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Abstract

A discrete-time logistic model with delay is studied. The existence of a positive
periodic solution for a discrete-time logistic model is obtained by a continuation
theorem of coincidence degree theory, and a sufficient condition is given to
guarantee the global exponential stability of a periodic solution. Finally, an example is
given to show the effectiveness of the results in this paper.
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1 Introduction
Examples of the discrete phenomena in nature abound and somehow the continuous ver-
sion have commandeered all our attention - perhaps owing to that special mechanism in
human nature that permits us to notice only what we have been conditioned to. The theory
of difference equations has grown at an accelerated rate in the past decades; see [1-3].

In this paper, we discuss the existence and exponential stability of positive periodic so-
lution for the following logistic model:

_ _ a(mx(n)
x(n+1)= Ty M€ Z, (L.1)

x(n)=¢(n) >0, nel-,0]z
where «(n) > 1, B(n) > 0 are N-periodic sequences, T is a positive integer,
la,bl; ={a,a+1,...,b—-1,b} fora,beZanda <b.

There have been many papers concerned with the properties of solution of difference
equations. In [4], Zhang et al. studied the existence of periodic solutions of the equation
without delay

x(n+1)= ux(n)[l —x(n)/k] +b(n), neZz,

under the assumptions that u € (1,2), |b(n)| < %k hold for all # € Z. Parhi [5] consid-
ered the delay difference equation

y(n+1)—y(n) + qnG(y(n - k)) =b(n), nez, (1.2)
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and obtained the oscillatory and asymptotic behavior of solutions of (1.2). Liu and Ge [6]
considered the difference equation

y(n+1) —y(n) =p,f(y(n - k)) +r(n), nez, 1.3)
where p(n) is nonnegative, r(n) is a real numbers sequence. Suppose lim,_, ¢ f(Tx) =-b<0
and xf(x) < 0, |f(x)| < y|x| for all x # 0, the authors proved that if

S +00
1 Ty
= <15+ ——, = +00, lim — =0,
w=y ) ps ) P >
s=n—-k s=1
then every solution of (1.3) tends to zero as n tends to infinity. Li et al. [7] used the upper
and lower solutions method to show that there exists a A* > 0 such that the nonlinear

functional difference equation
x(n +1) = a(n)x(n) + A(n)x(n) + Ah(n)j‘(x(n - r(n))), nez,

has at least one positive T-periodic solutions for A € (0, 1*) and does not have any positive
T-periodic solutions for A > 1*, where a(n), h(n), and 7(n) are T-periodic solutions. Jiang
et al.[8] presented the optimal existence theory for single and multiple positive periodic
solutions to a class of functional difference equations based upon the fixed point theorem
in cones.

For a complicated dynamical system, we note that discrete-time neural networks have
been studied by many authors; see e.g. Hu and Wang [9], Wang and Xu [10], Xiong and
Cao [11], Yuan et al. [12], Zhao and Wang [13] and Zou and Zhou [14] for DNNs without
time delays and Chen et al. [15], Liang et al. [16], Liang et al. [17] and Xiang et al. [18] for
DNNs with discrete time delays. For more related results, see [19-28].

So far, to the best of the authors knowledge, there are few results for the existence and
stability of positive periodic solutions to (1.1). The major challenges are as follows: (1) In
order to obtain existence of positive periodic solutions, we must change (1.1) to the proper
form by a variable transformation. How can we choose the above variable transformation,
which is the key to the study of (1.1)? (2) Since it is very difficult to construct a Lypunov
functional to (1.1), how can we choose a proper special function for obtaining the stability
results, which is significant to our proof? (3) It is non-trivial to establish a unified frame-
work.

It is, therefore, the main purpose of this paper to make the first attempt to handle the

listed challenges.

Remark 1.1 Equation (1.1) was proposed by Pielou [29] in 1974, which is a discrete analog
of the delay logistic equation

X(8) = r(O)x(0) <1 _He- f)).
p

A classic logistic model has received great attention from theoretical and mathematical
biologists and has been well studied; see e.g. [29-32].
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The following sections are organized as follows: In Section 2, the existence of positive
periodic solution to (1.1) is obtained. In Section 3, sufficient conditions are established
for the global exponential stability of (1.1). In Section 4, an example is given to show the
feasibility of our results.

