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1 Introduction and preliminaries
In this paper, we concentrate on the study of the existence and uniqueness of solutions for
a coupled system of nonlinear impulsive quantum difference equations,

Dy x(t) =f (&, %), y(2)), te]:=[0,T],t#t,

Dy y(t) = g(t,x(2),y(8), te,t#t,

Ax(tr) = i (x(tx)), Ayt = (), k=12,...,m,
a1x(0) + biy(T) = Ay, a2y(0) + byx(T) = Ay,

(1.1)

where 0 =ty <t <ty < - <ty <+ <ty <tma=T,fg:] x R®— R are continuous
functions, Ir, I} € C(R,R), Au(ty) = u(ty) — u(ty), u(tf) = limy,_ o+ u(ty + h), u € {x,y}, for
k=1,2,...,m,and 0 < py,qx <1 for k =0,1,2,..., m are given quantum numbers, 4;, b;, A;,
i = 1,2 are real constants with aja, # b1b;.

The notions of quantum calculus on finite intervals, gi-derivatives, and gx-integrals
were introduced in [1]. For a fixed k € NU {0} let Jx := [, tx+1] C R be an interval and
0<gr<1l,k=1,2,...,mbea constant. We define the gx-derivative of a function f: Jy — R
at a point ¢ € J; as follows.

Definition 1.1 Assume f : Jy — R is a continuous function and let ¢ € J;. Then the ex-

pression

S@) = fqrt + (1 - gi)tr)
(L —qu)(t—t)

Dqkf(t) = , EF b, DQkf(tk) = tlig}(DQkf(t)’ (1-2)

is called the gx-derivative of function f at .
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We say that f is gx-differentiable on J; provided D,, f(t) exists for all £ € Ji. Note that if
tx = 0 and g = g in (1.2), then D, f = D f, where D, is the well-known g-derivative of the
function f(¢), defined by

fO-flqt) (1.3)

2SO0 g

The gy-integral is defined as follows.

Definition 1.2 Assume f : J — R is a continuous function. Then the g;-integral is de-

fined by
[ FOdus=a-a)e-t0 > aifgie (1 e, (14)
Lk n=0

for t € Jx. Moreover, if a € (t, t), then the definite gi-integral is defined by
t a o
/ f(8)dys= / f(s)dg s — / f&)dys=1-q)(t- tk)Zq,’if(qﬁt+ (1 —q,f)tk)
a 73 n=0

oo
~(U-q)a-t) Y qif (dia+ (1-q)t).
n=0

Note that if £x = 0 and gx = g, then (1.4) reduces to g-integral of a function f(¢), defined
by [3f(s)dgs = (1 -t Y02 q"f(q"t) for t € [0, 00).

For the basic properties of the gi-derivative and the g,-integral we refer to [1].

The book by Kac and Cheung [2] covers many of the fundamental aspects of the quan-
tum calculus. In recent years, the topic of g-calculus has attracted the attention of several
researchers and a variety of new results can be found in [3-15] and the references cited
therein.

Impulsive differential equations serve as basic models to study the dynamics of processes
that are subject to sudden changes in their states. The recent development in this field has
been motivated by many applied problems, such as control theory, population dynamics,
and medicine. For some recent works on the theory of impulsive differential equations,
we refer the interested reader to the monographs [16—18]. Moreover, the interested reader
is referred to [19-24] for some recent results on impulsive g-difference equations.

In this paper we prove existence and uniqueness results for the impulsive boundary value
problem (1.1) by using Banach’s contraction mapping principle and Leray-Schauder’s non-
linear alternative. The rest of this paper is organized as follows: In Section 2 we present
an auxiliary lemma which is used to convert the impulsive boundary value problem (1.1)
into an equivalent integral equation. In Section 3, we establish an existence and unique-
ness result via Banach’s contraction principle, and an existence result by applying Leray-
Schauder’s alternative. Results on uncoupled integral boundary conditions case are in Sec-
tion 4. Examples illustrating our results are also presented.

2 An auxiliary lemma

Let] =1[0,T1,Jo = [to, t1], Jx = (&> trs1] for k =1,2,...,m. To define the solutions of problem
(1.1) we need the following lemma, which deals with a linear variant of problem (1.1) and
gives a representation of the solutions.
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Lemma 2.1 Given ¢,y € C(J,R), the unique solution of the problem

Dy x(t) = ¢(t), tel,t#t,

Dy y&)=v¥(t), telt#t
Ax(te) = Ii(x(tx)), Ay(te) = Go(t), k=12,...,m
a1x(0) + byy(T) = Ay, azy(0) + box(T) = Ay,

1 m ti T
x(t) = Q |:6l2)»1 —axb, Z(/ Y (s) dpk,ls + 1;; (J’(tk))) —ayb, / ¥ (s) dpmS
k=1 i1 tm
m t T
—bihy + biby Z( / ’ D(s)dy, s+ Ik(x(tk))> +bib, / #(s) d,,ms}

+Z(/ ¢s)qu1s+lk tk> /¢(s S (2.2)

