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Abstract
In this paper, a stable extrinsic extended finite element method (SXFEM) is proposed
to solve the second order elliptic equation with discontinuous coefficients and
interfaces. SXFEM is designed by the stable enrichment function and stress intensity
factors (SIF)-type enrichment functions. It shows that the proposed SXFEM can get
the optimal convergence order. Numerical experiments are presented to verify the
feasibility of the new method for this type of problem and the superiority compared
with the standard FEM and XFEM.
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1 Introduction
We consider the boundary value problem of the form

{
–∇ · (a(x, y)∇u) = f (x, y), (x, y) ∈ �\�,
u(x, y) = , (x, y) ∈ ∂�,

()

where � is a bounded domain in Rd (d = , ) with polygonal or polyhedral boundary ∂�,
f ∈ L(�), f ∈ L(�), � =

⋃
i �i is the internal interface that may consist of several pieces

of local internal interfaces �i, which are also called interfaces in what follows. Generally,
any two different interfaces might be intersected, that is, �i ∩ �j �= ∅ (i �= j) is possible. The
function a(x, y) ∈ L∞(�) satisfies

 < α ≤ a(x, y) ≤ β < ∞, ∀(x, y) ∈ �,

where α, β are constants. It assumes that the function a(x, y) is discontinuous across the in-
terface �i while it is continuous away from the interfaces. This interface problem appears
in fluid dynamics and material science. The traditional finite difference method (FDM)
and the finite element method (FEM) fail to solve such a problem due to the singularities
of the interface. They need improvement to deal with such kind of interface problems.
For the approximation of non-smooth solutions, there are two fundamentally different ap-
proaches. One approach of the improvement is to refine the discretization near the critical
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regions. Remeshing is required in this case, i.e., placing more grid-points along the inter-
face and around the intersection. This strategy involves a posteriori error estimates. For
example, Cai and Zhang [] proposed recovery-based error estimators and Bernardi and
Verfürth [] proposed weighted-residual error estimators to deal with interface problems.

Another strategy of improvement is to enrich a polynomial approximation space so that
the non-smooth solutions can be modeled independent of the mesh. For example, the
immersed boundary method (IBM) [] and the immersed interface method (IIM) [] are
developed based on finite difference, and they modify the standard centered difference ap-
proximation to maintain the second order accuracy [–] or to get higher order methods
[, ], while the immersed finite element method (IFEM) developed in [–] is de-
signed to cope with interface problem based on the finite element method (FEM). In this
paper, we consider the complex interface problems such as interfaces intersecting with
each other.

Meanwhile, a variety of modifications to the conventional FEM have been made within
the framework of the partition of unity (PU). One typical example is the extended finite
element method (XFEM). It was first realized by Belytschko and Black in [] by enriching
the nodes of the finite elements near the crack tips and along the crack surfaces with the
asymptotic crack tip functions. Since then, such a method received wide publicity and
quick progress [–]. During the same decades, the generalized finite element method
(GFEM) based on the partition of unity method (PUM) [–] was widely used to solve
various types of problems. All of these methods share the property that they add special
enrichment functions to a standard approximation space.

Based on and inspired by the development of these methods in [], we try to use XFEM
for solving elliptic problems with interfaces. One of our goals is to make the condition
number of the matrix for the discrete system comparable with FEM by extrinsic XFEM.

The rest of the paper is organized as follows. Section  introduces preliminary definition
related to the XFEM and the weak form of (). The main part of this paper is Section , in
which the feasible stable XFEM and its error estimation are derived. The integration strat-
egy for XFEM is discussed in Section , and some numerical experiments are presented in
Section  to show the feasibility of the proposed algorithms. A final conclusion is drawn
in Section .

2 Preliminary definitions
2.1 The weak form of the problem
We use the standard notation for the Sobolev space Hk(�) = W k,(�) and its associated
norm ‖ · ‖Hk (�) and semi-norm | · |Hk (�), especially H(�) = L(�). Then the weak formu-
lation of () reads as follows: find u ∈ H

(�) such that

B(u, v) :=
∫

�

a(x, y)∇u · ∇v dx dy =
∫

�

fv dx dy = (f , v), ∀v ∈ H
(�). ()

Since a(x, y) is bounded and away from zero, the variational problem has a unique solution.
For convenience of later expression, for any subdomain A ⊆ �, we introduce the follow-

ing energy norm ‖v‖ε(A):