2 Existence of positive periodic solution
Let X and Y be real Banach spaces and let L : D(L) C X — Y be a Fredholm operator
with index zero, here D(L) denotes the domain of L. This means that ImL is closed in Y
and dimKer L = codimIm L < +00. If L is a Fredholm operator with index zero, then there
exist continuous projectors P: X — X, Q: Y — Y such that ImnP = KerL, ImL = KerQ =
Im(/ - Q). It follows that Lpyrkerp : (I —P)X — ImL is invertible. Denote by K, the inverse
of Lp.

Let © be an open bounded subset of X, a map N : Q@ — Y is said to be L-compact in Q
if QN(R) is bounded and the operator K,(I-QN () is relatively compact. Because Im Q
is isomorphic to KerL, there exists an isomorphism J : Im Q — Ker L. We first recall the

famous Mawhin continuation theorem.

Lemma 2.1 [33] Suppose that X and Y are two Banach spaces, and L : D(L) C X — Y,
is a Fredholm operator with index zero. Furthermore, Q C X is an open bounded set and
N:Q — Y is L-compact on Q. If all the following conditions hold:

(1) Lx # ANx,Vx € 0Q N D(L), VA € (0,1),

(2) Nx¢ImL,Vx € 9QNKerL,

(3) deg{JON,Q2NKerL,0}#0,
where ] : Im Q — KerL is an isomorphism, then the equation Lx = Nx has a solution on
QND(L).

Lemma 2.2 [34] Letg:Z — R be w-periodic. Then for any fixed ki, ky € I,, and any k € Z,

one has
w-1
gy <glk) + Y |gls +1) - g(s)]
s=0
and
w-1
(k) = glks) = Y "|g(s +1) - g(s)-
s=0

Now, we state the main results and give its proof.

Theorem 2.1 Suppose that assumptions (Hy) and (Hy) hold:
(Hi) there exists a constant C > 0 such that if x(n) is a N-periodic sequences and satisfies

N-1

Z[— In(1 + B(n)e" ) + Ina(n)] = 0,

n=0

then we have

N-1

Z|ln(1 + ﬂ(n)ey(””)) + 1noc(n)| <G

n=0
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(Hy) there exists a constant D > 0 such that when 'y > D,
In(1+ B(n)e’™) > Ina(n)
and
In(1+ B(n)e?™) < Ina(n)

uniformly hold for n € Z.

Then (1.1) has at least one positive N-periodic solution.

Proof In order to obtain the positive periodic solution of (1.1), let x(r) = &’™), then from
(1.1) we have

y(n+1)—y(n) = —ln(l + ﬁ(n)ey("_”) +Ina(n), neZz, (2.1)
with the initial condition

y(n) =Ing(n) =y (n), nel-1,0]z
where a(n) > 1, B(n) > 0 are N-periodic sequences, 7 is a positive integer. Define

l= {x = {x(n)},x(n) ERne Z}.
Let [y C I denote the subspace of all N-periodic sequences equipped with the norm

x|l = %%Mﬂ)‘ for any x € Iy,

where Iy ={0,1,2,...,N —1}. Then ly is a Banach space. Let
N-1
lg[ = :y(n) ely: Zy(n) =04, Iy = {y(n) € Iy : y(n) = constant,n € Z}.
n=0

Then [ and [, are both closed linear subspaces of Iy, and Iy = % @ I5,, dim 5, = 1. Take
X =Y =Iy.Now, for y € X, n € Z, we define a linear operator

(Ly)(n) = y(n +1) = y(n),
and a nonlinear operator
(Ny)(n) = ~In(1 + B(n)e" ) + Ina(n).

Then L is a bounded linear operator with Ker L = 5, and Im L = [ So it follows that L is a
Fredholm mapping of index zero. Define the continuous projectors P, Q,

] Nt
P:X — KerlL, (Px)(n) = N Zx(n)
n=0
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and
1
Q:Y— Y/ImL, QyzﬁZy(n)

Let

Lp = LIpgynkerpr : D(L) NKer P — Im L,
then

L' =K, :ImL — D(L) N KerP.

