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1 Preliminaries
Let p and g be non-zero integers such that D = p? — 4q # 0 (to exclude a degenerate case).
We set the sequences U, and V,, to be

Un = Un(P, q) :pun—l - qun—Zr

Vn = Vn(p’ q) :an—l - an—Z

1)

for n > 2 with initial values Uy = 0, U =1, Vp = 2, and V; = p. The sequences U, and V,
are called the (first and second) Lucas sequences with parameters p and q. V,, is also called
the companion Lucas sequence with parameters p and q.

The characteristic equation of U/, and V;, is x> — px + q = 0 and hence the roots of it are

x = ’%ﬁ and x; = pr\/B' So their Binet formulas are

n v/
X7 —X
1 2
u, =
X1 — X2

and V, =« +x)

p—-q
10

e e g

for n > 1. The generating functions of U, and V,, are

for n > 0. For the companion matrix M = [ ], one has

_px

U(x) = A and V()= ———.
1-px+gx

1-px + ga?

(2)

Fibonacci, Lucas, Pell, and Pell-Lucas numbers can be derived from (1). Indeed for p =1
and g = -1, the numbers U, = U,(1,-1) are called the Fibonacci numbers (A000045 in
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OEIS), while the numbers V,, = V,,(1, —1) are called the Lucas numbers (A000032 in OEIS).
Similarly, for p = 2 and g = —1, the numbers U,, = U,(2,-1) are called the Pell numbers
(A000129 in OEIS), while the numbers V,, = V,,(2, -1) are called the Pell-Lucas (A002203
in OEIS) (companion Pell) numbers (for further details see [1-6]).

2 Quadra Fibona-Pell sequence

In [7], the author considered the quadra Pell numbers D(n), which are the numbers of the
form D(n) = D(n — 2) + 2D(n — 3) + D(n — 4) for n > 4 with initial values D(0) = D(1) =
D(2) =1, D(3) = 2, and the author derived some algebraic relations on it.

In [8], the authors considered the integer sequence (with four parameters) 7, = =57}, —
5Ty + 2T, 3 +2T, 4 with initial values Ty = 0, T1 =0, T, = -3, T3 =12, and they derived
some algebraic relations on it.

In the present paper, we want to define a similar sequence related to Fibonacci and Pell
numbers and derive some algebraic relations on it. For this reason, we set the integer se-
quence W, to be

Wy =3W,1-3W,3-W,_4 (3)

for n > 4 with initial values Wy = W, =0, W5 =1, W3 = 3 and call it a quadra Fibona-
Pell sequence. Here one may wonder why we choose this equation and call it a quadra
Fibona-Pell sequence. Let us explain: We will see below that the roots of the characteristic
equation of W, are the roots of the characteristic equations of both Fibonacci and Pell
sequences. Indeed, the characteristic equation of (3) is x* — 3x® + 3x + 1 = 0 and hence the
roots of it are

o= ., B= ‘/5, y=1++/2 and §=1-+2. (4)

(Here «, B are the roots of the characteristic equation of Fibonacci numbers and y, § are
the roots of the characteristic equation of Pell numbers.) Then we can give the following

results for W,,.

Theorem 1 The generating function for W, is

xZ

W)= ——
() x*+3x3-3x+1

Proof The generating function W (x) is a function whose formal power series expansion

at x = 0 has the form

o0
W)=Y Wi = Wo + Wiz + Wox? -+ Wit +---
n=0

Since the characteristic equation of (3) is x* — 343 + 3x + 1 = 0, we get

(1—3x+3x3+x4)W(x) = (1—3x+3x3+x4)(W0+\X/1x+...+ an"+...)

= Wo + (Wi = 3Wo)x + (Ws — 3W;)a?
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+(W3—3W2+3W0)x3+~--

+ (Wn _SWn_l + BWn_g + Wn_4)x” doeen,

Notice that Wy = W; =0, W =1, W3 =3,and W,, =3W,_; —3W,,.3 — W,_4.So (1 - 3x +
3x% + x¥) W (x) = % and hence the result is obvious. O

Theorem 2 The Binet formula for W, is

Wn: (yn_an) B (an_ﬂi’l>
y =38 a-p

forn>0.

x2
x43x3-3x+1"
303 —3x+1=(1-x-x2)(1-2x—x%). So we can rewrite W(x) as

Proof Note that the generating function is W(x) = It is easily seen that x* +

X X

Wi(x) = - . 5
) 1-2x—-x2 1-x—x2 )
From (2), we see that the generating function for Pell numbers is
x
P(x) = ——— 6
@ 1-2x—«2 (©)
and the generating function for the Fibonacci numbers is
x
Flx)= —. 7
O ?)
From (5), (6), (7), we get W(x) = P(x) — F(x). So W,, = (y::gn) - (“Z:gﬂ) as we wanted. [J

The relationship with Fibonacci, Lucas, and Pell numbers is given below.

