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Abstract

This paper is devoted to the study of stable and unstable behaviors with growth rates
eP for impulsive differential equations, where p(t) is some increasing continuous
function. By the techniques of impulsive analysis, we obtain the existence of stable
invariant manifolds for the impulsive perturbed equation provided that the linear
equation admits a p-nonuniform exponential dichotomy and f, g are sufficiently
small Lipschitz perturbation. We also consider the case of exponential contraction
and show that the asymptotic stability persists under sufficiently small nonlinear
perturbations. In addition, we study how the manifolds vary with the perturbations.
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1 Introduction

The theory of impulsive differential equations is attracting much attention in recent years.
This is mostly because impulsive differential equations efficiently describe many phenom-
ena arising in engineering, physics, and science as well (see e.g. [1, 2]). We consider the class
of impulsive linear equations in R", given by

x =A%, t>0,t#1, M
Ax(t;))=Bix, i=12,...,

where A(t) is a # x n matrix such that the function ¢ — A(¢) has at most discontinuities
of the first kind at the points t;, B;, i =1,2... are n X n matrices, and the impulsive times
0<1 <1y <--- satisfy lim;_, o 7; = 00, Ax(7;) = (/") — x(7]), x(z;) = limy,_, o+ x(7; + h),
x(t7) = limy,0- %;(t; + h), i = 1,2,.... By a solution x of (1), we mean a real function on
[0, 00) of class C* outside the points 7; such that x is left-continuous (thus, Ax(t;) = x(¢}*) -
x(t;)), and x satisfies x'(t) = A(t)x(t) at each point £ € [0, o) with the possible exception of
the points ¢t = 7; and Ax(z;) = Bix for i =1,2,.... We always assume that (1) has a unique
solution and all solutions of (1) are global.

It is well known that the notion of exponential dichotomy, going back to Perron in [3],
plays an important role in invariant manifolds of differential equation. The theory of the
exponential dichotomy and its applications are widely developed. We can refer to the
books [4—6] for details and references. There are a lot of linear differential equations with
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exponential dichotomy. For example, Sacker and Sell [7-10] investigated sufficiently con-
ditions for the existence of exponential dichotomy, also in the infinite-dimensional setting.
In [11], Barreira and Valls discussed the much weaker notion of a nonuniform exponential
dichotomy. In [12], the authors obtained the integral conditions for a nonuniform poly-
nomial dichotomy. This theory of nonuniform hyperbolicity goes back to the landmark
works of Oseledets [13]. For detailed expositions of parts of nonuniform hyperbolicity
theory, we can refer to [14].

We note that the study of robustness in the case of uniform exponential behavior has
a long history. For example, Massera and Schiffer [15] discussed robustness of uniform
exponential behavior in Banach spaces. Perron [3], and Dale’ckii and Krein [5] also stud-
ied the robust stability of solution of differential equation under uniform behavior. For
more recent work we refer to [16—18]. In particular, in [16], Barreira and Valls studied the
existence of stable invariant manifold for the linear equation under any sufficiently small
nonlinear perturbation f.

However, there are few papers that consider the case of nonuniform behavior for impul-
sive dynamical systems. For instance, we refer the reader to the works of Barreira and Valls.
For example, in [19], they studied the existence of nonuniform exponential dichotomy, and
obtained sharp lower and upper bound for the regularity coefficient. In [20], the existence
of invariant stable manifolds is established under sufficiently small perturbations of a lin-
ear equation and they showed that the invariant manifolds are also of class C! outside the
impulsive points. In [21], the authors studied invariant manifolds for impulsive equations
under nonuniform polynomial dichotomies. The existence and robustness of nonuniform
(h, k, ., v)-dichotomies for nonautonomous impulsive differential equations are obtained
in [22].

In the recent years, general stable and unstable behaviors with growth rates of the form
e for a function p(t) are exhibited by Barreira and Valls [23—25]. This type of behav-
ior is called a p-nonuniform exponential dichotomy. A linear equation with this general
asymptotic behavior may have all Lyapunov exponents zero or all Lyapunov exponents
infinite besides the usual case p(¢) = t. For example, in [23] the authors showed that for
p in a large class of rate functions, any linear equation (1) in a finite-dimensional space
has a p-nonuniform exponential dichotomy. In [25], they showed that a p-nonuniform
exponential dichotomy is robust under sufficiently small linear perturbations.

