
Wu et al. Advances in Difference Equations  (2015) 2015:154 
DOI 10.1186/s13662-015-0493-8

R E S E A R C H Open Access

Oscillation criteria for a class of nonlinear
neutral differential equations
Shuhui Wu1*, Pargat Singh Calay2 and Zhanyuan Hou2

*Correspondence: s.wu@zust.edu.cn
1School of Sciences, Zhejiang
University of Science and
Technology, 318 Liuhe Road,
Hangzhou, 310023, China
Full list of author information is
available at the end of the article

Abstract
In this paper, we deal with the oscillation of the second order nonlinear neutral
differential equations of the form

(a(t)(x(t) + δp(t)x(t – τ ))′
)
′ + f (t, x(t – σ )) – g(t, x(t – ρ)) = 0.

The oscillation criteria for these equations have been obtained. Furthermore,
examples are given to illustrate the criteria, respectively.

Keywords: neutral differential equations; bounded oscillation; almost oscillation;
bounded almost oscillation

1 Introduction
The differential equations that we study describe many phenomena and dynamical pro-
cesses in various fields, and they have attracted a great deal of attention of researchers in
physical sciences, mathematics, biology, and economy. In addition, these equations play an
important role in numerical simulations of nonlinear partial differential equations, queu-
ing problems, and discretization in solid state and quantum physics. For the application,
please see [].

In this paper, we consider the oscillation of second order nonlinear neutral differential
equations with mixed type term of the form

(
a(t)

(
x(t) + δp(t)x(t – τ )

)′)′ + f
(
t, x(t – σ )

)
– g

(
t, x(t – ρ)

)
= , (.)

where δ = + or –, t ≥ t, a(t) is a continuously differentiable function, p(t) is a contin-
uous bounded function with a(t) > , p(t) ≥ , f (t, u) and g(t, v) are continuous func-
tions, the constants τ ,σ ,ρ ∈ [,∞). Denote λ = max{τ ,σ ,ρ}, t = t + λ, L[t,∞) =
{x(t)| ∫ ∞

t
|x(s)|ds < ∞}.

The following conditions will be assumed throughout this paper:

(H)
∫ ∞

t


a(s) ds = ∞ for all t ≥ t,
(H) f (t,u)

u ≥ q(t – σ ) >  for u �=  and  < g(t,v)
v ≤ r(t – ρ) for v �= ,

(H)  < f (t,u)
u ≤ q(t – σ ) for u �=  and g(t,v)

v ≥ r(t – ρ) >  for v �= ,
(H) 

r(t)–q(t) is bounded, where q, r ∈ C([t,∞), R+).
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We also assume that x(t) is a nontrivial solution of (.). The investigation of oscillatory
behavior of solutions of various types of differential equations done by many researchers is
motivated by many application problems in physics, biology, ecology, and so on. In partic-
ular, an increasing interest in obtaining oscillation criteria for different classes of differen-
tial and functional differential equations has been manifested recently. Please see [–].

The paper is organized as follows. We will first present criteria for (.) when δ = +
in Section  and then for (.) when δ = – in Section . Some examples will be given
to illustrate the obtained criteria, respectively. The proofs of the main results are left to
Section .

2 Statement of the main results when δ = +1
We first rewrite (.) as

(
a(t)

(
x(t) + p(t)x(t – τ )

)′)′ + f
(
t, x(t – σ )

)
– g

(
t, x(t – ρ)

)
= . (.)

In this section, four oscillatory criteria will be presented and some illustrated examples
will be given.

Theorem . Suppose that conditions (H), (H) and (H) hold, q(t) > r(t), r(t) is bounded
and σ ≥ ρ . Then (.) is bounded oscillatory.

Remark . In [], the authors considered

(
x(t) + p(t)x

(
τ (t)

))(n) + q(t)f
(
x
(
σ (t)

))
= 

and established the criteria for the solution to be oscillatory when  ≤ p(t) < . Even
though this result is about the higher order equations, the generality of our results is not
robbed since our equations include a larger class of equations.