O<ty<t

and

1 m tr T
y(t) = S |:611)»2 —aby ;</fk—1 o(s)dy, s +1k(x(tk))> —aby ./tm @(s)dy,,s

T
— by + b1b2 (/ Y(s)dy, s +I,’:(y(tk))) + blbzf Y(s)d ms:|

+Z</ Y (s)dyys+ I (v tk)> / V() dp,s, (2.3)

O<ty<t

where
Q= aay) — b1b2 7!0 (2.4)
Proof For t € Jy, qo-integrating (2.1), it follows that
t
50 =30+ [ 60 dys
0
which leads to
f
x(t1) = x(0) +/ d(s)dg,s
0
For t € J;, taking the g -integral for (2.1), we get

x(t) :x(tf) +/ () dy,s.

Since x(t]) = x(t;) + L(x(¢1)), we have

x(t) = x(0) + / 1 () dyys + / o) dgys+1 (x(tl)).
0 151
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Again g-integrating (2.1) from ¢, to ¢, where ¢ € J, then

x(t) = x(t3) +/ B(s)dgys

+/0lq)(s)d,ms+/;12<i)(s)dqls+/t2 ¢(s)dqzs+11(x(t1))+12(x(t2)).

Repeating the above process, for ¢ € J, we obtain

x(t) = x(0) + ( o(s)dy, s +1] x(t ) > o(s)d,
O<ty<t / . k ‘ /

In the same way, we can obtain

¥(£) = y(0) + ( Y (s)dp,_ys+ I y(t)) V() dp,s.
O<ty<t '/ e ‘ ‘ ’/ pk

In particular, for ¢t = T, we have

m ti T
x(T) = x(0) + Z( f D(s)dy s+ Ik(x(tk))) + / o(s)dy,s,
k=1 tk-1 tm

T
¥(T) = y(0) + (/ V(s)dy,_ ls+1,f(y(tk))> +/ V() dp,,s

Applying the boundary conditions of (2.1), we get the system
m ti T
a1%(0) + b1y(0) + by Z(/ V() dy, s+1I} (y(tk))) + by / Y (s) dp,,s = M1,
k=1 k-1 tm
ay(0) + byx(0) +b2 (/ o(s)dy, 1s+1k( x(tx) ) +b2/ @(s)dg,,s = Ao,

from which we have

T
#(0) = 1{a2x1—a2b1 (/ V() dy, 1s+1;:(y(tk)))—a2b1 f V() dy, s

m tk T
—bihy + b1by Z(/ o) dg s+ Ik (x(tk))> + b1by / o(s) dqmsi|
k=1 t-1 tm

and

1
¥(0) = o) |:6l1)»2 —ﬂlbz (f @(s)dy, 1S+Ik (tx) ) ﬂ1b2/ o(s)

m ti T
— by + biby Z (/ V() dy,_ s+1I; (y(tk))) +b1by / Y(s) dpms:|.
k=1 “Wik-1 tm

Page 4 of 19

(2.5)

(2.6)
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Substituting the values of x(0) and y(0) in (2.5) and (2.6), we obtain the solutions (2.2) and
(2.3). O

3 Main results

Let PC(J,R) = {x:] — R; x(¢) is continuous everywhere except for some & at which x(¢})
and x(t;) exist and x(¢;) = x(t), k =1,2,...,m}. PC(J,R) is a Banach space with the norm
llx]l pc = sup{|x(¢)|, £ € J}. Let us introduce the space X = {x(¢); x(t) € PC([0, T])} endowed
with the norm ||x|| = sup{|x(¢)|,¢ € [0, T']}. Obviously (X, || - ||) is a Banach space. Also let
Y = {y(¢); ¥(¢) € PC([0, T])} be endowed with the norm ||y|| = sup{|y(¢)|,£ € [0, T]}. Obvi-
ously the product space (X x Y, ||(x,)]]) is a Banach space with norm ||(x, y)|| = ||x]| + [|¥||.

In view of Lemma 2.1, we define an operator 7 : X X ¥ — X x Y by

. (ﬂ(x,y)(t)>

T2 (%, y)(t)

where

Tiwm®) = o [ale ~awh Z( | o)) dy s+ 1 (y(m))

k=1 ti-1

T
—ayb; / g(s,x(s),y(s)) dp,,s — bi)y
tm

+b1by Z (/ ‘ f(s,x(s),y(s)) dg, s+Ix (x(tk))>
k=1 N1

T
+ bi1by f f(s,x(s),y(s)) dqms:|

+ Z (/;kl s, xs) y(s)) - 1S+I/<( tk) ) /f s,x(s) y(s)) &S

O<ty<t

and

Ta(x, y)(2) = é [alkz —ayb, Z( / ‘ S (s,(5),5(5)) dgy s + I (x(tk)))
tk-1

k=1

T
— a1 by / f(s,x(s),y(s)) dy,,s — by

m

+ bi1by Z(/ ‘ (s x(s), y(s)) o ls+1k( (tk)))

k=1

T
+ b1b2/ g(s,x(s),y(s)) dpms:|
+ Z (/ s,x(s y(s)) 1S+ 1§ (y(tk))> / g(s,x(s),y(s)) dp,s.