Our main aims in the present paper are as follows:

(1) We establish the existence of invariant stable manifolds for the impulsive perturbed

equations

x =Alt)x+f(t,x), t=>0,t#1, 2
Ax(t;) = Bix + gi(ti,x), i=1,2,...,

where f : R* x R" — R" is a piecewise continuous function in ¢ > 0 at most with discontin-
uous of the first kind at the time t; satisfying f(¢,0)=0and g;: R* x R" - R",i=1,2,...,
are continuous functions satisfying g;(¢,0) = 0. To obtain the desired results, some tech-
niques of impulsive analysis and a careful control of impulsive times over the whole proof
are considered because impulses create some technical difficulties.

(2) We study the behavior of the manifolds under the perturbations showing that the
manifolds vary with the perturbations f and g.
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The organization of this paper is as follows. In Section 2, we show that the asymptotic
stability of a p-nonuniform exponential contraction persists under sufficiently small non-
linear perturbations. In Section 3, we establish stable manifolds theorem under sufficiently
small perturbation of nonuniform exponential dichotomy. We also study the behavior of
the manifolds under the perturbations in Section 4, Finally, an example is given to illustrate
the applicability of the results in Section 5.

2 Stability for p-nonuniform exponential contractions

In this section, we show that the asymptotic stability of a p-nonuniform exponential con-
traction persists under sufficiently small nonlinear perturbations. We recall the notion of
a p-nonuniform exponential contraction.

Let T(t,s) be the linear operator satisfying x(¢) = T'(¢,5)x(s) for any solution of (1) and
each t,s > 0. Consider an increasing function p : R* — R* with p(0) = 0 and p(t) — oo
as t — 00, we say that (1) admits a p-nonuniform exponential contraction, if for some
constants £ <0, a > 0, and D > 1, we have

|T(t,5)|| < DeeO-eDsar) 4555 0, 3)
We assume that the following conditions hold:
(H;) there exist functions b(t) > 0, c(¢) > 0 such that for £ > 0, x,y € R",
lf &%) ~f&. )] < b@)llx~yll
and
|gi(t, %) - git,p)|| < c@)llx - yl;

(H2) 0 <M =supgo{ [ b(r)e” V) dr} < 00;
(Hz) Y =supgo{d_,.-, c(r:)e® @} < oo,

For example, taking a = 1, p(¢) = ¢, b(t) = c(¢) = %e’%, T;=4,i=1,2,..., we obtain

o 1 o0 1
M= igg{/s b(r)e"”(’)dr} = igg{ﬁ/s. e’ dr} T

and

Y- sup{ZC(Ti)eap(ri)} = sup{%ze—i} - m.

>
5>0 T=s

Theorem 1 Assume that (1) admits a p-nonuniform exponential contraction and (Hy)-
(Hs) hold. If

1
DM +7Y) < X (4)
then there exists a unique solution x(t) of (2) with x(s) = £ € R” such that

T prlp@)=pls)+ap(s)
l=Ol < t—parm €]

fors>0,t>s.

Page 3 of 16
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Proof We consider a complete metric space C of functions x : [s, +00) — R” such that
1) x(s) = ¢&;
(2) xis continuous outside of the points 7;;
(3) x(¢) is left-continuous for each 7;;
(4) for Vxy = x1(2), %2 = x,(t) € C, the distance d(x1, %) is defined by

Ay, %) = sup{ [l1 (£) — x2(2) || 5 t>s> 0}'

£ e(p(O)=p(s))+ap

t
(5) Vx e C, ||x||/ = Sup{”é“emp‘(‘ffw >8> 0} < 2D.
Set

J(x)(¢) = T(¢, )& +f T(@t,7)f (v, x(r)) dr + Z T(t, 1) gi(wx(1),

S<T;<t

for each x € C and ¢ > s. Clearly, (Jx)(s) = &. By (H;), for each x1,x; € C, we have
If (z,21(1)) = f (,22(7)) | < b(x)e PP (i, x5), (6)

andfori=1,2,...
||gi(Ti,x1(Ti)) —gi(fhxz(fi)) || = C(Ti)e“(p(”Fp(s))mp(s)d(xl,x2)- @)