Example  Consider the differential equation

((
 +


t

)
(
x(t) + x(t – π )

)′
)′

+ 
(

 +

t

)
x(t – π )

+ 
(

 +

t

)
x(t – π ) –


t x

(
t –

π



)
= . (.)

Viewing (.) as (.), we have a(t) =  + (/t), p(t) =  > , and

q(t) = 
(

 +


t + π

)
> r(t) =


(t + π

 ) .

Moreover, τ = π , σ = π > ρ = π/, and r(t) is bounded for t ≥ π . Note that conditions
(H), (H) and (H) are satisfied and, by Theorem ., (.) is bounded oscillatory.

Theorem . Suppose that conditions (H), (H) and (H) hold, q(t) > r(t), q(t), /a(t) are
bounded and σ < ρ . Then (.) is almost oscillatory.
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Example  Consider the differential equation

(
t
(
x(t) + x(t – π )

)′)′ +
tπ

t – π
x(t – π ) –

π

t – 
π

x
(

t –


π

)
= . (.)

Viewing (.) as (.), we have a(t) = t, p(t) =  > , and

q(t) =
(t + π )π

t
> r(t) =

π

t
.

Moreover, τ = π , σ = π < ρ = π/, q(t) is bounded for t ≥ π . Note that conditions (H),
(H) and (H) are satisfied. By Theorem ., (.) is almost oscillatory. Indeed, x(t) = t sin t
is an unbounded oscillatory solution of (.).

Theorem . Suppose that conditions (H), (H) and (H) hold, q(t) < r(t), r(t), /a(t) are
bounded and σ ≥ ρ . Then (.) is bounded almost oscillatory.

Theorem . Suppose that conditions (H), (H) and (H) hold, q(t) < r(t), q(t) is bounded
and σ < ρ . Then (.) is bounded almost oscillatory.

Example  Consider the differential equation

(
t +  – π

t – π

(
x(t) +

t – π

t(t +  – π )
x(t – π )

)′)′

+
t +  – π

(t – π )(t – π )
x
(

t –
π



)
– x(t – π ) = . (.)

Viewing (.) as (.), we have

a(t) =
t +  – π

t – π
,

p(t) =
t – π

t(t +  – π )
> ,

q(t) =
t + 

t(t – π )
< r(t) = .

Also,

τ = π ,σ =
π


< ρ = π and q(t) is bounded for t ≥ π .

We note that conditions (H), (H) and (H) are satisfied and, by Theorem ., (.) is
bounded almost oscillatory. In fact, x(t) = ( + (/t)) sin t is a bounded oscillatory solution
of (.).

3 Statement of the main results when δ = –1
In this section, we consider (.) when δ = –. So (.) becomes

(
a(t)

(
x(t) – p(t)x(t – τ )

)′)′ + f
(
t, x(t – σ )

)
– g

(
t, x(t – ρ)

)
= . (.)
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Four oscillation criteria have been obtained. In addition, some example will be given to
demonstrate the obtained results.

Theorem . Suppose that conditions (H), (H) and (H) hold, p(t) ≥ , q(t) < r(t), σ ≤ ρ

and r(t) is bounded. Then (.) is bounded oscillatory.

Example  Consider the differential equation

((
 –


t

)(
x(t) – x(t – π )

)′
)′

+

t x

(
t –

π



)
– x(t – π ) = . (.)

Viewing (.) as (.), we have τ = π , σ = π
 < ρ = π ,

a(t) =  –

t

,

p(t) =  > ,

q(t) =


(t + π
 ) < r(t) = 

for t ≥ π . We note that conditions (H), (H) and (H) are satisfied and, by Theorem .,
(.) is bounded oscillatory.

Theorem . Suppose that conditions (H), (H) and (H) hold, q(t) < r(t), σ ≥ ρ ,  ≤
p(t) ≤ p <  or  < p ≤ p(t), r(t) and /a(t) are bounded. Then (.) is bounded almost
oscillatory.