‖v‖
ε(A) = BA(v, v), ∀v ∈ H(A),

where BA(u, w) :=
∫

A a∇u · ∇w dx dy for any u, w ∈ H(A).
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2.2 The extrinsic XFEM
Let τh be a uniform rectangular mesh of the domain �, and we define the mesh parameter
h > , N is the set of nodes on the mesh τh. Let I := {i ∈ Z,  ≤ i ≤ N}, where N = N(h) is an
integer, which is the number of nodes in the mesh. For i ∈ I , let ωi ⊂ � be the impact area
of xi. Considering the Ritz-Galerkin implementation for the XFEM for a two-dimensional
elliptic equation, finite-dimensional subspaces V h ⊂ H(�), V h

 ⊂ H
(�) are used as the

approximating trial and test spaces. The trial functions are

uh =
∑
i∈I

Niui +
∑
i∈Ien

Ni
∑

j

ψ(φ)vi
j =

∑
i∈I

Ni

(
ui +

∑
j

ψ(φ)vi
j

)
. ()

Here, Ni are the finite-element shape functions, φ(x) is the level set function, ui is the
numerical solution of real node xi, and vi

j is the solution of virtual nodes located on xi.
They are the unknown coefficients of approximation. Ien = Ih means that we can enrich
all nodes if needed.

3 Stable extrinsic extended finite element method and error estimation
In this section we give the stable extended finite element algorithm step by step and give
the estimation for L-error and energy-error.

3.1 The stable extrinsic XFEM
Subordinate to the cover {ωi}i∈Ih , let {Ni} be C-PU. We can also describe the function uh

as an ni-dimensional local approximating space V h
i on each patch ωi.

Vi = span
{
ϕi

j
}ni

j=, ϕi
j ∈ H(ωi) and ϕi

 = .

Here, ni is a positive integer. If ni = , in ωh
i we just use a standard FEM basis function.

In other cases the local area needs a special function in order to mimic the exact solution
there. The PUM form about () is precisely by (), with the finite-dimensional space V h

given by

V h =
∑
i∈Ih

NiVi = span
{

Niϕ
i
j ,  ≤ j ≤ ni, i ∈ Ih} := S + S,

where

S =
{
ξ : ξ =

∑
i∈Ih

uiNi

}
, S =

{
ξ : ξ =

∑
i∈Ih

ni∑
j=

vi
jϕ

i
j Ni

}

and ui,h, vi
j ∈R. If ni = , ∀i ∈ Ih, V = S the method is referred to as the Galerkin method. If

ni > , for example, in D problem and suppose Vi = P(ωi), Vi = span{, (x – xi), (x – xi)},
so ϕi

 = , ϕi
 = (x – xi), ϕi

 = (x – xi). S = span{Ni}, S = span{Niϕ
i
, Niϕ

i
}. S is referred to

as enrichments and enrichment spaces.
The extrinsic XFEM discretization of () is as follows: find uh ∈ V h such that

B
(
uh, vh) =

(
f , vh), ∀vh ∈ V h(�). ()
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Extended approximations use locally enriched nodes with the aim to capture disconti-
nuities and/or high gradients, and the linear dependencies are less frequently observed
and often identified easily. At last the approximations of the form () do not have the
Kronecker-δ property. Consequently, uh(xi) �= ui makes the imposition of essential bound-
ary conditions difficult.

Based on these problems, it is important to make () satisfy the Kronecker-δ property
and linear independence. Babuška [] proposed the idea of stabilization of GFEM. First,
according to the PUM theorem in the energy norm [, ], we give the main approxima-
tion result about the relation between global approximation and local approximation. We
define the modified local approximation space V̄i = span{ϕ̄i

j } associated with Vi. Here,

ϕ̄i
j = ϕi

j – πϕi
j , where πϕi

j :=
∑

k∈{k(i)|xk(i)∈ωi}
ϕi

j (xk)Nk ; ()

πϕi
j is the piecewise linear interpolation of ϕi

j on the patch ωi. Clearly, ϕ̄i
j =  when j = .

Then the finite-dimensional space S = S + S̄ is a subspace of H(�) with S =
∑

i∈Ih uiNi

and S̄ =
∑

i∈I NiV̄i. For the example mentioned Vi = P(ωi), S remains unchanged, S̄ =
span{Niϕ̄

i
, Niϕ̄

i
}. The stable XFEM to approximate the solution u of () is given by

Find uh ∈ S, satisfy B(uh, v) = F(v), ∀v ∈ S. ()

We have the boundary conditions u|∂� =  to obtain a unique solution uh ∈ S. It is called
stable XFEM.