O<tr<t Y tk-1 b

For the sake of convenience, we set

1
M = |Q|[ (Lilas||by| + Ki|by ||| + Ki|R]) + mKs(|by||ba| +192]) ], (3.1)
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M, = |16|[T(L2|a2||b1| + Kalby by + Ko |91) + mLslay|lBr1], (3.2)
My = [T(Nalaalla + NiJon 2]+ N 2)

+m(Nalaz||bi| + N3|by||by| + N3|Q1) + laa||A] + 1b1]|A2]], (3.3)
My = |—512|[T(K1|tl1||b2| + L1|b1|by| + L1|R2]) + mKs|a||ba|], (3.4)
Ms = llﬁ[T(Kzlﬂlllbzl + Lo|by||ba| + Ly|Q|) + mLs(1b1||b2] +1221) ], (3.5)
Mg = |1§|[T(N1|a1||b2| + Nalby|by| + No|2])

+ m(Nslay||ba] + Nalby|[bs] + Ny 1) + a| 2] + Bl 1 ]]. (3.6)

The first result is concerned with the existence and uniqueness of solutions for the prob-
lem (1.1) and is based on Banach’s contraction mapping principle.

Theorem 3.1 Assume that:

(Hy) The functions f,g: [0, T] x R? — R are continuous and there exist constants K;, L; > 0,
i=1,2 such that forall t € [0, T) and u;,v; e R, i=1,2,

f (&, w1, u2) = f(&;v1,v2)| < Kl — i + K |up = vs
and
|g(t, w1, u2) — g(t,v1,v2)| < Lilug —vi| + Loluz — va.

(Hy) The functions I, I} : R — R are continuous and there exist constants Kz, L3 > 0 such
that forallt € [0, T] and us,v; e R, k=1,2,...,m,

I (u3) = Ie(vs)| < Kslus — v
and
’1;:(143) —1;:("3)’ < L3|uz —v3|.
In addition, assume that
M+ My + My +Ms <1,

where M;, i =1,2,4,5, are given by (3.1)-(3.2) and (3.4)-(3.5). Then the boundary value
problem (1.1) has a unique solution.

Proof Define sup,. (o 71f(¢,0,0) = N1 < 00, sup,c[o714(£,0,0) = Ny < 00, sup{|/x(0)] : k =
1,2,...,m} = N3 < oo and sup{|[;(0)| : k = 1,2,...,m} = N4 < oo such that

M. M
rzmax{ 3 6 )},

1- (M, + M) 1 - (My + Ms

where M3 and M are defined by (3.3) and (3.6), respectively.
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We show that 7B, C B,, where B, = {(x,y) € X x Y : ||(x, %) < r}.

For (x,y) € B,, we have

| Ti(x, ) (@)
= sup L 2 aghs — b i(/tk g(5,x(5),5(9)) dp, s + I (¥(2, )))
EG[O’PT] q|@tM-a 1k=1 v Pk-1 « Wk

T
—ﬂzblf g(5,x(5), 5(5)) dp,s — b1)s

m 173 T
+b1by Z(/ S (5,%(),5(5)) dg, s + Ik(x(tk))> + b1b2/ S (s,%(),5(5)) dqms:|
k=1 k-1 tm
73
,%(8),¥(5)) dgy s+ Iie( ) }
+O§t<lk_lf(sxs ¥(5)) dgg s+ I(x /fsx

I/\

|Q||:|ﬂ2||)»1|+|ﬂz||b1|z</ |8(5,%(5), ¥(5)) — 8(5,0,0)| + |¢(5,0,0)| s
1) -0 + [1:0)])
T
+laallbl f l¢(5,%(5),5(5)) — £(5,0,0)| + |g(5,0,0)] 5 + 1Bl 2]
+|b1||bz|2(/ If (s, %(s), 5(5)) —f(5,0,0)| +[f(5,0,0)| dy s
+ [ (x(tx)) = 1 (0)| + |1k(0)|)

T
+ |b1I|b2|/ If (s,x(s), y(s)) = f(5,0,0)| + [f(S,0,0)idqu:|

+ Z( f ' If (5,%(5), 9(5)) = £(5,0,0)| + |£(5,0,0)| dy, s
k=1 -1
|Ik( tk)) Ik(O)| + |Ik(0)|> +/ V(s,x(s),y(s)) —f(s, 0,0)| + V(S,O, O)| dg,,$

1
== 2 |:|az||)q| +laz||bi] Z Lillx]l + Lallyll + Na)(tx = tx-1) + LIyl + Na)
k=1

+ |z [bal (Lullxll + Laliyll + N2 )(T = t) + [B1[ 22|

m
+1bllbal Y ((Kallell + Kallyll + Na) (t = ti-a) + K1) + Ns)
k=1

+ b1l | (Kullx ]| + Kz Iyl + Ni)(T = tm):|

+

M=

((Kallxll + Kz llyll + N ) (8 = tia) + Ks x| + N3)