Theorem . Suppose that conditions (H), (H) and (H) hold, q(t) > r(t), σ < ρ ,  ≤
p(t) ≤ p <  or  < p ≤ p(t), q(t) and /a(t) are bounded. Then (.) is bounded almost
oscillatory.

Example  Consider the differential equation

(
t

t + 

(
x(t) –

(t – π )
t

x(t – π )
)′)′

+
(t + t – t – )(t – π )

t(t + ) x(t – π )

–
(t + )(t – π

 )
t(t + ) x

(
t –

π



)
= . (.)

Viewing (.) as (.), we have τ = π , σ = π < ρ = π/,

a(t) =
t

t + 
,

p(t) =
(t – π )

t
≥ . for t ≥ π ,

q(t) =
t((t + π ) + (t + π ) – t – π – )

(t + π )(t + π + ) ,

r(t) =
t(t + π + )

(t + π/)(t + π/ + ) .
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Clearly, q(t) > r(t) for large t and /a(t) and q(t) are bounded. We note that conditions
(H), (H) and (H) are satisfied and, by Theorem ., (.) is bounded almost oscillatory.

Theorem . Suppose that conditions (H), (H) and (H) hold, q(t) > r(t), σ ≥ ρ , q(t) is
bounded,  ≤ p(t) ≤ p < , or /a(t) is bounded and  < p ≤ p(t). Then (.) is bounded
almost oscillatory.

Example  Consider the differential equation

(
t

t + 

(
x(t) –

t – π

t
x(t – π )

)′)′
+

(t + t – t – )(t – π )
t(t + ) x(t – π )

–
(t + )(t – π/)

t(t + ) x(t – π/) = . (.)

Regarding (.) as (.), we have τ = π , σ = π > ρ = π
 ,

a(t) =
t

t + 
,

 < p(t) =
t – π

t
≤ 


< , t ≥ π ,

q(t) =
t((t + π ) + (t + π ) – t – π – )

(t + π )(t + π + ) ,

r(t) =
t(t + π + )

(t + π/)(t + π/ + ) .

Clearly, q(t) > r(t) for large enough t and q(t) is bounded. Notice that (H), (H) and (H)
are satisfied therefore, by Theorem ., (.) is bounded almost oscillatory.

4 Proofs of the main results
Here we will give the proofs of the main results.

Proof of Theorem . Let x(t) be a bounded non-oscillatory solution. Suppose x(t) is an
eventually positive solution. Then there exists t ≥ t such that x(t) >  and x(t – λ) >  for
t ≥ t. Let

z(t) = a(t)
(
x(t) + p(t)x(t – τ )

)′ –
∫ t–ρ

t–σ

r(s)x(s) ds. (.)

From (.) and (H) it follows that

z′(t) ≤ (
r(t – σ ) – q(t – σ )

)
x(t – σ ) < , t ≥ t. (.)

So z(t) is decreasing, and

–∞ ≤ lim
t→∞ z(t) = c < ∞.

If c = –∞, from (.) and the boundedness of x(t) and r(t), we have

lim
t→∞ a(t)

(
x(t) + p(t)x(t – τ )

)′ = –∞.
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Then there exist l >  and t ≥ t such that

(
x(t) + p(t)x(t – τ )

)′ ≤ –
l

a(t)
, t ≥ t.

Integrating both sides of the above inequality, according to (H), we obtain

lim
t→∞

(
x(t) + p(t)x(t – τ )

)
= –∞,

which contradicts the boundedness of x(t) and p(t). This contradiction shows that |c| < ∞,
i.e., z(t) is bounded.

From (.) it follows that

x(t – σ ) ≤ 
r(t – σ ) – q(t – σ )

z′(t). (.)

So x ∈ L[t,∞) by (H).
(i) If c > , from (.) we have

z(t) ≤ a(t)
(
x(t) + p(t)x(t – τ )

)′, t ≥ t.