Let a(x, y) in () be a piecewise constant, we will consider two situations, namely a(x, y) =
a if (x, y) ∈ � and a(x, y) = a if (x, y) ∈ �, where the subdomains have the interface:
� ∪ � = �, � ∩ � = �.

Algorithm .
(i) Suppose that � is a rectangular domain. Find the first-type enriched nodes set Ien

 and
elements along interfaces by a level set function. The second-type enriched nodes set Ien



is chosen by the impact area of intersection. Meanwhile we can easily find the two types
of enriched elements.

(ii) The first-type enrichment function M is determined by the level set function φ(x),
here φ(x) = , if x ∈ � we can use φ(x) = – minx∈� ‖x – x‖ as a level set function and
discontinuous coefficients across the interfaces.

M(x) =
∣∣φ(x)

∣∣. ()

If the function has strong discontinuity, we also need the enrichment function sign(φ), so

M(x) = sign
(
φ(x)

)
, M(x) =

∣∣φ(x)
∣∣. ()

It is different in standard XFEM, where the enrichment along strong discontinuities is only
by sign(φ)-function.
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For the second-type enriched node, we use the four enriched basis functions like SIFs
(Stress Intensity Factors) []

F(x) =
√

r cos θ/,

F(x) =
√

r sin θ/,

F(x) =
√

r sin θ sin θ/,

F(x) =
√

r sin θ cos θ/.

()

(iii) Stabilization of the local approximation space. Let x ∈ ωi,

Mj(x) = Mj(x) – Iωi Mj(x), j = , ,

Fj(x) = Fj(x) – Iωi

(
Fj(x)

)
, j = , , , .

()

Here ωi is the abbreviation of ωh
i mentioned above, Iωi (ϕ

i
j ) is the piecewise linear interpo-

lation of ϕi
j on the patch ωi.

Iωi

(
ϕi

j
)

=
∑

xk∈ωi

ϕi
j (xk)Nk(x)|ωi . ()

(v) Construction element stiff matrix is called EMAT, and the unit load vector is called
ERHS. The freedoms associated were increased to six.

ψ = [N ; M; F; F; F; F],

EMATi,j =
∫

E
a∇ψi∇ψj dx dy,

ERHSj =
∫

E
f ψj dx dy.

Then we can get the whole stiff matrix and solve the finite element equation.

EMAT –→x = ERHS. ()

Here, x is the vector that equals x = (�u, �uen).
(vi) Output the numerical result and error.

Remark . The element stiff matrix size varies with different types of elements. The
common element far away from interfaces has four freedoms, while the element near in-
tersection has  degrees of freedoms.

Remark . When computing the integration on the element containing intersection, we
decompose the element into several triangles by the location of intersection.

The XFEM is a PUM, where
() the patches ωh

i are ‘FE stars’ relative to a finite element (FE) rectangulation of �;
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() the piecewise linear FE hat function Ni associated with the vertices of FE rectangu-
larity serves as the PU.

Supposing u ∈ H
(�) is the solution of (), we use Q-element as the PU function.

Next we discuss the semi-definiteness of the stiff matrix of the stable XFEM. From the
definition of V , any v ∈ V has the following:

v(x) =
∑
i∈I

uiNi(x) +
∑
i∈I

∑
j=

bijNi(x)ψj(x); ui, bij ∈R,

where ψj(x) is M(x), Fl(x), l = , , , . For each element, we can get the single stiff matrix,
B(vi, vj) =

∫
�

a∇vi · ∇vj dx dy. The value can be divided into three types as follows:
() If vi ∈ S, vj ∈ S, Bij = B(Ni, Nj), which is the basic part of XFEM, is the standard

N × N FE stiffness matrix.
() If vi ∈ S, vj ∈ S or vi ∈ S, vj ∈ S, Bij =  and Bji = , because the S and S are

orthogonal in the inner product B(·, ·).
() If vi ∈ S, vj ∈ S, Bij = B(Niψ

i, Njψ
j), B is only associated with some vertices xi(j) ∈

Ien
 or Ien

 . The additional degrees of freedom are introduced here. We can get the stiff
matrix

A =

(
KU KUA

KAU KA

)
.