>
L

1
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+ (Killxl + K llyll + Ni)(T = t,)

m+1
1
— |:|ﬂ2||)»1| + |aa||b1] Z((hllxll + La|lyll + Na) (b — ti1)) + laz||br|mLs |yl

kel =
m+1
+ |az||b1|mNy + |b1|[Aa] + |b1]|Dy] Z((I<1”x” + Ko ||yl + N ) (& — trr))
k=1
m+1
+ by ||| mK x| + |b1||b2|mN3:| + (Kl + Kallyl + Nu) (6 - 1))
k=1

+ mK3||x| + mN3

m+1
= x|l { ] |:Z(tk — ti1)(Lilaa||br| + Ki|by[|bo| + K |R2]) + mKs(|by 1By ] + IQI)} }
k=1

1 m+1
+lyll { il |:Z(tk — tie) (Lala| b1 + Kz by b | + K3 |Q2]) + mj43|612||h1|i| }
k-1

m+1
+ @ |:Z(tk - tk—l)(N2|ﬂ2||b1| +N1|b1||b2| +N1|Q|)
k=1

+m(Nylaz||bi| + N3|bi||ba| + N3|Q[) + |az||A1] + |b1||)~2|j|

= M|lx|l + Mallyll + Ms

< (M + My)r+ Mz <r.
In the same way, we can obtain
| T2(x,9)(0)]

m+1

1

< ||9C||{—IQI |: E (te — tier) (Kilaa|1ba| + L |y [1ba| + L1 |2]) + MK3|011||b2|:| }
k=1

m+1
1
+ [l { ] [ E (tx — tra) (Kala||by| + Lol by ||b2| + Lo |R2])
k=1

+ mLy(1bil bz + |sz|)} }

m+1
t [Z(tk — tx1) (Nilaa|Ba] + Nalbr|[ba| + No| Q)
k=1

+ m(Nz|ay||by| + Nu|bi||ba| + Nu|QI) + |ar|| Az + |b2||l1|i|

= Mallx|l + Ms|lyll + Mg

<My +Ms)r+Mg<r.

Consequently, || 7 (x,y)(@)|| <r.
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Now for (xy,¥5), (x1,1) € X x Y and for any ¢ € [0, T], we get

| T1 (%2, 2)(8) = Ti (1,31 (8) |

m+1
6 |:|ﬂz||b1| (Z /tk 1 g(5,%2(5),2(5)) — g(5,%1(5),71(5)) | dp,

A —1:<yl<tk>>|)
k=1

m+1
+ |by|]ba| (Z/ (5,2(5), 72(5)) = f (5,%1(5), 71.(5)) | gy, 8

+ Z‘Ik %3(tr)) — I xl(tk))|)]

m+1

k=1

m+1
= |:|ﬂ2||b1| (Z(tk — 1) (Lillea =21l + Lollys = y11l) + mLsly2 = nll

k=1

m+1
+1b1l]] (Z(tk — i) (Killx = %1l + Kallys =y ll) + mKs||x; — 2|

k=1

m+1

+ Z(tk — i) (Kalloea = 1 [l + Kally2 = y11l) + mKs [l — i |

k=1

1 m+1
= [lx2 —x1||{ 2 |:Z(t — te1)(Lilaz|1ba] + Kilba b + Ki|S2])

+ mKs(|b1]|bs] + |Q|):|}

Page 9 of 19

- Z / (5,%2(5), 72(5)) = f (5,21(),21(5)) | dgyys + Y [ Tac(a(8)) = T (1 () |

m+1
+y2 =l { Is] [Z( —ti1) (Lalaz||ba| + Ks|By |1 bo| + K| 2]) + mL3|ﬂ2||b1|:| }

= M ||xy — x|l + Maollya =yl

and consequently we obtain

| T2Ge2 72)(8) = Tilor, ) | < My + M) [ lloe2 = &1l + [ly2 =y ll]-

Similarly,

722, 92)(8) = Tao1, 31) || < (M + Ms)[ 2 = 21l + lly2 = 31l

It follows from (3.7) and (3.8) that

|7 CGe2s y2)(®) = T (1, 30) ()| < My + My + My + Ms)[ [l62 — 21l + [ly2 = 11l

(3.7)

(3.8)
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Since M; + My + My + Ms < 1, therefore, T is a contraction operator. So, by Banach’s fixed
point theorem, the operator 7 has a unique fixed point, which is the unique solution of
problem (1.1). This completes the proof. d

In the next result, we prove the existence of solutions for problem (1.1) by applying the
Leray-Schauder alternative.