Therefore, since z(t) → c as t → ∞,

(
x(t) + p(t)x(t – τ )

)′ ≥ c
a(t)

, t ≥ t.

From (H) we have limt→∞(x(t) + p(t)x(t – τ )) = ∞, which contradicts the boundedness of
x(t).

(ii) If c < , in view of x ∈ L[t,∞), we have

lim
t→∞

∫ t–ρ

t–σ

r(s)x(s) ds = .

Then, since z(t) → c as t → ∞, there exist ε ∈ (, –c) and t ≥ t such that

a(t)
(
x(t) + p(t)x(t – τ )

)′ ≤ c + ε < , t ≥ t.

Hence, by (H) again, we obtain

lim
t→∞

(
x(t) + p(t)x(t – τ )

)
= –∞,

a contradiction to the boundedness of x(t) and p(t).
(iii) If c = , in view of z′(t) < , we have z(t) > . So

a(t)
(
x(t) + p(t)x(t – τ )

)′ >
∫ t–ρ

t–σ

r(s)x(s) ds > , t ≥ t.

Since x(t) + p(t)x(t – τ ) is positive and increasing, the integral

∫ ∞

t

(
x(t) + p(t)x(t – τ )

)
dt
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is divergent, a contradiction to x ∈ L[t,∞). The contradictions obtained in the above
three cases show that (.) has no bounded eventually positive solution. Now suppose
that x(t) is a bounded eventually negative solution. Then x(t – λ) <  for some t > t and
all t ≥ t. From (.), (.) and (H), we have

z′(t) ≥ (
r(t – σ ) – q(t – σ )

)
x(t – σ ) > , t ≥ t. (.)

So z(t) is increasing and –∞ < limt→∞ z(t) = c ≤ ∞. Then an argument parallel to the
above also leads to contradictions. Therefore, every bounded solution of (.) is oscilla-
tory. �

Proof of Theorem . Without loss of generality, suppose that x(t) is an eventually positive
solution. Take t ≥ t such that x(t – λ) >  for all t ≥ t. Let

z(t) = a(t)
(
x(t) + p(t)x(t – τ )

)′ +
∫ t–σ

t–ρ

q(s)x(s) ds. (.)

From (.) it follows that

z′(t) ≤ (
r(t – ρ) – q(t – ρ)

)
x(t – ρ) < , t ≥ t. (.)

So z(t) is decreasing and

–∞ ≤ lim
t→∞ z(t) = c < ∞.

If c = –∞, then

lim
t→∞ a(t)

(
x(t) + p(t)x(t – τ )

)′ = –∞.

By (H), we obtain limt→∞(x(t) + p(t)x(t – τ )) = –∞, which contradicts x(t) + p(t)x(t – τ ) >
. Therefore |c| < ∞ so z(t) is bounded.

From (.) we have

x(t – ρ) ≤ 
r(t – ρ) – q(t – ρ)

z′(t), t ≥ t (.)

so, by (H), x ∈ L[t,∞) and limt→∞
∫ t–σ

t–ρ
q(s)x(s) ds = . Since /a(t) is bounded, by (.),

(x(t) + p(t)x(t –τ ))′ is bounded. This implies that x(t) + p(t)x(t –τ ) is uniformly continuous
on [t,∞). Note that the property x ∈ L[t,∞) and the boundedness of p(t) imply that
x(t) + p(t)x(t – τ ) ∈ L[t,∞). Hence limt→∞(x(t) + p(t)x(t – τ )) = , so limt→∞ x(t) = .
Therefore, every solution x of (.) which is not in the class of o() as t → ∞ is oscilla-
tory. �

Proof of Theorem . Without loss of generality, assume that x(t) is a bounded eventually
positive solution and z(t) is defined by (.). Take t ≥ t such that x(t – λ) >  for t ≥ t.
From (.) and (H), we have

z′(t) ≥ (
r(t – σ ) – q(t – σ )

)
x(t – σ ) > , t ≥ t. (.)
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So z(t) is increasing. Then

–∞ < lim
t→∞ z(t) = d ≤ ∞.