Theorem 3 For the sequences W, Fy, L,,, and P,,, we have:
(1) W,=P,—F, forn>0.
(2) Wy + Wy =" +8") - (" + ") forn>1.
(3) V/5F, +23/2P, = (y" = 8") + (" — B") for n > 1.
(4) Ly+ Py +Pya=a"+p"+y"+8" forn>1.
5) 2(Wys1 =Wy + Fp) =y"+ 8" form>1.

Proof (1) 1t is clear from the above theorem, since W (x) = P(x) — F(x).
(2) Since 6Wn_1 + Wn+2 = SWHH - 3Wn_1 - Wn_z + 6Wn_1, we get

1 1
Wn+1 + Wn—l = 2Wn—1 + an—2 + g Wn+2
6 yn—l _ 5;1—1 an—l _ ,Bn_l
_< y-8  a-p >

3
1 yn—2 _ 8;'1—2 an—Z _ ﬂn—Z
y -9 a-p

3
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. l(ynd _8n+2 ~ n+2 ,Bn+2>
3 y -4 oa—-B
_;[ n E i 8" __6 i 52 ]
_S(y—S)y(y )/+y> (5_ _>

1 af —© 1 9 A © 1 9
el (wmw ) ()]

— (yn + 5”) _ (O[n +ﬁn)’

6

since 7 + - Ly ——6—i—82 6«/§and————a2—% ﬁlz+/32 35.
(3) Notice that F,, = andP,,— . =a"—p"and 24/2P, = y" - §".
Thus clearly, «/_F,,+2\/_P =(y" —8”)+(o/‘—ﬂ )

(4) It is easily seen that P,y + P,y = y" +8". Also L, =" + B”.So L, + Ppyy + Py =
o + "+ y" + 8"

(5) Since W41 =3W,, — 3W,,_5 — W,,_3, we easily get

WnH_Wn:ng_SWn—Z_Wn—S
s yn_an an_’Bn 3 7/;1—2_8;«1—2 an—Z_ﬂn—Z
- y -4 ] y -4 oa-p
yn—3 _ 871—3 an—B _ ﬁn—s
y =8 a-p
1 n(y 3 1 st( -2 3 1
= — -— - + 2+ =+ =
y -8 4 y2  y3 52 83
1 3 1 3 1
+ a"M2a-=- = )-p"H28-5 -
oa-p a o B B
and hence
2y3 -3y 1 —282+38+1
ZW,M—ZW,,: +8" — s

[ (Za - 3a - 1)_}6”1(2,33—35—1)}
(x—ﬁ a? B2

2 [ ,(20®-3c-1 1282 -3B8-1
& oo e (M) o () |

2
1

[ n(2y3—3y—1> n(—253+33+1)}
=—|y +4
V2 v

83
< Z(Wl’l+l - Wn + Fn—l) = )’" + Sn;

. 3_3,_ _9s3 _ 3_38-
since 2y y3y 1 _ -2 8+35+1 ﬁ and 203 Ba 1_ 28 ﬂSﬂ 1_1

(6) It is just an algebraic computatlon, since W, = (yn -

n_gn
) - (2", 0
Theorem 4 The sum of the first n terms of W, is
X”: W, = W, +4W,q + 42W,,_2 + Wz +1 ®)
i=1

forn=>3.
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Proof Recall that W, =3W, 1 —3W,,_3 — W,,_4. So
W3+ W, 4=3W,1-2W,3-W,. (9)
Applying (9), we deduce that

W1+ W() =3W3—2W1— W4,
W2+ Wl =3W4—2W2— W5,

Wg + Wz = 3W5 —2W3 - WG,
(10)

Wia+ Wy5=3W, 5 -2W, 4 - W,

Wiz + Wyq =3W,1 -2W, 3 - W,.
If we sum of both sides of (10), then we obtain W,,_3 + Wy + 2(W1 +--- + W,,_4) = 3(W3 +
Wat- + W) -2(Wi+ Wot- -+ Wy3) = (Wa+ Ws+---+ W,). Sowe get W,_3 +2(W7 +

Wyt + W, 4)=1-W, - W, 1 - W, +3W, 5 +3W,_; and hence we get the desired
result. 0

Theorem 5 The recurrence relations are

Wan = IWau2 —20Woy_ g + IWo6 — Ways,

Wane1 = IWou1 =20Wo, 3 + IWo5 — Wy
forn=>4.