For the sake of convenience, we set

M; = |16|[T(Bl|“2”bl| +A1lbi]|bo| + A1|R]) + mA4 (b1 1ba] +1921)], 3.9)
Mg = |16|[T(32|ﬂ2||b1| + Az|bi||by| + A3 |R2) + mBylay||by|], (3.10)
Mo = [T (Bolaallnl + Aol ] + Aol 2)

+ m(Bs|aa||b1| + As|by||ba| + A3|R2]) + |az|A1] + |By] |2zl ], (3.11)
My = ﬁ[T(Aﬂaleﬂ + Byby||ba] + ByIS) + mAsla| by, (3.12)
My = |—32|[T(A2|ﬂ1||b2| + By|by||bs| + B2|2) + mBy(1b111b2] + [21) ], (3.13)
Miz = 2 [T (Aol + Bolbn 1] + Bol2)

+ m(Aslay||by| + Bs|byl|by] + B3|Q1) + lar|[A2] + b2l 241]], (3.14)

and

Mo =min{1 - (M7 + My),1 - (Mg + Myp)}. (3.15)

Lemma 3.1 (Leray-Schauder alternative) ([25], p.4) Let F : E — E be a completely contin-

uous operator (i.e., a map that is restricted to any bounded set in E is compact). Let
E(F) = {x € E:x = AF(x) for some 0 < A < 1}.
Then either the set E(F) is unbounded, or F has at least one fixed point.

Theorem 3.2 Assume that:

(H3) The functionsf,g: [0, T] x R?2 — R are continuous and there exist constants A;, B; > 0
(i=1,2) and Ay, Bg > 0 such that Vx; e R (i=1,2)

f (t,%1,%5)| < Ag + Axlxr| + Az|xs |
and

|g(t,%1,%2)| < Bo + By|x1] + Bl .
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(H4) The functions I, I} : R — R are continuous and there exist constants Ay, By > 0 and
As3,B3 >0 such thatVx3 e R, k=1,2,...,m

I (x3)| < A3 + Aglxs]
and
|I¢ (%3)| < B3 + Balxs].
In addition it is assumed that
M; + My <1 and Mg+ Mp<l,

where M7, Mg, My, My are given by (3.9)-(3.10) and (3.12)-(3.13). Then there exists at
least one solution for the boundary value problem (1.1).

To prove the theorem we use the following lemma.

Lemma 3.2 Assume that (Hz) and (Hy) hold. Then the operator T : X x Y — X x Y is
completely continuous.

Proof By continuity of functions f and g, the operator T is continuous.
Let ® C X x Y be bounded. Then there exist positive constants P;, P, P3, and P4 such
that

[f(t,x(t),y(t))‘ <P, ‘g(t,x(t),y(t))’ <P, V(xy) €0,
|(x®)| <P, |LOGW)| <Pw k=12,...,m.

Then for any (x,y) € ®, we have

|7

m+1

< ﬁ |:|a2||A1| + |az|| b1 (Z/ k lg(s,%(5), 9(5)) | dp,_, 5 + Z|IZ(y(tk))|)
k=1 V-1 1

m+1

Flbillhal + |b1||b2|<2 [ 165050 [dy s+ Z|1k(x(tk))|)}
k=1 V-1 k=1

m+1

3 / (559, 9060) g5 + 3l (xta0)|
k=1 V-1 o1

1
< @Udzﬂkﬂ + |ay||b1|(PyT + mPy) + |by|[Aa| + by ||bo| (P T + mPs) ]

+P1T+mP3

= Dl.
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Similarly, we get

1

[larllAa] + lai]|ba|(PLT + mPs) + |by| || + by [|bo|(Po T + mPy)]
+P2T+WIP4

= Dz.

Thus, it follows from the above inequalities that the operator 7 is uniformly bounded.
Next, we show that 7 is equicontinuous. Let vy, v, € (¢, ;1) for some [ = 0,1,..., m with

V1 < Vo. Then we have
| T3 (%(2), y(12)) = Ti (x(v1), (1)) |

/ 2f(s,ac(s),y(s)) dgs - / 1f(s,x(s),y(s)) dy,s

i i

< Pilvy — .

Analogously, we can obtain
| T2 (%(v2), ¥(v2)) = T (x(v1), y(11)) |

/ 2g(s,x(s),y(s)) dps — / 1 g(s,x(s),y(s)) dy,s

i ]

< Ps|vy — 1]

Therefore, the operator 7T (x,7) is equicontinuous, and thus the operator 7 (x,y) is com-
pletely continuous. O

Proof of Theorem 3.2 By Lemma 3.2 the operator 7T (x,y) is completely continuous.
Now, it will be verified that the set £ = {(x,y) € X x Y|(x,y) = AT (x,9),0 < A <1} is
bounded. Let (x,y) € &, then (x,y) = AT (x,y). For any ¢ € [0, T], we have

x() = 2Tilx )0, y(6) = AT2(x,9)(0).