If limt→∞ z(t) = ∞, then from (.) and the boundedness of x(t) and r(t), we obtain

lim
t→∞ a(t)

(
x(t) + p(t)x(t – τ )

)′ = ∞.

Then there exist l >  and t ≥ t such that

a(t)
(
x(t) + p(t)x(t – τ )

)′ ≥ l, t ≥ t.

From (H) it follows that

lim
t→∞

(
x(t) + p(t)x(t – τ )

)
= ∞,

a contradiction to the boundedness of x(t) and p(t). So |d| < ∞ and z(t) is bounded. From
(.) we have

x(t – σ ) ≤ 
r(t – σ ) – q(t – σ )

z′(t), t ≥ t.

Therefore, by (H), x ∈ L[t,∞). By the same reasoning as that used in the proof of The-
orem ., we have limt→∞ x(t) = . Therefore, every bounded solution x of (.) which is
not in the class of o() as t → ∞ must be oscillatory. �

Proof of Theorem . Without loss of generality, suppose that x(t) is a bounded eventually
positive solution. Let z(t) be defined by (.). Take t ≥ t such that x(t – λ) >  for t ≥ t.
From (.) and (H), we have

z′(t) ≥ (
r(t – ρ) – q(t – ρ)

)
x(t – ρ) > , t ≥ t. (.)

Hence z(t) is increasing and

–∞ < lim
t→∞ z(t) = d ≤ ∞.

By using the method similar to that used in the proof of Theorem ., we have –∞ < d <
∞. Therefore z(t) is bounded. From (.) it follows that

x(t – ρ) ≤ 
r(t – ρ) – q(t – ρ)

z′(t), t ≥ t.

Thus, by (H), x ∈ L[t,∞) and limt→∞
∫ t–σ

t–ρ
q(s)x(s) ds = . Then it follows from (.) that

lim
t→∞ a(t)

(
x(t) + p(t)x(t – τ )

)′ = d.

(i) If d > , then there exists t ≥ t such that

a(t)
(
x(t) + p(t)x(t – τ )

)′ ≥ d


, t ≥ t.
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From (H) we have

lim
t→∞

(
x(t) + p(t)x(t – τ )

)
= ∞,

which contradicts the boundedness of x(t) and p(t).
(ii) If d < , similar to the case (i), we have

lim
t→∞

(
x(t) + p(t)x(t – τ )

)
= –∞,

a contradiction to the boundedness of x(t) and p(t) again. Hence d = , i.e., limt→∞ z(t) = .
On the other hand, from (.) and limt→∞ z(t) = , we have z(t) < . In view of (.),
(x(t) + p(t)x(t – τ ))′ < , which implies that x(t) + p(t)x(t – τ ) is decreasing. From x(t) +
p(t)x(t – τ ) ∈ L[t,∞), we have limt→∞(x(t) + p(t)x(t – τ )) = . Thus limt→∞ x(t) = .
Therefore, every bounded solution x of (.) which is not in the class of o() as t → ∞
must be oscillatory. �

Proof of Theorem . Suppose that x(t) is a bounded non-oscillatory solution. Without
loss of generality, we assume that x(t) is an eventually positive solution. Let

z(t) = a(t)
(
x(t) – p(t)x(t – τ )

)′ +
∫ t–σ

t–ρ

q(s)x(s) ds. (.)

From a proof similar to that of Theorem ., we obtain

z′(t) > , lim
t→∞ z(t) = c, |c| < ∞, and x ∈ L[t,∞).

(i) If c > , from (.) it follows that

lim
t→∞ a(t)

(
x(t) – p(t)x(t – τ )

)′ = c >
c


.

