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Abstract

This paper explores the numerical methods for a singular integral equation (SIE),
which arise in the study of various problems of mathematical physics and
engineering. The idea behind the boundary element method (BEM) is used to
discretize the SIE. The fast multipole method (FMM), which is a very efficient and
popular algorithm for the rapid solution of boundary value problems, is used to
accelerate the BEM solutions of SIE. The effectiveness and accuracy of the proposed
method are tested by numerical examples.

Keywords: singular integral equation; boundary element method; fast multipole
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1 Introduction

Various problems of mathematical physics and engineering can be described by differ-
ential equations which can often be reformulated as an equivalent integral equation. For
example, the integral equations with singular kernel often arise in practical applications
such as potential problems, Dirichlet problem, and radiative equilibrium [1], etc., which
in general can be described as

h 1 1
au(x) + - /_ )%(yl dy + X1 /:1 k(y,x)u(y)dy =f(x), =xe(-1,1), (1)

1

where a, b are two real constants, f(x) and k(y,x) are given functions, the first integral in
(1) is defined in the sense of Cauchy principal value, and A is not an eigenvalue. In last
few years, many numerical methods have been developed to solve SIE (1), among which
collocation methods, Galerkin methods, spectral methods, etc. [2-11] have been widely
used for solving these kinds of problems for many years. Recently, Xiang and Brunner
[12, 13] introduced collocation and discontinuous Galerkin methods for Volterra integral
equations with highly oscillatory Bessel kernels, and they concluded that the collocation
methods are much more easily implemented and can get higher accuracy than discon-
tinuous Galerkin methods under the same piecewise polynomials space. Volterra integral
equations with oscillatory trigonometric kernels are given in [14, 15], which shows that
the convergence order of collocation on graded meshes is not necessarily better than that
on uniform meshes when the kernels are oscillatory trigonometric. Numerical solutions
for the Fredholm integral equations are discussed in [16, 17].
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In general, it will give rise to a standard linear system of equations when approximating
the solution of SIE by numerical methods. Specially, collocation methods would lead to
systems of equations with dense and non-symmetrical coefficient matrices where O(N?)
elements need to be stored, with N being the number of degrees of freedom. Solving the
systems of equations directly will need O(N?) arithmetic operations. Fortunately, Rokhlin
and Greengard innovated the fast multipole method (FMM) which has been widely used
for solving large scale engineering problems such as potential, elastostatic, Stokes flow,
and acoustic wave problems. For one dimension (SIE (1)), the interval [-1,1] is not a closed
curve; however, we can also utilize BEM to solve SIE and accelerate BEM by FMM when
the kernel k(y,x) has multipole expansion or k(y,x) = 0, for details, see [18—20].

In this paper, we are concerned with the evaluation of SIE

)

u(x) + A/ dt=f(x), xe(-1,1), (2)
g (=x)" f

where m € Z, m > 1, u(x) is an unknown function and f (x) is a given function. The integral

in (2) is defined in the sense of Hadamard finite-part integral for m > 1. For simplicity, we
denote SIE (2) as

(I +AK)u=f.

We approximate the solution of SIE by the collocation methods and utilize the FMM to
improve the efficiency of algorithm. The paper is organized as follows. In Section 2 we give
a brief description of the FMM, where the multipole expansion theory is introduced and
also moment to moment translation (M2M), moment to local translation (M2L), and local
to local translation (L2L). In Section 3, we give the convergence analysis of the proposed
method. In Section 4 we give preliminary numerical examples to illustrate the effective-
ness and accuracy of the proposed method.

2 Fast multipole boundary element method for the solution of (2)

In this section, we recall some basic formulations for the fast multipole boundary ele-
ment method. In order to solve a SIE numerically for the unknown function, we need
to discretize the SIE, firstly. We divide the interval (-1,1) into several segments (x;_1,x;),
j=1,...,N, and use the piecewise constant collocation method [16, 21], then SIE (2) be-
comes

[T _u)
u(X;) + A ——dy=f(x), xe€(-11). (3)
; Xj-1 (Y - xi)

Denote A = (a;) with a; =1 [ —L—dy+ 8, and b = [f(x1),....f Gn)]T, u = [u®), ...,

xj1 (y=x)"
u(*xn)]7, we obtain a standard linear system of equations

Au=Db.