Then

m+1
1
()| < IIxII{@ |:Z(tk — tre1) (Bilaz| |by| + A1|by||ba| + A1)
k-1
+ mAq(|1b1||ba] + |Q|)i| }
1 m+1
+ |1yl { ] [Z(tk = tx1) (Balaz||b1] + Az |bybo] + A2|Q) + MB4|ﬂ2||b1|] }
k=1

m+1
+ il |:Z(tk — tx-1) (Bolazl|b1| + Ao byl |bs| + AolR2)
k=1

+ m(Bs|az||by| + As|by||by| + A3|R]) + |az| M| + |b1||)»2|:|
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and
ly(@®)| < IIxII{ 2 |:Z — tre) (Arlan]|b2| + Byl ||ba| + B[ Q1) +WIA4|ﬂ1||b2|i|}
m+1
+ Iyl { Ql |:Z(tk = tr1)(Azlar||ba| + By |by||by| + Bo|R2])
k-1
+mBy(|b1|ba| + |Q|):”
1 m+1
|Q| |:Z(tk — tie1)(Aolar||ba] + Bolb|1b2| + Bo|R2])
m(As|ay||by| + Bs|bi||ba| + Bs|R) + |ay|| 2] + |b2||)»1|:|-

Hence we have

xll < My llxll + Ms|lyll + Mo

and

Iyl < Miolixll + Mullyll + Mz,
which imply that

)l + Iyl < (M7 + Mao) x|l + (Mg + Mu) Iyl + Mo + M.
Consequently,

o] = 222,

for any t € [0, T], where M, is defined by (3.15), which proves that £ is bounded. Thus, by
Lemma 3.1, the operator 7 has at least one fixed point. Hence the boundary value problem

(1.1) has at least one solution. The proof is complete. O

3.1 Examples
Example 3.1 Consider the following coupled system of impulsive quantum difference

equations with coupled boundary conditions

tcos?(me) |x(t)| t+1 |yl 3
D g (t) = o4 T * B BT ty telo2hedn,

(

D iay(t) = (2”1—+5)2 sinx(¢) + & cosy(t) T+1’ t€[0,2],t #t, (3.16)
+1 .
_ ()| (&)l _k o7 _
Ax(ti) = 6(k+5)+k\x(tk)|’ Ay(tk) k+4)f\y(zk)\ te=5,k=1,2,3,

2x(0) + 4y(2) =5, 39(0) — 2x(2) = —6.
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Here qx = 2k + 1)/(K> + k +2), px = Wk+1)/(ef +1), k=0,1,2,3, m=3, T =2, a; = 2,
ay=3,by=4,by=-2,A =5,y = =6, f(t,x,y) = (tcos®(m£)|x])/(((3e + 4)*)(|x| + 1)) + (£ +
DIyN/(t + 4)3)(|y] + 1)) + 3/2, g(t,x,y) = (sinx)/(2° + 5)% + (e 2V cos y)/7 + (t* + 1)/3,
Ir(x) = |x|/(6(k +5) + %), and L (y) = [y|/(7(k +4) + |y]). We have |[f(¢,x1,y1) —f (£, %2,52)| <
((2/49)|x1 — x| + (3/64)|y1 — y2), |g(t, %1, 31) — g(E, %2, ¥2)| < (1/49) |1 — x| + (1/(7€%)) 31 —
¥21)s Uk(x) = I (y)| < (1/36)|x — y|, and | I} (x) — I} (y)] < (1/35)|x — y|. We can find

Q= aiay — b1b2 =14 7/0

With the given values, it is found that Kj = 2/49, K, = 3/64, K3 =1/36, L, =1/49, L, =
1/(7€?), Ly = 1/35, M; ~ 0.29422, M, ~ 0.25393, M, ~ 0.11127, M5 =~ 0.22224,, and

My + My + My + Ms >~ 0.88167 < 1.

Thus all the conditions of Theorem 3.1 are satisfied. Therefore, by the conclusion of The-
orem 3.1, problem (3.16) has a unique solution on [0, 2].

Example 3.2 Consider the following coupled system of impulsive quantum difference
equations with coupled boundary conditions:

D x(t) = + 5= sinx(t) + # tan~ly(¢), te€[0,3],tFt,

m 2(t+5)2
D%Sm(%n)y(t) = % + %x(t) Cosy(t) + 2Li45y(t)) te [07 3]’t #tk)
Ax(ty) = Lan ' (%) 42, f=Kk=1,2,..,8, (317)

Ay(ty) = tsin(®) 43, g = k=1,2,..8
—x(0) + 59(3) = -2, 29(0) + 3x(3) = 5.

Here g; = (k +1)/(Vk? + ek + 1), py = (sin(((k + 1)7)/10))/3, k= 0,1,2,...,8, m=8, T = 3,
a1 =-1,ay=2,b, =5 by =3, Ay = =2, Ay =5, ft,x,) = (1/4) + (sinx)/(2(t + 5)%) +
(tan~ty)/(772), g(t, %, ) = ((t + 2)/e) + (xcos y)/40 + (y)/ (2 + 45), Ii(x) = (tan~1(x/8))/4 + 2,
and I} (y) = (sin(y/6))/5 + 3. We get

Q= ardy — blbz =-17 #0
Since |f(¢,%,y)| < Ao + A1lx| + Aalyl, |g(¢,x,9)| < Bo + Bilx| + By|yl, where Ag = 1/4, A; =
1/50, Ay = 1/(7n2), By = 5/e, B; = 1/40, B, = 1/46, it is found that M; ~ 0.62765, Mg ~
0.27696, My >~ 0.19588, M;; >~ 0.63239. Furthermore,

M7 + My ~ 0.82353 <1
and

Mg + My ~0.90935 < 1.