Therefore, it follows from (3), (6), (7), (Hz), and (H3) that

TG (@) =T (x2) @) |
< [T ol lf (@) ~f (o) dr
+ 3 7(e ) o) - g (oot

S<T;<t

¢
5De“(”<t)_p(s))+”p(s)||§||d(x1,x2)|:/ b(z’)ea"(t) dr + Z C(Tl,)eﬂp(ri):|
S s<t;<t
< DetPOPORL (A 1+ ) |E || d(x1, ).
Thus we have

d(J(x1)(2), ] (2)(£)) < DM + Y)dl(x1, %7). 8)

By (4), the operator J becomes a contraction. Furthermore, by (3), we get

Pl < |7¢.9¢] + / |T@ D (2x@) [ de + 3T | ei(a@)]

s<ti<t

<Deu(ﬂ(t)—/)(s))mp(s)ns” + DM + T)elt(P(t)—P(S))Jrap(s)”E”d(x,o)' (9)
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Thus
/ ’ 1 ’
V@) <D+D@ +7)|xl' <D+ Ellxll <2D, (10)

which shows that J/(C) C C. Therefore, there exists a unique function x € C such that Jx = x.

By (10), we have ||x|| < 1_D£/I+T) eMPO-r)+ar(s) || £ | This completes the proof of the theo-

rem. O

3 Stable invariant manifolds
This section is devoted to establishing our stable manifolds theorem under a sufficiently
small perturbation of nonuniform exponential dichotomy.

We say that (1) admits a p-nonuniform exponential dichotomy if there exist projections
P(t) for ¢t > 0 satisfying

P(t)T(t,s) = T(t,s)P(s), t,s>0,
and there exist constants ;4 <0 < v, a > 0, and D > 1 such that for eacht > s> 0

| T(t,9)P(s)| < D e®-rar | 71,51 Q(t)| < DeeO-phrantd) (11)
where Q(¢) = Id — P(t). Set the linear subspaces

E@t)=P(t)(R") and F(t)=Q(@t)(R"),

and let ® be the space of functions ¢ : [0,00) x R” — R" having at most discontinuities
of the first kind in the first variable such that for each s > 0 and x,y € E(s), ¢(s,0) = 0,
¢(s, E(s)) C F(s) and

|o(s,&) - d(s,€)| < 1IE - €I, &,& €Es), 12)

with the distance

d(¢,¢) = sup{ | ¢(s,&) = ¥ (s, &) | /1€l : s = 0,& € E(s)}. (13)

Obviously, ® becomes a complete metric space. Given a sequence ¢ € O, we consider the
set

W={(5,6¢(58)) :5> 0,6 € Es)}.
Assume that (1) admits a p-nonuniform exponential dichotomy, the unique piecewise con-

tinuous solution (x(¢), y(¢)) € E(¢) x F(£) of (2) with initial condition (&§,7) € E(s) x F(s)
satisfies

x()=T(t,8)& +/ P(t)T(t,r)f(r,x(t),y(t)) dr

+ Z P(t)T(t, tl.")g,'(ri,x(ri),y(t,»)) (14)

S<T;<t
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and

0 = Tt + / QUOT(t, 1)f (v,x(2),(0)) d

+ Z Q gt(fn ( )y(fl)) (15)

S<T;<t

We consider the semiflow
W, (s,&,n) = (s+rx(s+7r),y(s+7)), r=0,

which is generated by (2). To obtain the desired results, we also need the following condi-
tions:

In(1+2D: AP\t
(Ha) 0 <y = sup,y, {202Den)e ),

(Hs) 0 <M =sup,,fe (a+v=u)p(s) fs b(r)e-r+a+r)e() gt} < oo;

(Hg) 0< T = Supszo{e(aw—u)ﬂ(s) Zrizs C(-Ei)e(u—wmy)p(ri)} < 00.

