tg1 >

and for any p > 0, k € Z*,

V(i) t W ty
/ ﬂ_/ 9(s)ds:/ ﬁ—/ 0(s)ds
Iz Cls) k-1 Iz Cls) -1

Inh

<2Inh-
a+|blht + %cz + |er|h ! + %rzh‘2

1 1
X (—2)<a + bt + 502 +lerlht + 5r2h‘2>
=41Inh.

Letting yx = —41In#, then y; > 0 with Y72, ¥ = 0co. Thus all of the conditions in Theo-
rem 3.3 are satisfied. Therefore, it follows from Theorem 3.3 that the set M is uniformly
stable and asymptotically stable with respect to the solution of the system (4.3).
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