Thus all the conditions of Theorem 3.2 holds true and consequently the conclusion of
Theorem 3.2; problem (3.17) has at least one solution on [0, 3].
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4 Uncoupled boundary conditions case
In this section, we consider again the system

Dy x(t) =f(t,x(8),y(t)), te],t#tr
Dy, y(t) = g(t,x(t),y(t), te],t#tr
Axty) = L(x(®)),  Ay(t) = Lo), k=1,2,...,m

a1%(0) + byx(T) = Ay,

(lgy(()) + bzy(T) = )\.2.

Page 15 of 19

(4.1)

Lemma 4.1 (Auxiliary lemma) For h € C([0, T, R), the unique solution of the problem

Dyx(t)=h(t), te],t#t,
Ax(ty) = Ii(x(t)), k=1,2,...,m
a1x(0) + byx(T) = Aq,
is given by
A m+1 m
0= -4 (Z h(s) dy_, sz(x(tk)))
k=1 k-1 k=1
t
£y < f h(s)dy, s+ Ik(x(tk))) + / h(s) dy,s,
O<ty<t b
where
A= ay + b1 7’0

In view of Lemma 4.1, we define an operator €: X x ¥ — X x Y by

(T
)= (32(% v)(t)) ’
where
b m+l g m
T =L (Z [ 69,9 dy 5+ Zlk(u(m))
k=1 * k-1 k=1
+ Z ( / k £(s,u(s), v(s)) quls+1k(u(tk))> + f f (s uls)
O<ty<t Y k-1 73
and
m+1 m
T, v)(t) = — - — (Z/ s u(s dpkfls + Z[}f (v(tk)))
k-1 k=1

2([

O<ty<t

73

(s,u(s) v(s)) 1S+ I} (V(tk)))

+/ g(s,u(s),v(s)) dp, s

V(S))

d

qk

(4.2)

(4.3)

(4.4)

N
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where
b= a) + b2 7(0

We remark that ¥; depends only on f and ¥, only on g. We call the above system, for
convenience, a ‘coupled system with uncoupled boundary conditions’
In the sequel, we set the constants

— 1 _ —

M, = m(T1<1 +mK3) (1] + |Al), (4.5)
— 1

M, = mT1<2(|b1| +1A]), (4.6)
_ 1 _ —

Ms = m[(TNl +mNs)(|b1| + |A]) + | M1]], (4.7)
_ 1 _

M, = mTL1(|192| +1®|), (4.8)
— 1 _ —

Ms = @(TLz +mLs)(|by| + | ®]), (4.9)
— 1 _ —

Mg = m[(TNZ +mNy)(|b2| + |®]) + |Az]]. (4.10)

Now we present the existence and uniqueness result for problem (4.1). We do not pro-
vide the proof of this result as it is similar to the one for Theorem 3.1.

Theorem 4.1 Assume that:

(Hs) The functionsf,g: [0, T] x R?> — R are continuous and there exist constants K;, L; > 0,
i=1,2 such that for all t € [0, T] and u;,v; e R, i=1,2,

|f (& 1, 12) — f (£, v1,v2) | < Kiluy = vi| + Koy — vs
and
Ig(t, uy, Uz) —g(t,V1>V2)| < Liluy = 1| + Lo|uy — vs|.

(He) The functions I, I} : R — R are continuous and there exist constants Ks,Ls > 0 such
that forallt € [0,T) and uz,vs e R, k=1,2,...,m

|Ii(u3) — I(vs) | < Ks3|uz —vs|
and
|I¢ (u3) = I (v3)| < Lslus - vs).
In addition, assume that
M+ My + My +Ms <1,

where My, My, My, M5 are given by (4.5)-(4.6) and (4.8)-(4.9), respectively. Then the
boundary value problem (4.1) has a unique solution.



Tariboon et al. Advances in Difference Equations (2015) 2015:163 Page 17 of 19

Example 4.1 Consider the following coupled system of impulsive quantum difference

equations with uncoupled boundary conditions

sin(t)  |x(t)] ¢
kx(t) et+5)2 |x(£)]+1 + (tf4) U’([ ‘+1 + 3 te [Or 1])t7'/t/<,

D(3_+kE y(t) = m cosx(t) + gt t+3) ly@)I+2, tel0,1],t#t,

o (t)| Ly ()] _k 5 _
Ax(tk) = 3(k+9x)7+k\x(tk) Ay(t]() Wfly(tk)l tk = g,k = 1, 2, 3, 4,
3x(0) - 8x(1) =7, 49(0) + 5y(1) = 2.