< 005

Theorem 2 Assume that (1) admits a p-nonuniform exponential dichotomy and (H)-(Hg)

hold. If
1
DM +7) < 7 (16)
w—-v+a<o, 17)
2D**PM(M + ) <1, (18)
and
[ D? 2D%e*PM (M + T):| —
+ M+7Y)<1, (19)
1-2D(M +7Y)  1-2D(M+ )
then there exists a unique function ¢ € ® such that
W, (s,6,9(s,6) e W
for r > 0. Furthermore, for every s > 0, g, EcE@S)andr=t-s>0
| (5.8, ¢(5,8)) = Wp(5,E, (s, 8)) | < 2De?PM el 0O-pOrlarnel)e _ g,
Proof We replace (14) and (15) by
t
x(t) = T(¢,8)x(s) + / PO)T(t,v)f (v, %(x), ¢(t,x(v))) dt
+ Y POT(t77)gi(7x(1:), ¢ (T x(12)) ) (20)

S<Ti<t
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and

¢(t,x(t)) =T(t, s)¢(s,x(s))§ +f Q) T(¢, r)f(r,x(r),qb(r,x(r))) dt

+ 3 QT (t,7)gi(Ti x(1), ¢ (11 2(1))) (21)

S<T;<t D
Next, we show some lemmas to finish our proof of the theorem.

Lemmal Given & € E(s), for every ¢ € ®, there is a unique piecewise continuous function
x=xg4:[s,+00) X E(s) — R" satisfying (20) and

D
t, < Hp@-p)rarls) g 29
[ s)||_1_2D(M+T)e 11l (22)

fort>s,5>0.

Proof Given s > 0, & € E(s), we consider the operator / defined by

J@)(6,E) = T(t, 9 + / PWOT(,7)f (7,5(5,8), ¢ (1,%(z, £))) dr

+ Z P(t)T(t: T,'+)gi(fi7x(fi:5):‘15(‘51‘,?5('5:‘,5))) (23)

S<tT;<t

in the space A of piecewise continuous functions x : [s, +00) x E(s) — R” such that x(s, &) =
& and d(x,0) < 2D, where d(x;,x;) is given by (5). For every x,y € A and ¢ > s, by (H;) and
(12), we obtain

[ (z.5(z, &), ¢ (. 5(z,£))) = f (7,37, £), ¢ (7. 3(7, £))) |
< zb(f)eu(p(r)fp(s»mp(s} d(x(r, £),y(t, S)), (24)

andfori=1,2,...

Hgi(tir x(tir é‘-), ¢(Tirx(7:ir E))) _g(riry(ri’ S)’ ¢(7:iry(ri’ 5))) ||
< 2(m)eH PPN g (x(1, £),y(1, £)). (25)

By (24), (25), and (11), we have

@@ -10)@)|
= / ”P(t)T(tr T) ” |V(T»x(7’§)’¢(frx(f’§))) —f(fr}’(fyg)ﬁ(f»y(f»é))) ” dr

+ Z || T(t: T;) || “gi(fi)x(fi’ éj)¢ ¢(Tirx(ri: %-))) _g(fi:y(Th %-)’ d’(ri:y(fi’ 5))) ||

S<T;<t

t
< 2De“(”(t)‘p(s))+”p(s)||x—y||/|:/ b(r)e*” D dt + Z C(Ti)e“p(”)]
S

s<ti<t

<2DM + T)e#(p(t)fp(S))mp(S)d(x,y).
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Therefore
d(J(x),](»)) < 2D(M + Y)d(x, ). (26)
The rest of the proof is as in Theorem 1, here we omit it. d

Lemma2 Letx:R* — R* be a piecewise continuous function at most with discontinuities
of the first kind at the points ;. If

t)<c+fm T)dt + detl t>ty,

to<t;<t

for some constants ¢ > 0, d; > 0 and some function m : R* — R*, then

x(t) <c l—[ (1+d)exp/ m(t)dt, t>1.

to<t;<t
Lemma 3 Forevery ¢ € ®, and £, € E(s)

|24 (£, €) — x4 (£,€) | < Dexp(2DM)el ) PO=PD+@r)e s _F| - t>s5>0.  (27)

Proof Letting |lxy(t,&) — x4(t, €)[|* = M by (H;) and (12), for T > s, we have

el (p(t)—p(s))+ap(s)

01(0) = | (2,50(0,), 8 (¢,56(1,6))) ~f (1.206(1, 09 (. 0(, )|
<2b(7) |4 (1,&) — x4 (7, 8) |