It is well known that the standard FE stiffness matrix block is block-tridiagonal, and we
can get the argument that the matrix block KU is positive definite. If the matrix block KA

is also positive definite, the stiff matrix A of the stable XFEM will be positive definite.

3.2 The analysis of stable XFEM
Theorem . Let u ∈ H(ωi). Suppose that for i ∈ Ih, there exist ς i ∈ Vi and C > , inde-
pendent of i, such that

‖u – ςi‖L(ωi) ≤ C diam(ωi)‖u – ςi‖ε(ωi) and ‖u – ςi‖ε(ωi) ≤ εi.

Then there exists v ∈ V such that

‖u – uh‖ε(�) ≤ inf
v∈V

‖u – v‖ε(�) ≤ C
(∑

i∈Ih

ε
i

)/

,

where the positive constant C depends on κ , C, α
β

[, ].

It is easy to check that the argument in Theorem . holds. Actually, there exists ξi ∈ Vi

such that ‖u – ξi‖ε(ωi) ≤ Ch|u|H(ωi), ‖u – ξi‖L(ωi) ≤ Ch|u|L(ωi), then we can get

‖u – uh‖L(�) = O
(
h),

‖u – uh‖ε(�) = O(h),
()

where uh is the solution of the stable extended finite element method (SXFEM).
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Theorem . Let u ∈ H(�) be the solution of (). Suppose that for each xi, which is in the
enriched node set, there exist ξ̄ i ∈ V̄i and C > , which are independent of i, such that

‖u – πωi u – ξ̄‖L(ωi) ≤ C diam(ωi)
∥∥u – πωi u – ξ̄ i∥∥

ε(ωi)
,

‖u – πωi u – ξ̄‖ε(ωi) ≤ εi.
()

Then there exists v ∈ S = S + S̄ such that

‖u – v‖ε(�) ≤ C
(∑

xi∈I

‖u – πωi u‖
ε(ωi) +

∑
xi∈I

ε
i

)/

,

‖u – v‖L(�) ≤ C

(∑
xi∈I

‖u – πωi u‖
L(ωi)

+
∑

xi∈Ien

ε
i

)/

.

()

Proof Define w := u – πhu, and let v̄ :=
∑

xi∈Ien Niξ̄
i ∈ S̄. {Ni}xi∈I , using a bilinear quad-

rangle element (Q) as a PU,

w – v̄ =
∑
xi∈I

Niw –
∑

xi∈Ien

Niξ̄
i =

∑
xi∈I\Ien

Niw –
∑

xi∈Ien

Ni
(
w – ξ̄ i).

So

‖w – v̄‖
ε(�) ≤ C

(∥∥∥∥ ∑
xi∈I\Ien

Niw
∥∥∥∥



ε(�)
+

∥∥∥∥ ∑
xi∈Ien

Ni
(
w – ξ̄ i)∥∥∥∥



ε(�)

)
. ()

We address the second term of () on the right, for any x ∈ �, it is at most four patches.
So the sum

∑
xi∈Ien ∇(Ni(w – ξ̄ )) has at most four terms for any x ∈ �. If we use uniform

grids for the whole domain, ‖N ′
i ‖L∞ ≤ C(diam{wi})– = C


h , and using (), we can show

that
∥∥∥∥ ∑

xi∈Ien

Ni
(
w – ξ̄ i)∥∥∥∥



ε(�)

=
∫

�en
a
∣∣∇(Ni)

(
w – ξ̄ i) + Ni

(∇(
w – ξ̄ i))∣∣ dx dy

≤ 
∫

�en

( ∑
xi∈Ien

a∇(Ni)
(
w – ξ̄ i))

dx dy + 
∫

�en

( ∑
xi∈Ien

aNi∇
(
w – ξ̄ i))

dx dy

≤ 
∫

ωi

a
∑

xi∈Ien

(∇(Ni)
(
w – ξ̄ i)) dx dy + 

∫
ωi

a
∑

xi∈Ien

(
Ni∇

(
w – ξ̄ i)) dx dy

≤ k
(

c
∑

xi∈Ien

ε
j

h
+

∑
xi∈Ien

∥∥w – ξ̄ i∥∥
ε(ωi)

)

≤ C
∑

xi∈Ien

∥∥w – ξ̄ i∥∥
ε(ωi)

≤
∑

xi∈Ien

ε
i. ()

With the similar argument and the interpolation estimate, we have

‖w‖L(ωi) = ‖u – πωi‖L(ωi) ≤ Ch‖u – πωi‖ε(ωi).
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Figure 1 Dividing a fully or partially cut element into subelements, left: 2, middle: 5, right: 8.