Since ImL C Y and D(L) N KerP C X, K, is an embedding operator. Hence K}, is a com-
pletely operator in Im L. By the definitions of Q and N, one knows that QN(€2) is bounded
on Q. Hence the nonlinear operator N is L-compact on 2. We complete the proof in three
steps.

Step 1. Let Q1 = {y € D(L) C X : Ly = ANy, » € (0,1)}. We show that ; is a bounded set.
IfVy € 4, then Ly = ANy, i.e.,

y(n+1) - y(n) = A[~In(1 + B(n)e" ") + Ina(n)], (2.2)

Vx € €1, summing on both sides of (2.2) from 0 to N — 1 with respect to n, we have
N-1
Z ln 1+B(n )) + lna(n)] =0. (2.3)

n=0

Thus, from (2.3) and condition (H;) we obtain

N-1 N-1
>y +1) - ym)| <> |-In(1+ B(m)e ™) + Ina(n)| < C.
n=0 n=0

We claim that there exist a point k € Z and a constant M; > 0 such that
y(k — 1) < M;. (2.4)
Otherwise, for any M; > 0 and each # € Iy, one has
y(n—1) =M.
In view of assumption (H,), we see that this contradicts (2.3). Hence (2.4) holds. Denote
k-t=&+pN, &elypeZ
Then

y(&1) < M. (2.5)
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In a similar way, from (2.3) and assumption (H;), there exist a point &, € Iy and a constant
M, > 0 such that

y(&) > —M,. (2.6)

Therefore, it follows from Lemma 2.2, (2.1), (2.5), and (2.6) that

N-1

yn) <yE) + Y |yn+ 1) -ym)| <My +C
n=0
and
N-1
y(n) > y(&2) - Zb/(n +1) - y(n)| > -M, - C.
n=0
Thus

Iyl < max{M; + C,My + C} := M.
Step 2. We will show that condition (2) in Lemma 2.1 satisfies. Let
Q- {y e X| max [yl <A},
nely

where A = max{M, D}. Obviously, condition (1) in Lemma 2.1 satisfies. When Vy € 92 N
KerL, y is a constant with ||y|| = A. Then we claim QNy # 0. In fact, if QNy = 0, then

N-1
[-In(1+ (e ™) + Ina(n)] =0,
0

n=

which contradicts assumption (H;) when ||y|| = A.
Step 3. We will show that condition (3) in Lemma 2.1 holds. Take the homotopy

H(y,u)=uy+1-pn)QNy, yeQnKerL,uel[0,1].

We claim H(y, ) # 0 for all y € 32 N Ker L. If this is not true, then

_

—uy = I_TM - [In(1 + B(m)e" ™) + Ina(n)].
0

n=

Since y € 92 NKerL, p € [0,1], yH(y, ) > 0, one has H(y, u) # 0. By the degree theory,

deg{QN,Q2NKerL,0} = deg{H(-,O), Qn KerL,O}
= deg{H(-,l), Qn KerL,O}
=deg{l,2NKerL,0} #0.

From Lemma 2.1, we know that Lx(n) = Nx(n) has at least one periodic solution in .
That is, (1.1) has at least one positive N-periodic solution. The proof is completed. O
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Corollary2.1 Let F(n,y) = —In(1+ B(n)e*" ") +Ina(n), n € Z, y € R. There exist constants
D and D, such that
(i) yF(m,y) >0 for|y|>Dy, nely,
(i) one of the following two conditions holds:
(@) yF(n,y) <D fory=> Dy, nely,
(b) yF(n,y) > D, fory <—Dy, n € ly.
Then (2.2) has at least one periodic solution.

Remark 2.1 The initial condition x(n) = ¢(n) > 0, n € [-7,0]z, of (1.1) assures that the
initial condition y(n) = Inx(n,), n € [-7, 0]z, of (2.1) is meaningful.

Remark 2.2 In [35], Li and Huo studied a class of abstract delay difference equation and
obtained the existence of positive periodic solutions. In the present paper, based on the
work of [35], we investigate a concrete model and obtain the population dynamics of the

model.

3 Global exponential stability of periodic solution
In this section, we establish some results for exponential stability of the N-periodic solu-
tion of (1.1).