< 2b(t)e PP EDrarle) | (7,8) — xy(z, (28)
andfori=1,2,...
02(t) = [\ gi (%5 (11, €), ¢ (70,29 (71, §))) — &i (i %4 (1 §), (7,29 (0, ) ) |
< 2¢(ti)||%g (7 ) — %4 (11, )|
< 2¢(z;)et PPN |l (7, £) — s (i, E) | (29)
By (28), (29), and (11), we have
|%5(z,8) = x4(2,8) |
< TGPl -8+ [ 176 0Pl ds + 3 [7605)P() aate)
st
< DO e |
+2DeH PP +arks) / b(1)e™' ) || x4 (7, €) - x4(7,E) | " dT
+ 2D PO-PON5a0) 3™ (1) | x, (1, €) - x5 (1, E) | (30)

s<ti<t
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Thus

|29 (1,8) — x4(1,8)|" < DII& — €|l +2D / b(1)e | x4 (1,8) - x4(7,8)| " dr

+2D ) e(1)e ™ |ag (11, €) — 2 (1, E) || (31)
S<t;<t
By Lemma 2, we have
[ERNCAIEENIN
<D [] [1+2Dc(r;)e" ]exp[Zthb( )P O dt] € -2 (32)

S<T;i<t

Let 7,1, 7j2,..., Ty be impulsive points in [s, t). In view of (Hy), we have

1_[ [1 + 2Dc(t;)e*” ’l)]

S<T;<t

= [1 + 2DC(T,'1)€ap(Tﬂ)] [1 + 2DC(Ti2)eﬂp(fi2)] ce [1 + 2DC(‘L’il)e“p(Iil)]

< o (PEi)=p(i-1) oy (p(Ti2)=p () ., | ¥ (0(Ti)=p(Ti-1))

= ¥ P(Ti)-p(zin-1)) < e)/p(t)’ (33)

where £;_; is the first impulsive point before ¢;; and satisfies £;_; < s. Thus, it follows that
[0 (6,8) = 2 (6, €)| < DMl OPOMENNO g g (34)
This completes the proof. O

Lemma 4 Forevery ¢, € ® and & € E(s), t > s,

M+
b 3001 = T g g ) (35)

(M+7)

Proof Letting ||lxg (¢, &) —xy (£, €)™ = M ,by (H), (12), and Lemma 1, for each

g lerto(t)-p ) apts
T > s, we have

33(7) = |[f (2, %5(7, ), ¢ (v,%4(7,8))) = f (2, 2y (1, €), ¥ (7,5 (7, 8))) |
)| (o (7, €) — 24 (7, 6), & (7, 24(7,6)) = ¥ (T, (7, ) |
O (x,8) =y (2, 6) | + [ @ (7 %9(7,6)) = ¥ (v.0 (7, 6)) ]
< b(0)[ | (g (1,8) =y (7, 8) || + ||@(7,%4(1,8)) = ¥ (7,25 (7, 6)) |
v (m2(0,6)) = ¥ (1,20 (2,6)) ||
< b(0)[[|xs(z, )| d(@, W) + 2| x5(x, &) — 2y (z,8) []

p(t)-p(s))+a
2 T oD+ T 2D + T)b(f)e" PP )| € |l d(ep, )

+2b(7)e PP PO £ |||k, (7, €) — 2y (7,€) | (36)
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and fori=1,2,...

qa(t) = | gi (o (7 ), D (11,4 (11, €)) ) — gy (7€), ¥ (i 24 (1, 6))) |
D

- -

T 1-2DM+ 1)

+2¢(z;) e PPN £ |l (1, &) =y (7, E) |

c(t;)e P =P+ ar®) | e 11 d (e, )

By (36), (37), and (11), we obtain

%6 (2,8) =2y (2,6)
/”T(tr)P Vas@dr + 3 [7(e ) P(z7) |as(e

S<T;<t

DM +T)
2T T ulp()-p(s))+ap(s) d(o,
< o 1€ 1d(6,v)
t
+ 2Deﬂ(ﬂ(t)—,0(s))+ap(s)”$ I / b(r)ea,o(r) ||JC¢(‘L',.§) —xy ('L’,%') ”** dr
S

+2Deu(p(t)—p(S))+up(S)”z§” Z c(ri)e“p(zi)

S<T;<t

| (7€) — 2y (1, 6) .

Then

DM + )

|2 (8,8) — 2 (1, 6) ™ S 12000+ 1)

d(¢,¥)

+2D/ b(D)e™ D |xg(1,6) — x4 (2, 6)| dr

+2D Z c(t;)e®?™ ||x¢(fi;§) —xx/;(fi»f)n**.