Due to matrix-vector multiplication, solving this system by iterative solvers such as the
generalized minimum residue (GMRES) method needs O(N?) operations, and even worse
by direct solvers such as Gauss elimination. Based on the multipole expansion of the ker-
nel, the FMM can be used to accelerate the matrix-vector multiplication.
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2.1 Multipole expansion of the kernel
To derive the multipole expansion of kernel G(y, x) := W , we need the following formu-

lation.
Lemma 1 ([22]) Let a be any real or complex constant and |z| < 1, then we have

(1+z)":1+fzJr “(“—1)22+ ala—-1)(a-2)

3
1 2! 3! 2 @)

Y
y

expansion in the following, if |y — y.| < [y. — x|,

Applying Lemma 1, setz = :f;, then the kernel G(y, x) can be expressed as the multipole

6.2 = - (1422 )

c

= (e —x)m(l PP —m(—m—l)Z2 + —m(—m—l)(—m—2)z3 +>

1! 2! 3!
=Y Oulye = Iy - ye), 5)
k=0
where
2
Ik(x) = Er k = 0) (6)
x ", k=0,
Ok(x) = (7)

xR em(-m=1)---(-m—-k+1), k>1

In addition, we have the following two results:

k k

Ly + %) = D T ii(2) = Y Iewo) ki), (8)
1=0 =0

Oy +%3) = Y Opus(x)li(®a),  loa| > |- )
1=0

The integral in (3) is now evaluated as follows:

| ot dy = Y- O~ 50, (10)
%j-1 k=0

/’_

where My (y) = [, x’;ﬁ ) It (y — y.)u(y) dy are called moments about y,, which are independent
of the collocation point X;.
If the expansion point y, is moved to a new location y,/, we obtain this translation by (6)

and

M) = / " I =y uy) dy,

‘-1
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which leads to
k
Mk(yc’) = Zlk—l(yc _yc/)Ml(yc)- (11)
=0
We call this formula moment-to-moment translation (M2M).
On the other hand, if |y, —x;| > |x; — X;|, then (10) can be rewritten as
x/- o
/ G, E)uy)dy = Y Olye - )M(yo)
Xj-1 k=0
o0
= > Oclye — & + 2 — E)Mi(yc)
k=0
(o]
= Z L ()T (xr — X;) (12)
k=0
with
o0
Li(x1) = Z Okr1(ye —x)Mi(ye), (13)

=0

where Li(x;) denotes the local expansion coefficients about x;. We call the formula (13)
moment-to-local translation (M2L).

If the point for local expansion is moved from x; to x, using a local expansion with p
terms, we obtain this translation by

% b
| ot dy = Y- Lttt - )
¥ k=0

-1

»
= Lio)Iiloey = 2 + 3y — &)
pany

» K
D L) Y Tl — ) e — Fo),

k=0 j=0
which leads to
K
Li(er) = Y Lice) iy — ). (14)
j=0

We call this formula local-to-local translation (L2L).

2.2 Evaluation of the integrals

The multipole expansion is used to evaluate the integrals that are far away from the col-
location point, whereas the direct approach is applied to evaluate the integrals on the
remaining segments that are close to the collocation point. In the following, we are con-
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cerned with the piecewise constant collocation method for (2), where we can evaluate the

moments analytically by

A@@»:/’@@—%munw

xj_l

K (y_yc)k
= Lt] - k‘ dy
A
= I/l]'(IkJrl(xj _yc) —Ik+1(xl’,1 —yc)), (15)

When the integrating interval (x;_,;) is close to the collocation point X; but not coinci-

dence with the interval (x;_, x;), the integral is not singular, we can evaluate it analytically

by
T dy=—9 (g gy (16)
=g T Cmen? T
For the integrating interval (x;_1,x;), where X; € (x;_1,x;), we can evaluate the integral
analytically by
Xi Uu; ]n(k—c)u, m = ly
G P, 1 e 17)
Xi-1 U D) e D /;C'-1 y— dy, m>1,

where x;_; < ¢ < x;.

3 Convergence analysis

In this section, we derive the error bound for (10) when m = 1.

Lemma 2 ([23]) The Cauchy integral operator K : CO¥L) . COOCL defined by

1
(Ku)(z) := if u—(y)dy, ze(-1,1) (18)

wiJ Y-z
is bounded, where C'®%(~1,1) denotes the Holder continuous function on (-1,1).