So, for large enough t,

(
x(t) – p(t)x(t – τ )

)′ ≥ c
a(t)

.

Hence limt→∞(x(t) – p(t)x(t – τ )) = ∞ by (H), which contradicts the boundedness of x(t)
and p(t).

(ii) If c < , in view of limt→∞ z(t) = c and x ∈ L[t,∞), there exists t ≥ t such that

a(t)
(
x(t) – p(t)x(t – τ )

)′ ≤ c


< , t ≥ t.

Hence limt→∞(x(t) – p(t)x(t – τ )) = –∞ by (H), a contradiction to the boundedness of
x(t) and p(t) again.

(iii) If c = , in view of z′(t) > , we have z(t) < . Further,

(
x(t) – p(t)x(t – τ )

)′ < .
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We show that x(t) – p(t)x(t –τ ) > . In fact, if there exists t ≥ t such that x(t) – p(t)x(t –
τ ) < , then, for all t ≥ t,

x(t) – p(t)x(t – τ ) ≤ x(t) – p(t)x(t – τ ) < .

This contradicts x(t) – p(t)x(t – τ ) ∈ L[t,∞). Hence x(t) – p(t)x(t – τ ) >  for all large
t ≥ t. From this and the assumption on p, we have x(t) ≥ p(t)x(t – τ ) ≥ x(t – τ ), which
contradicts x ∈ L[t,∞). Thus (.) is bounded oscillatory. �

Proof of Theorem . Without loss of generality, assume that x(t) is a bounded eventu-
ally positive solution. By a proof similar to that of Theorem ., we obtain limt→∞(x(t) –
p(t)x(t – τ )) = . Suppose

lim sup
t→∞

x(t) = l > .

So there exists a sequence {tk} such that tk → ∞ as k → ∞ and

lim
k→∞

x(tk) = l > .

(i) If  ≤ p(t) ≤ p < , then we have ( – p)l ≤ , which contradicts l >  and  – p > .
(ii) If  < p ≤ p(t), then we have  ≤ ( – p)l, which contradicts l >  and p –  > .

Therefore, we must have

lim sup
t→∞

x(t) = .

Then limt→∞ x(t) =  as x(t) is eventually positive. This shows that (.) is bounded almost
oscillatory. �

Proof of Theorem . Without loss of generality, suppose that x(t) is a bounded eventually
positive solution. As in the proof of Theorem ., we obtain

lim
t→∞

(
x(t) – p(t)x(t – τ )

)
= .

Then the rest follows from the proof of Theorem .. �

Proof of Theorem . Without loss of generality, suppose that x(t) is a bounded eventually
positive solution. Let

z(t) = a(t)
(
x(t) – p(t)x(t – τ )

)′ –
∫ t–ρ

t–σ

r(s)x(s) ds. (.)

By the reasoning similar to that used in the proof of Theorem ., we have x ∈ L[t,∞),
limt→∞ z(t) = c =  and z′(t) < . So z(t) > , (x(t) – p(t)x(t – τ ))′ >  and x(t) – p(t)x(t – τ ) is
increasing. We claim that x(t) – p(t)x(t – τ ) <  for t ≥ t. In fact, if there exists t ≥ t such
that x(t) – p(t)x(t – τ ) ≥ , then x(t) – p(t)x(t – τ ) ≥ x(t + ) – p(t + )x(t +  – τ ) > 
for t ≥ t + , which contradicts x(t) – p(t)x(t – τ ) ∈ L[t,∞). Hence x(t) – p(t)x(t – τ ) < 
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for all t ≥ t. If  ≤ p(t) ≤ p <  is satisfied, then x(t) < px(t – τ ) for all t ≥ t. This implies
that limt→∞ x(t) = .

If /a(t) is bounded and  < p ≤ p(t), from the proof of Theorem ., we have
limt→∞(x(t) – p(t)x(t – τ )) =  and thus limt→∞ x(t) = . Therefore, (.) is bounded al-
most oscillatory. �
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