Proof Recall that W, =3W,,_; —3W,,_3 — W,,_4. So Wa, = 3Wy,_1 — 3Wo,_3 — Wa,_4 and
hence
Wan =3Wau1 —=3Way 3 — Waya
=IWon2 = IWo a4 —=3Woy5 —IWo 4 + IWsy 6 + 3Woyy
+ Wan-g = Wan-g — Wapa
= —(BWau5 =3Wau 7 — Wayg) + W2y, 2 — 18 Wy s + W2y 6
- Wang = Wana
= -Wan-a + IWon2 = IWapa —IWopa + IWay6 — Ways — Wan-a

=IWou0 —20Wo,_4 + IWo,6 — Ways.
The other assertion can be proved similarly. O
The rank of an integer N is defined to be

p  if pis the smallest prime with p|N,
p(N) = A
oo if N is prime.

Thus we can give the following theorem.
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Theorem 6 The rank of W, is

2 ifn=5+6k6+ 6k 7+ 6Kk,
p(W,) =13 ifn=8+12k9+12k15 + 12k,16 + 12k,
5 ifn=14 +60k,46 + 60k

for an integer k > 0.

Proof Let n = 5+6k. We prove it by induction on k. Let k = 0. Then we get Wy = 24 = 23.3,
So p(W5) = 2. Let us assume that the rank of W, is 2 for n = k — 1, that is, p(Wei_1) = 2, so
Ws.6(k-1) = Wek-1 = 2% - B for some integers a > 1 and B > 0. For n = k, we get
Wekss = 3Weksa —3Wers2 — Wk
= 3(3Weks+3 = 3Weks1 — Wek) = 3Woks2 — Weint
= IWek+3 — I Weks1 — 3Wek — 3Weki2 — Wekn
= 9B Weks2 = 3Wek — Wier-1) = 9Weks1 — 3Wer — 3Weksa — Wekn
= 27Weks2 — 27 Werx — IWer—1 — 9 Weis1 — 3Wek — 3Weria — Wera
= 24 Wiz —30Wer — 10 Wegi1 — I W1
=24 W2 —30Wei —10Wer1 — 9 - 2°B
= 2[12Wers2 — 15Wei — 5Weies1 =9 - 2°7'B].
Therefore p(Ws,6x) = 2. Similarly it can be shown that p(Wg,ex) = 0(W746k) = 2.
Now let = 8 + 12k. For k = 0, we get Wy = 387 = 32 - 43. So p(Wj3) = 3. Let us assume

that for n = k — 1 the rank of W, is 3, that is, p(Ws.12(-1)) = p(Wizk-a) = 3% . H for some
integers b > 1 and H > 0 which is not even integer. For n = k, we get

Wizkss = 3Wiaks7 — 3Wiakes — Wioksa

= 3Whaks7 — 3Wizkss — (3 Wik — 3Wiaks1 — Waak)

= 3Wiaks7 — 3Wiakss — 3Wiakes + 3Winkar + Wik

= 3Wi2k+7 = 3Wizkss — 3Wiakes + 3Wiakn
+ (3Wiak1 = 3Wink-3 = Wink-4)

= 3Wi2ks7 = 3Wizkss — 3Wiakes + 3Winks1 + 3Wiaka
= 3Wiak-3 — Wizk-4

= 3Wiaks7 — 3Winkss — 3Winkss + 3Winkar + 3 Wiaka
-3Wins-3"-H

= 3(W12/<+7 = Wiakss — Wiakes + Winks1 + Wiaga
- Wig—s -3 H).

So p(Wiaks+s) = 3. The others can be proved similarly. O
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Remark 1 Apart from the above theorem, we see that p(Ws,) = p(Wae) = 00, while
p(W70) = p(Wog) =13 and p(Wig) = p(W34) = p(Wso) = 23. But there is no general for-

mula.

The companion matrix for W, is

3 0 -3 -1
1 0 O 0
M:
01 O 0
0 0 1 0
Set
1
0
N =
0
0
and

R=[3 1 0 0]
Then we can give the following theorem, which can be proved by induction on n.

Theorem 7 For the sequence W, we have:
(1) RM"N = W,,3 + Py + 2(Wyyy1 — Fp) forn > 1.
(2) RMT)"=3N = W, for n > 3.
(3) If n>7 is odd, then

muy miz nh3 Mg
my1 My M3z Mg

M" = ,
mg31 M3y M3z 34
My Mgy M43 44
where
my = Wy, mo1 = Wi, mzp = Wy, my = Wy,
myy = =Wy, Moy = =Wy, mzy = —=Wy_1, Mg = =Wy_a,
n=5 n=3
2 2
mp=-1-Wyq-2 E Wi1-2is myz =Wy —2 E Wi-2is
=0 -0

a

n—

5
> 3
myy =W, -2 Z Wi-2-2i» mp3 =—1—- Wy —2 Z Wi-1-2i»
=0 ‘

(=)

a

n=7

2
mzy =—-1-W,_1 -2 Z W—3-2is mzz=-W, -2 > Wy o2,
i=0

=

4

5
(=)
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-7 n=7
2 2
My =-Wy 5 -2 E Wi—a-2i, myz=-1-W,_1-2 E Wi-3-2is
i=0 i=0