Then we get the first term on the right-hand side of ()

∥∥∥∥ ∑
xi∈I\Ien

Niw
∥∥∥∥



ε(�)
≤ C

∑
xi∈I\Ien

‖u – πωi‖
ε(�).

Finally, according to (), we have

‖w – v̄‖
ε(�) = ‖u – πhu – v̄‖

ε(�) ≤ C
( ∑

xi∈I\Ien

‖u – πωi u‖
ε(ωi) +

∑
xi∈Ien

ε
i

)

by setting v = πhu + v̄ ∈ S + S̄. �

4 Modified numerical integration for XFEM
In standard FEM, we often use standard Gauss integration in all elements because the
shape functions are smooth in the inner of the element. However, if the problem has interface,
the smoothness could not be guaranteed in some elements cut by an interface. In XFEM [],
give the outline of integration strategy.

In this work we first divide the special element into subelements as shown in Figure .
We can find that the subelements may contain a triangle, a common quadrangle or curved
edge graphics, especially if the element contains intersection of interfaces shown in the
right figure of Figure . We should utilize the vertices of element, the intersection of the
edge and interface, the intersection of different interfaces. In order to get more accurate
integration, the subdivision uses the same number of Gauss nodes with other regular ele-
ment.

This numerical integration strategy is also suitable for both extrinsic and intrinsic
XFEM. If the interface � is curve, from Figure  we should first approximate it by sev-
eral segments of bounding polygon and use more subdivisions in Figure . Of course we
can use more segments in order to approximate the curve of interface.

5 Numerical test
We use Matlab to implement our methods. First we introduce some notations. nElem =
nElemx = nElemy means we have uniform meshes in x-direction and y-direction h =
/nElem,

SFEM means the standard finite element method,
SXFEM means the stable extended finite element method,
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Figure 2 Dividing a fully or partially cut element into subelements, left: 2, middle: 5, right: 8.

DOF means the degrees of freedom,
‖u – uh‖: the relative L-error for uh using SXFEM,
orderL means the convergence rate in L-error order,
‖u – uh‖E : the relative energy-error for uh using SXFEM, we get the result by

‖u – uh‖E =
(∫

�

a(x, y)
(∇(u – uh)

) dx dy
)//(∫

�

a(x, y)(∇u) dx dy
)/

,

orderE means the convergence rate in energy-norm.
In this section we choose the standard benchmark test and report some numerical re-

sults for an interface problem with intersecting interfaces used by many researchers, see
[, , ]. Let � = (–, ) × (–, ), the exact solution is as follows:

u(r, θ ) = rβμ(θ )

in polar coordinates at the origin with

μ(θ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos(β( π
 – σ )) cos(β(θ – π

 + ρ)) if θ ∈ [, π
 ],

cos(βρ) cos(β(θ – π + σ )) if θ ∈ [ π
 ,π ],

cos(βσ ) cos(β(θ – π – ρ)) if θ ∈ [π , π
 ],

cos(β( π
 – ρ)) cos(β(θ – π

 – σ )) if θ ∈ [ π
 , π ],

where ρ , σ are constant numbers. The exact solution satisfies (), f =  and a(x, y) = R if
(x, y) ∈ (, ) ∪ (–, ), and a(x, y) =  if (x, y) ∈ �\([, ] ∪ [–, ]). The numbers β , R,
σ and ρ satisfy nonlinear relations (e.g., [, ])

R ≈ ., ρ = π/ and σ ≈ ..

Here, β = ., it is a difficult problem for computation by standard FEM. The ex-
act solution is singular on the origin node and the interfaces � are x-axis and y-axis
(fixed by the discontinuity of a(x, y)). � : (x, y)|xy = , x ≥ , � : (x, y)|xy = , y ≥ , � :
(x, y)|xy = , x ≤  and � : (x, y)|xy = , y ≤  The origin node (, ) is the intersecting in-
terfaces.