S<T;<t

By Lemma 2 and (H,), we have

[T (@ +2De@e@)lip -y

S<T;<t

M+
[0t 8) — 24 (£,8)] —ﬁ

De*PM(M + )

®
< Toopone eI,

which implies that inequality (35) holds.

Lemma 5 Given ¢ € ®, the following properties hold:
(1) If for every s > 0, & € E(s), t > s,

o (6x5(5,8)) = T(t,S)¢>(S,E)+/ T(t, D)Q)f (t,%4(t,6), ¢ (7, %4(t,6))) dv

| 7,7)8i(Ti %9 (7€), ¢ (T, %5 (1))

s<ti<t

Page 10 of 16
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then for every s > 0, & € E(s),

$(s,8) = f T(1,59) 7 Q) (v, 8, £), b (7,5 (1, ))) d

- T(rl’Jr’S)_IQ(Ti+)gi(Tirx¢(Tix 5):¢(Ti»x¢(fi,f)))- (4‘2)

S<T;

(2) If identity (42) holds for each s > 0, & € E(s), then (41) holds for every s > 0, & € E(s),
and t > s.

Proof By (H;), (12), and Lemma 1, we have

If (7,25 (5, 6), ¢ (7, 24(2, ) |
2D

2 ule(n)-pls)+ap(s)
=< 2b(7) | %4(z,8)| < DR T b(@)IIE ], (43)
andfori=1,2,...
|gi(Tir 26 (15 €), (110 (1, €))) |
2D Ti)—p(s))+ap(s
< 2¢(1y) ”xq&(fz‘:g)H = meu(p( h-pl)+apt )C(Ti)”f”» (44)

Hence, by (Hs) and (Hg), we see that

/ T(t,8) " QD) (1, %5 (t, €), ¢ (v, %4(1,€))) dr

s

< [T Q@ (ere6) 9ot 80) |
2

oo
< - (ﬂ—/HV)p(S)/ b (u=v+a)p(t) 4 45
_1—2D(M+T)”s”e : (t)e T <0 (45)

and

Z T(Tf;S)_IQ(Tf)gi(Ti’%(Ti; £),¢(7i %4 (1:,)))

S<T;

< 31T (z9) " Qx| @i (T (7€), b (i 9 (71, 6))) |

2

2D
< (a—p+v)p(s) ) ar(@) o 5e 46
= a6l > clm)e < (46)

S<T;

Therefore, the right-hand side of (42) is well defined. We assume that (41) holds for each
$>0,& € E(s),and ¢ > s, then it follows that

(b(s"i:) = T(t,s)’lQ(t)qb(t,xq;(t,f)) - f T(T,S)le(T)f('[,J%(T,S),¢(‘L’,x¢(f,§))) d‘L’

- Z T(T,'+:S)_1Q(Ti+)gi(Ti;xq’)(fh5)»¢(Tirx¢(ti:g)))- (47)

S<T;<t
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By (11), (12), and Lemma 1, we have

D2
| <5
1-2D(M + )

D2
T1-2DM + )

—v(p(t)—p(S))Jrap(t)e/t( p(t)-p(s)+ap(s IIEII

|9 Q0D (2, 24(2,6))
(u—v+a)(p(t)-p(s))+2ap(s) €]l (48)
Letting ¢t — oo in (47), it follows from (48) and (17) that (42) holds for every s > 0, & € E(s),

and £ > s.
If (42) holds for each s > 0, & € E(s), and ¢ > s, we have

T(t,S)Q(S)¢(S,§')+/ T(t,'L')Q('L')f(‘(,&%(l’,S),(,‘b(f,xq;(‘(,g)))d‘L'

+ Z gz(fnxd)(fw‘&) ¢(Tl:x¢(flr$)))

S<T;<t

:_/ T(0, 071 Q( ) (1,%0(1, £), 6 (1,24(1, £))) d

- Z T(z/", f)ilQ(Tf)gz’(fiv%(fw £), ¢ (ti,%4(11,€))). (49)

t<T1;<00

Replacing (s, £) by (¢£,%4(7,£)) in (36), we have

P(t,%4(7,8)) = —/ T(t, )" QT)f (T, %4 (1,€), (1, %4 (7, £))) d

- Z T(T,'+»t)ilQ(T;)gi(firxqb(fi:S):¢(Tirx¢(fi’§)))- (50)
t<T;<00
From (49) and (50), we see that (41) holds for s > 0, & € E(s). O

Lemma 6 There exists a unique function ¢ € ® such that (42) holds for every s > 0, § €
E(s).