and if n > 8 is even, then

mn  mip 3 Mg
mp1  Myy M3 M4
ms3y M3y W33 34

Myl Myy M3 My

where
my = Wy, mo1 = Wiy, mz; = Wy, my = Wy,
myy = =Wy, Moy = =Wy, mzy = —-Wy_1, Mg = =Wy_a,
n=4 n-4
2 2
myp =Wy -2 E W-1-2i» mz =—1- W, -2 E Wi-2is
i=0 i=0
n-6 n—4
2 2
myy =-1-W, -2 E Wi-2-2is my3 = -Wyq -2 E W-1-2»
i=0 i=0
-6 n-6
2 2
mzy =W, 1 -2 E Wi—3-2is mz3=-1-W, -2 E Wi-2-2i»
i=0 i=0
n-8 n-6
2 2
My =-1-W, 5 -2 E Wi—a-2i» myz=-Wy -2 E Wi—3-2i.
i=0 i=0
A circulant matrix is a matrix A = [4;],,x» defined to be
ag ai ay - 4y
ap-1 Ao a1 - Ap2
A= ap-2 Adp-1 Ao - Ap-3 )
L a1 a az ‘- ap |
where a; are constants. The eigenvalues of A are
n-1
—ik
Ai(A) = E aw™", (11)
k=0

where w = e%, i=+-1,andj=0,1,...,n — 1. The spectral norm for a matrix B = [b;],xm
is defined to be ||B||spec = max{+/;}, where 1; are the eigenvalues of BiBfor0<j<n-1

and B! denotes the conjugate transpose of B.
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For the circulant matrix

Wo wi Wy - W

Wpa Wo Wi -0 Wy

Wio W, Wy - W,_

W = W(Wn) _ n-2 n-1 0 n-3
W W, W - W |

for W, we can give the following theorem.

Theorem 8 The eigenvalues of W are

+ (Pn - 2Fn - Wn—l)w_j - Wn

w¥ + 3w -3w7 +1

W,aw™¥ + (W, +P,_1 —2F,_1 + l)w‘zj}

(W) = i
forj=0,1,2,...,n-1.

Proof Applying (11) we easily get

n-1 n-1 k k k k
> yr=48" " =pB%\
A,»(W):E Wkw1k=§ ( Sy S )w’k
k=0 k=0 4

L [yr-1 81 1 [oa"-1 p'-1
Ty =8|lywi-1 swi-1| a-Blawi-1 PBwi-1

_ [W"—1><8w"'—1)—(8"—1>(yw—f—1)}

y -3 (yw7 =1)(6w7 -1)

1 [(@"-1)(Bw7-1)—(B"-1)(aw’ -1)
T a-p [ (aw7 - 1)(Bw7 —1) ]
1 |:w‘7(y”8—8”y +y —8)+8”—y”:|
Ty -8 Syw ¥ —wiS+y)+1
1 [wi(@"B-pBa+a-B)+p"—a”
_oz—ﬁ|: Baw ¥ —wi(B+a)+1 ]
wIVB(8 =y + 8" —8y") + 2/2(a - B + " B — a )]
+w A [VB(y" = 8"+ 8 —y + 8" — y"8) + 2/2(B" — ")
+4/2( - B+a"B—ap)] + wiE(y" 8" +y -8
+y"8 = y8") + 2¢/2(B — o + Bl — " B) + 4v/2(B" — )]
+[V5(8" = y") +24/2(a” - )]

210w + 3w=3 — 3w +1)

+ (Pn - ZFn - Wn—l)wij - Wn

w Y +3w ¥ -3w7 +1

W,aw ™ + (W, +P,_1 —2F,1 + l)wzi}

sinceoz,B=—1,y8=—1,a+,3=1,oz—,3=ﬁ,y+8=2,andy—8=2«/§.
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After all, we consider the spectral norm of W. Let n = 2. Then W, = [0]yx3. So
W2 llspec = 0. Similarly for n = 3, we get

Ws =

oS = O
= O O
o O =

and hence WX W3 = I3. So | W3 lspec = 1. For 1 > 4, the spectral norm of W), is given by the
following theorem, which can be proved by induction on 7.

Theorem 9 The spectral norm of W, is

Wn—l + 4Wn_2 + 4Wn_3 + W,,_4, +1

” Wn”spec = 9

forn=>4.
For example, let # = 6. Then the eigenvalues of W W are
Ao =1,369, A =289, Ay =As=784 and A3=Ai;=2388.
So the spectral norm is || W||spec = /Ao = 37. Also w = 37. Consequently,

W5+4W4+4W3+W2+1_
5 =

37

” W6||spec =

as we claimed.
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