Lemma 3 ([24]) Suppose that f(z) is analytic in |z| < R, then the Taylor series of f(z) is

converging absolutely in |z| < R, and we have

ZVI

R <L vmum|z

T 27 Je |- 13)

r n
SM1<E) )

wherer = |z|, ¢ is a circle centered at origin with radius R and R,, is the remainder of Taylor

series.
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Theorem 1 Ifweapply a multipole expansion with p terms and suppose that |y, —x;|/h > 2,

we have the following error bound:

xj p
| 6oty - Y- 0 - 2o
%j-1 k=0

1/1 p+l
ECE(E) ) (19)

where h = maXye(s; ) |y = yel, C = fx’;’_l lu(y)| dy.

Proof

Eh =

xj )4
[ 6oty - Y- 0 -5t
%1 k=0

j—

Z Ok(yc _ii)Mk(yc)

k=p+1

& ~ Wk
=C Y [0e -3

k=p+1
k
<C Z Cm+k_1m, (20)
k=p+1 ¢ ¢

where |y —y.| <h, C’;kal is the binomial coefficients.

For m =1, we have C;lf(n+k—1 =1, then
K+ 1
E <C _ . 21
M= Ny = 7] @2 1 - b/ lye — & &
Let n = |y, — %;|/h, then the preceding error bound can be written as
1 1 p+l
B, <C <—> ) (22)
M= " h(n-1)\n
which establishes the desired error bound. O

Theorem 2 Ifweapply multipole expansion and local expansion with p terms and suppose

that |y. — x;|/h > 2, we have the following error bound:

E - / Goniu®)dy - > L)l - )
%1 k=0
1 p+l
5CM(5) , (23)

where C, M are some constants.
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Proof From (12) and (13), we have
xj p
£ - [ Gomut)dy- Y Lt
Xj-1 k=0
xj p
<| [ Gnmu0)dy- Y Oy~ 50
Xj-1 k=0
p ~
DOk = &) — Oxlye — &) M) (24)
k=0
where ék(yc - 551) = Z{;:o Ok+n(yc - xl)ln(xl - 561)
Due to
k! k! x =%\ K
Oy —F) = — o= (1+ ) , (25)
0 e =) e -2\ ye—m
it follows that
o0
Ryl = |Ok e = %) = Okye = &)| = | D Okenlye = x0) (s - %)), (26)
n=p+1

which is the remainder of Taylor series expansion of (25).
Define g(z) = (1 +2) ™%}, then g(z) is analytic in |z| < 1. Since x; and y, are well-separated

points, we could set |%| < 1/2. By Lemma 3 we can estimate the remainder of Taylor

+1
oF

where M is constant determined by a function g(z).
By Theorem 1, (27) and (24), we have

1/1 pt+l 1 p+l

series R, as follows:

k!

IRp| < My|———
P |(ye — xp)[F+L

where C; = max{#,k =0,...,p}.
The desired error bound is established by setting M = % +(p+ 1M C. g

Remark1 Inthe FMM, x; and y, are well-separated points, we could obtain |y, —x;| > 24,
which leads to C; is bounded.

When we use the FMM to solve SIE (3), the integral operator K is approximated by
multipole expansion; if we define K}, as an approximate operator used in the collocation
method, then Theorem 1 and Theorem 2 indicate that

lim [|K, - K| = 0. (29)
p—)OO

It follows from Lemma 2 and (29) that the integral operator ((/ + 1K},)u)(x) is bounded.

Page 7 of 11
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4 Numerical examples

We illustrate the efficiency and accuracy of the methods described in this paper by nu-
merical examples. Here #zy denotes the piecewise constant collocation method, N is the
number of collocation points. We choose the uniform mesh, and ¥; is the middle point of

(xi_1,%;). Denote by IN = {%;,i = 1,..., N} the set of collocation points.
Y 14 p

Example 4.1 We consider

1 (Y uly)
u(x) — . /_1 Wdy =fx), |x|<1,

where

=1 [ e
21 J4 (y—x)™
andform=1orm=2,

ulx)=1
is the exact solution of equation.

Tables 1-4 illustrate the efficiency and accuracy of the methods.

From Tables 1-4, it is easy to see that the proposed method is effective. It might also
be noted that x; € I}° but &; ¢ I'°° and %; ¢ [,°°°, i.e., the points {-0.9,-0.5,-0.1,0.1,
0.5,0.9} C I;°, but it is not a subset of 1;°° or 1;°%.