Definition 3.1 The periodic solution of (2.1), y*(n) is globally exponentially stable if there
exist constants u > 1 and L > 0 such that

y(n) =y ()| <L|y —y*||u™, neZt,

where y(n) is a solution of (1.1) with the initial value condition y(n) = ¥ (), ¥* is the initial

value of y*(n), and
lv —v*| = ner[r_lgﬁ]z\w(n) A

Theorem 3.1 Under the conditions of Theorem 2.1, assume further that:
(i)

at +A5MLBY <1,
where ot = max{a(n),n € Z}, B* = max{B(n),n € Z}, Ao > 1 with
Mo(a" +A5TLBT) < 1.
(i) Iff(x,y) =xy, x,y €R, then |f(x,y) — f(x*,y%)| < L|y — y*|, where L is a positive

constant.

Then system (1.1) has a N-periodic solution x*(n), and there exists o > 1 such that

[xm) ()] < 25" max [y(s) = ¥*(6)]-

s€[-7,0]z

Proof By (1.1), we have

x(n+1)—x*(n+1) = a(n)[x(n) —x*(n)] + ,B(H)[x*(n +1D)x*(n—1)—x(n+1)x(n— r)]. (3.1)
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For A € R, define the function
F(A)=1-x+A[1-a* -25"LE"].

From condition (i), we have F(1) > 0. So, there exists some constant A¢ > 1 such that
F(Ao) > 0. Then by (3.1), we have

’x(n +1) —x"(n + 1)‘ <a* !x(n) —x*(n)‘ +pB* ‘x*(n +D)x*(n—1)—x(m+1)x(n— r)‘. (3.2)
Define u(n) = Ajlx(n) — x*(n)|, n € [-1, +00)z, then by (3.2) and condition (ii), we have
u(n+1) < roatu(n) + Ag*lLﬂ"u(n -1). (3.3)
Assume that K = maxc[_,0), | ¥ (s) — ¥*(s)|. Then we claim that
uln) <K, neZzZ'.
Otherwise, there exists ng € Z* such that
uln) <K, nel-t,ny-1]z u(ng) > K.
By (3.3) and condition (i) we have

K < u(ng) < roa*u(ng —1) + A6+1L5+u(n0 -1-1)
< hoa'K +AJ"LBTK

= ho(a™ +AJTLBY)K < K,
which is a contradiction. So u(n) < K, n € Z*. Therefore,
|6(n) —x* ()| < A5" max |y(s) —¥*(s)].
s€[-1,0]z

The proof is completed. d

Remark 3.1 Because (3.2) contains the nonlinear term x* (1 + 1)x*(n —t) —x(n + 1)x(n — 1),
which results in great difficulty in obtaining exponential stability, we add condition (ii).

Remark 3.2 In general, the Lyapunov functional method is crucial for studying stability
problems. In the present paper, due to the stronger non-linearity of (1.1), the Lyapunov
functional method is not valid. We overcome these difficulties by constructing a novel
functional, which is different for the corresponding ones of past work.

4 Numerical simulations
This section presents an example to demonstrate the validity of our theoretical results:
5—C(;S nnx(n)

—_—, ez, 4.1
1+0.2x(n—1) " )

x(n+1)=
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50 55 60 65 70 75 80 85 90 95 100

Figure 1 Evolution of the x(k) of (4.1) with k from 50 to 100.

where a(n) = >1, B(n) = 0.2. We can choose a proper parameter t and L such that

all conditions of Theorem 3.1 hold. So there exists a periodic solution for (4.1) which is
globally exponentially stable. The corresponding numerical simulations are presented in
Figure 1 with different initial conditions.

In this paper, we discussed the existence and stability of positive periodic solutions for
(1.1). First, the sufficient conditions that ensure the existence of a positive periodic solution
were obtained by using the continuation theorem and some inequality techniques. Then a
non-Lyapunov method was used to establish the criteria for the global exponential stability
of the periodic solution. Finally, a numerical example was presented to demonstrate the
effectiveness of our theoretical results. The proposed criteria in this paper are easy to
verify. The proposed analysis method is also easy to extend to the case of other differential
equations.
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