(4.11)

Here qx = (2/7)%, px = (3 + k)/ (4+2k))" k=0,1,2,3,4,m=4,T=1,a,=3,a,=4,b, =
=8,by =5, 1 =7, hy = 2, f(t,%,y) = (sin(zw ) |x])/(((e" + 5)*)(|x[ + 1)) + (" [y)/ (£ + 4)*)(|y| +
1)) +3, g(t,x,9) = (cosx)/(10(2t +4)) + (IyD/ (67 (¢ + 3)) + 2, Ik(x) = |x|/(3(k +9) + |x]), and
IE(y) = Iyl/(5(k + 6) + |y]). Since |f(¢,x1, 1) —f (£, %2,¥2)| < ((1/36)|x1 —x2| + (77/64) [y1 = y21),
lg(t, %1, 1) = g(t, %2, ¥2)| < (1/50)|x1 = x2| + (1/(187))[y1 = y2), k(%) = k()] < (1/30)[x — y],
and |} (x) — I (y)| < (1/35)|x — y|. We can find

A=ﬂ1+b1:—5#0 and d3:6l2+b2=97/0.

With the given values, it is found that K; = 1/36, K, = 7/64, K3 = 1/30, L; = 1/50, L, =
1/(187), L3 = 1/35, M; =~ 0.41889, M, ~ 0.12763, M4 ~ 0.03111, M5 ~ 0.20529, and

My + Moy + My + Ms ~0.78291 < 1.

Thus all the conditions of Theorem 4.1 are satisfied. Therefore, by the conclusion of The-
orem 4.1, problem (4.11) has a unique solution on [0, 1].

The second result dealing with the existence of solutions for the problem (4.1) is analo-
gous to Theorem 3.2 and is given below.

In the sequel, we set constants

— 1 _ —

My = o (TA+ mAy)(|bi| +|Al), (4.12)
Mg = mTAz(um +1Al), (4.13)
Mo = N [(TAO +mAsz)(1b1| +|A]) + [M]], (4.14)

1

My = @TBI(VM +|®), (4.15)
— 1 _ —

My = (7B + mBy)(|ba| + |®]), (4.16)
_ 1 _ _

My, = m[(TBo + mBs) (b + | @) +A2]]. (4.17)

Theorem 4.2 Assume that:

(Hy) The functionsf,g: [0, T] x R? — R are continuous and there exist constants A,B;>0
(i=1,2) and Ao, By > O such that Vx; € R (i =1,2)

[f(t,x1,%2)| < Ag + A1lx1] + Aslaxs |
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and
|g(t,%1,%2)| <Bo + By|x1] + Byl .

(Hg) The functions I, I} : R — R are continuous and there exist constants A4, By > 0 and
A3, B3 > 0 such thatVx; € R, k=1,2,...,m

|[T(xs)| < As + Aglws]
and
|I{ (x3)| < B3 + Balxs).
In addition it is assumed that
M;+Myg<1l and Mg+Myp <1,

where M7, Mg, My, My, are given by (4.12)-(4.13) and (4.15)-(4.16), respectively. Then the
boundary value problem (4.1) has at least one solution.

Proof Setting
Mo =min{1 - (M7 + My),1 - (Mg + M)},
the proof is similar to that of Theorem 3.2. So we omit it. O

Example 4.2 Consider the following coupled system of impulsive quantum difference
equations with uncoupled boundary conditions:

sz(t) 3+ sm( )+
D _ 3+k y(t) 4'+

5+2k+k2
wx(tg)

t+3)2 tan—l(M), te [O, 1]yt #tk,

X(6) + 7oZhy(1),  te(0,1],¢7 b

Ax(ty) = 10 Lrsin(®EE) + 1, 4= IIB,k_ 1,2,...,9, (4.18)
Ay(ty) = s1n(y(6 )+3, = llg,k 1,2,...,9,

2x(0) — 7x(1) = -3, 3y(0) — 5y¢(1) = -

10 2z+1

Here g = 2/(3 + k), pr = B3+ k)/(5 + 2k + k?), k= 0,1,2,...,9, m =9, T =1, a; = 2,
ay=3,by=-7,by ==5,1 = =3, Ay = =10, f(t,x,7) = 3+ (sin(x/2))/20 + (tan"L (y/4))/(t + 3)?,
g(t,%,y) = 4 + (£x)/(10(2° + 1)) + (sin(w £)y)/ (2(2¢ + 5)2), I (x) = (sin(rx/2))/(1072) + 1/2, and
IE(y) = y/(20e + y*) + /4. We get

A=a;+b;=-5#0 and ®=ay+by=-2F0.
Since [f(t,%,7)| < Ao +A1|x| +As|yl, |g(t,%,9)| < Bo +Bi|x| +Ba|y|, where Ay = 3, A, = 1/40,
A, =1/36, By = 4, By = 1/20, By = 1/50, it is found that M; ~ 0.40377, Mg ~ 0.06667,

Mo ~ 0.175, My, ~ 0.64941. Furthermore,

My + Mo ~ 0.57877 < 1

Page 18 of 19
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and
Mg + My, ~0.71608 < 1.

Thus all the conditions of Theorem 4.2 holds true and consequently the conclusion of
Theorem 4.2; problem (4.18) has at least one solution on [0, 1].
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