In this test we use Q element, all nodes are divided into three different types as follows:
. The node with influence area ω(xi) ∩ �i = ∅;
. The node with influence area ω(xi), singularity node O, O ∈ ω(xi);
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Table 1 DOF, the energy-error and L2-error using sXFEM for different step, impact radius
r = 0.1

2/h DOF ‖u – uh‖0 orderL2 ‖u – uh‖E orderE

19 416 3.14410816× 10–4 \ 2.88823845× 10–2 \
39 1648 1.31537498× 10–4 2.1536 1.36757789× 10–2 1.0785
79 6608 3.14410816× 10–5 2.0647 6.66191594× 10–3 1.0376
159 26432 8.09627168× 10–6 1.9573 3.28872649× 10–3 1.0184

Figure 3 The mesh and interface and intersection nodes and area: left, r = 0.1, h = 2/11, middle
r = 0.1, h = 2/19 and right r = 0.3, h = 2/19.

. Other elements. Not all the nodes in these elements need to be enriched(one, two
or three nodes are enriched in some elements).

We talk about the nd-enriched nodes chosen. Table  shows that the error does de-
crease dramatically when the impact area increases, so we can choose the impact area
radius r = . or r =

√
h. We just need guarantee that at least there is an element that

is enriched (all nodes of the element are enrichment nodes). For example, in Figure  we
can choose the gray color circle area, not the left of Figure  (r = h it is considered as the
st enriched nodes). Table  also verifies that the impact radius is not important for the
development of error.

We list the numerical error by stable XFEM and DOF when the impact radius is r = .
in Table . We can easily find that our method has reached the optimal orders. In Table 
we also list the numerical error with different impact radius, the error is not decreased
when the radius is larger. Generally r =

√
h is enough. In the last Table , we show the

L-error by FEM and XFEM and stable extrinsic XFEM with the same mesh. It is shown
that the FEM only has a half of order of optimal convergence. And the intrinsic XFEM is
a little better than stable XFEM.

For two types of XFEM, the L-error is o(h), and the energy-error is o(h). It is better
than that of FEM, we do not list the result of the reference [] using a triangular element.
According to Figure , it is shown that difference of the error distribution about FEM
method and sXFEM. The result in their reference the absolute energy-error is often con-
sidered to be ., while the degree of freedom is about ,. According to the results of
our method numerical relative energy-error is . × –, while DOF number is
only ,. If we use the variable step size, we will get more efficient result. We take the
further work into consideration.
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Table 2 DOF, the energy-error and L2-error using sXFEM with different impact radius r

2/h r DOF ‖u – uh‖0 ‖u – uh‖E

51 0.05 2720 7.62956091× 10–5 1.03929952× 10–2

51 0.1 2800 7.63216118× 10–5 1.03929961× 10–2

51 0.2 3024 7.64345134× 10–5 1.03929957× 10–2

51 0.3 3456 8.01596131× 10–5 1.03930097× 10–2

Table 3 Comparison of L2-error (‖u – uh‖0) using standard FEM, stable XFEM and modified
intrinsic XFEM

2/h FEM XFEM SXFEM

19 1.29367331× 10–2 5.85229689× 10–4 5.97809622× 10–4

39 6.11857595× 10–3 1.31518929× 10–4 1.55184343× 10–4

79 2.97964019× 10–3 3.12260721× 10–5 3.14410816× 10–5

159 1.47079316× 10–3 7.61075872× 10–6 8.09627168× 10–6

319 7.30756777× 10–4 1.87886932× 10–6 2.47196080× 10–6

Figure 4 Error distribution by different methods: standard FEM, stable XFEM (h = 2/79).

6 Conclusions
In this article, we discussed the stable XFEM for the second order elliptic equation with
discontinuous coefficients and derivative of solutions, and it comes to the following con-
clusions. Firstly we modified the local enrichment function space, and we analyzed how
the global error can be dominated by the local error. It was different from the shift function
only changed in vertices []. Secondly we described the stable XFEM step by step, we also
gave the error estimation if we use Q- element. The L-error is o(h), and energy-error
is o(h). We also got the optimal convergence same with SXFEM. Two types of XFEM are
better than FEM, to adapt the FEM result in reference [] a triangular element was used.
There the absolute energy-error was considered as ., while the DOF is about ,.
Numerical relative energy-error in this paper was . × –, while DOF is only
,. We will extend our method in general area, and it can be used to different meshes
and high order polynomials. At last we gave the numerical simulation for the standard
benchmark example. Numerical results support our analysis, we get the optimal order for
energy-error and L-error, respectively.
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