Proof We consider the operatoereﬁned for each ¢ € @ by

G6)(s.8) = f T(0,9) 7 QU (1551, £), (1, x5 (1, £))) dt

- Z T S gl(rl’x(f)(rl S) ¢(Tl’x¢(7:l"§>:))) (51)

s<7;

for each s > 0, £ € E(s). When & = 0, we have xy(7,&) = 0, then (7¢>)(s, 0) = 0. By (H;) and

Lemma 3, we have

TENCICENCHT)) —f(fﬂ%(ff)’¢’(T’x¢(f’§))) ||
< 2D82DMb(T) (11+y)(p(2)=p(s)+(a+y)p ||§ EH, (52)
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and fori=1,2,...

“gi(ri,xq;(ri, &), ¢(ri,x¢(ti, E))) —gi(Ti,xqb(Ti:g): ¢(Ti»x¢(fir§))) ||
< 2D62DMC(Ti)e(M+y)(ﬂ(fi)—p(S))+(u+y)p(S) € - 5”' (53)

By (51)-(53), (11), and (Hs)-(Hs), for every s > 0, § € E(s), we see that

||(]¢)(S, 5) - (]d’)(st E)H
< [TITE s Q@ (et 9 (50 (2,6))

(5,805,202, )
D) L0 eI [ PACNCHORACR )

s<1;
—gi(ijxqj(Ti:g): (tl x¢ rl ))H
o0
< 2D282DM||%~ _ §||e(a+l)fﬂ),0(s) / b(l—)e(ﬂfv+a+}/)p(f) d-L-
S

+2D2e?PM ||$ _ g” elatv=1pls) Z c(ri)e("_”“”’)p(”)

S<T;

<2D?PM(M + Y)||E - €. (54)
It follows from (18) that

|U#)(s,€) = U)(s,€)| < I1E —Ell, (55)

for every s > 0, £ € E(s), which implies that /(®) C .
Given ¢, ¥ € ®, & € E(s), by (36), (37), Lemma 1, and Lemma 4, we have

[06)s.8) — 19)(s8)]
< / | 7,57 QU | I (1,55 (1, ), 8 (2, 20(1, £)))

—f (T4 (7, 8), 1/’(7 xy(1,8))) | d
+ ZHT ‘L' S )” ”g;(Tuqu(TuS) ¢(Tz xqﬁ(‘[z 5)))

_gi(fhxx//(fi’%-)’ w(firx!//(fi,‘i:))) ||
- D? 2D?*PM(M + Y
= [1—2D(M+T) T 12D+ )

o0
% |:/ pl—v+a+y)p(T) b(t)dr +Z r)e“ V+a+y)p(r,)i|
S

S<T;

)} IE[ld(gp, y)e @+ =1rt)

[ D? 2D?*PM(M + Y

) —
<|T=3pars ™ * 1300 ]<M+T)||s||d<¢,w). (56)
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Thus, the operator J : ® — ® becomes a contraction. Therefore, for each & € E(s), there
exists a unique function ¢ satisfying (21). By Lemma 3, we have

|| "I'IE (Sr gr ¢(Sr g)) - "Ijt (S’ gr d)(S, g)) ||
= [[ (26 (6,6), 0 (5,25 (1:8))) — (£:26(6:6), 0 (5,25 (8, ))) |
<2||wp(t,8) — (£, €) | < 2D*PM V0 O=POIan)) £ _F ). (57)

This completes the proof of Theorem 2. g

4 Stable manifolds under perturbations

This section is to see how the manifolds vary with the perturbations. Let €2 be space of
the function f : R* x R” — R" and Q be the space of all sequences of function g = g; :
R* x R" — R". We define a metric by

I (&%) - £, %)l

If =Fll = sup{ i

,tzO,xeR"\{O}} (58)

and

”g _EH** = sup sup

i>1

{ llgi(ti, %) — g:(Ti %)
llx|

,zO,xeRn\{O}}. (59)

We also assume that the following conditions hold:

(Hy) 0<M= Sup,.o{e* " [ e+ e g} < oo;
(Hg) 0<¥ = supg.o{e®*" " Y elv+ap(m)y ¢ oo,

rl>s

Theorem 3 Assume that (1) admits a p-nonuniform exponential dichotomy. If (H1)-(Hsg),
(16)-(19) hold, then

llo =¥l <Dillf =flls + Dallg = Zlles (60)

forevery f.f € Q and g,g € Q, where ¢, € ® are the functions given by Theorem 2 corre-

. . 7 = 2 17
sponding to the perturbations f, g and f, g, D, = DQZD M2D2 DG
1-2DM+ Ol impomr + 7 1s 2D(M+T+ 137

l)2 _ 2D2A
2 ,.2DM —
12D+ 1)1~ Ry + 2 spay 2 1O T))

Proof For every & € E(s), by (36), (37), (58), (59), and Lemma 4, we have

Hf(f x¢(T’§)’¢(T’x¢(7»E))) —J?(T,xv/(f,é),1//(T,x¢,(T,§)))||
< If (z.2(2,8), 6 (v %4 (2,8))) = (v,2(2,8), ¢ (v.25(2,8))) |
+ |[/_”(T,x¢(t,E),qﬁ(f,xq;(r,é))) _f(f’xw(f’%-)’ w(f,xw(f,é))) ||

2D 7
< pulp@-p)+aps)| £ _ +
=1-2D(M+Y) V=71

2De*PM(M + )
+ -
1-2DM +Y)

[1—2D(M+ T)

:|b(r)e(uw)(p(t)—ﬂ(s))+(ﬂ+y)p(5) IENN® — v, (61)
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and fori=1,2,...

a6(t)) = | gi(Tir %4 (1:,€), & (T %9 (11, €)) ) = G (0o 0y (1 €), ¥ (i 24, (1, 6))) |

S a— LTI Y R
1-2D(M + ) 1-2D(M + 1Y)
2De*M(M + )
o= v 7 N oty )p(T)-p(s))+(a+y)p(s) _ ) 62
2D ]C(n)e 1§16 - v (62)
It follows from (11), (42), (61), and (62) that
|p(s,8) - v(s,8)|
/ Ie9 Qolastodr + Tl T(e 'Q(x) as ()
? TR )p(s) * ( )p(7)
< —fl. a+v-u)p(s u-v+a)p(t) g
= 1opain)V Slke / ‘ i
DZ
" le—_7 (a+v-p)p(s) (u—v+a)p(t;)
* Tapoia Ty e 8l >
2 2 ,2DM
D N 2D%e (M + T) e(aw—u_)p(s) /-oo b(.[)e(u—vary)p(r) dr
1-2D(M + YY) 1-2D(M + 1Y) s

2 2 _2DM
D . 2D%e (M +7) elatv=11)p(s)
1-2D(M+7Y) 1-2D(M+7)

x Y clri)e™ ”*“*”M}nsnnqs i

s<1;
2D’ M - 202
__ wM 2 S
= ooV T Toanare 188l
D' 2D MO e g - (63)
1-2DM+7Y) 1-2DM+7Y) ’
which implies that (60) holds. 0

5 Example
In this section, we provide an example to demonstrate the derived results. Consider the

impulsive system

& = [21it + at(t? cos t? — 1)]x + b(t)x, DX|eer, = bix(T;) + c(r,)x(ri),

~ (64)
= (20t + at(t? cost® —1)]y + 1+yy AYlir, = biy(Ti) + 5 1+y ))

where 1 <0,7>0,2>0,b; >0and b(¢) >0, c(r;) >0,i=1,2,.... Assume that there exists
8 > 0 such that “’; <38,i=1,2,.... Setting P(t)(x,y) = (x,0) and Q(£)(x,y) = (0,y), we

Tt
have

|| T(t,S)P(S) || < eﬁeﬁ(tz—sz)ﬂzsz 1_[ (1 + bl) < eEe(ﬁ+6)(t2—sz)+(ﬂ+6)sz’
S<T;<t

70697 QW] = e [ (145 < e 7-iesdi

S<T;<t
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This shows that the linear part of (64) admits a p-nonuniform dichotomy with

a

p(t) = £, w=m+3, v="7, a=a+s, D=¢%

We conclude that (64) has a stable invariant manifold provided that (H;)-(Hg) and (16)-
(19) hold.
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