Table 1 Approximations at x =-0.9,-0.5,-0.1 for u(x) - % f_11 uly). dy =f(x)

y-x)
x -0.9 -0.5 -0.1
Gho 1.000000000008664 0.999999999966656 1.000000002837690
{100 0.999999988989405 0.999999996983473 0.999999998141215
1000 1.000000006379357 0.999999997488601 0.999999998811889

u 1 1 1

Table 2 Approximations at x =0.1,0.5,0.9 for u(x) - % f_11 uly) dy =f(x)

-x)
X 0.1 0.5 0.9
tho 0.999999996078344 1.000000000199640 1.000000000023095
U100 1.000000000689915 1.000000003352249 1.000000033188974
{1000 1.000000000150622 1.000000002673433 0.999999995294152
1

u 1 1

Table 3 Approximations at x = -0.9,-0.5,-0.1 for u(x) - 5 [} uy) gy = f(x)

(y-x)2
x -0.9 -0.5 -0.1
G0 0.999999993535333 0.999999981428145 0.999999917999549
U100 0.999999993845970 0.999999988715871 0.999999990115998

{1000 0.999999995690078 0.999999991935489 0.999999993153335
u 1 1 1
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Table 4 Approximations at x =0.1,0.5,0.9 for u(x) - % f_11 uly) dy =f(x)

(y-x)?
x 0.1 0.5 0.9
o 0.999999917999549 0.999999981428145 0.999999993535332
U100 0.999999990036579 0.999999988582430 0.999999992194477
oo 0.999999993375294 0.999999992061794 0.999999995726361

u 1 1 1

Table 5 Approximations at x =-0.9,-0.5,-0.1 for u(x) - f_11 uly) dy =f(x)

(y-x)
x -0.9 -0.5 -0.1
10 -1.194519628297830 -0.601189820467772 -0.156767445549832
U100 -0.902665658196492 -0.496591018161909 —0.094652542268498
U1000 -0.900369341742219 -0.499656299326138 -0.099458627117756
u -09 -05 -0.1

Table 6 Approximations at x =0.1,0.5,0.9 for u(x) - f_11 uly). dy =f(x)

(y-x)
)¢ 0.1 0.5 0.9
Uho 0.057786709933708 0.465859007671879 0.872182894009698
U100 0.106011730395414 0.507142753891225 0.908324232818361
U1000 0.100609029282889 0.500725569118200 0.900861403735125
u 0.1 0.5 09

Example 4.2 Let us consider

1 u(y)
u(x) — L o-» dy=f(x), |xl<1,

where

S@) =x—(2-xIn(x +1) +xIn(l - x)),
then

u(x) = x,
is the exact solution of equation.

Tables 5-6 also show that the proposed method is effective and the convergence order
is O(1/N), which coincides with the classical theory of collocation methods.

Example 4.3 For the more general case, we consider

Y ou(y)
a2 -%)

u(x)(1+x%) — (1+4°) dy=f(x), I|x[<1,

where

Sflx) =" - ( T ox? +x310g[—1+2/(1+x)]>
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Table 7 Approximations at x =-0.9,-0.5,-0.1 for u(x) - f_11 uly) dy =f(x)

(y-x)
X -0.9 -0.5 -0.1
1o -0.608896542845208 -0.143953205178288 -0.019345651255813
U100 —-0.400907820963934 —0.096826636160551 —0.002238964950304
U1000 -0.402641823825626 -0.099675717661578 -0.001102497056280
u -0.402762430939227 —0.100000000000000 —0.000990099009901

Table 8 Approximations at x =0.1,0.5,0.9 for u(x) - f_11 ) dy =f(x)

(y-x)
X 0.1 0.5 0.9
10 -0.025111748216482 0.052110055810136 0.363240467300408
U100 -0.001202605523378 0.101502077326766 0.409787561038363
U1000 0.000783503911385 0.100161733460852 0.403492522553747
u 0.000990099009901 0.1 0.402762430939227

and the exact solution is

xS

u(x)

T 142

Tables 7-8 also illustrate the efficiency and accuracy of the methods.

5 Conclusion

In this paper, we explore collocation methods for a singular Fredholm integral equation of
the second kind and utilize the FMM to improve the efficiency of algorithm. Based on the
multipole expansion of kernel, we demonstrate that the approximate operator used in the
collocation equation converges to the initial operator. Numerical examples demonstrate
the performance of the proposed algorithm.
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