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Abstract
In this paper, we study periodic solutions for a seasonally forced SIR model with
impact of media coverage. Usually, media reports, information processing, and
individuals’ alerted responses to the information can only arise as the number of
infected individuals reaches and exceeds a certain level. The piecewise smooth
righthand side is introduced to describe the impact of this kind of media coverage.
Using Leray-Schauder degree theory, we establish new results on the existence of at
least one positive periodic solution for a seasonally forced SIR model with impact of
media coverage. Some numerical simulations are presented to illustrate the
effectiveness of such media coverage.
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1 Introduction
Many infectious diseases, such as measles, chickenpox, mumps, rubella, pertussis and in-
fluenza, show seasonal patterns of incidence [–]. The cause of seasonal patterns may
vary from the periodic contact rates [, ], periodic fluctuation in birth and death rates
[–], and periodic vaccination program []. Thus, it is natural to model these diseases by
seasonally forced epidemiological models.

The media coverage is an important factor responsible for the transmission of an in-
fectious disease. When a type of contagious disease appears and starts to spread, people’s
response to the threat of disease is dependent on their perception of risk, which is affected
by public and private information disseminated widely by the media. Massive news cov-
erage and fast information flow have played an important role in affecting the outcome of
infectious disease outbreak, such as the  severe acute respiratory syndrome (SARS)
and the  HN influenza epidemic [–].

Recently, Wang and Xiao have used piecewise continuous transmission rate to describe
that the media coverage exhibits its effect once the number of infected individuals exceeds
a certain critical level []. In this paper, we study the following periodic forced SIR model:

⎧
⎪⎨

⎪⎩

dS(t)
dt = μ – β(t)f (I)SI – μS,

dI(t)
dt = β(t)f (I)SI – (μ + γ )I,

dR(t)
dt = γ I – μR,

(.)
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in which
• S, I , R are the fractions of the susceptible, infective and recovered population,
• μ and γ denote the birth (death) rate and recovery rate respectively, which are

positive constant,
• β(t) is the seasonally-dependent transmission rate, which is a positive continuous

T-periodic function,
• f (I) is a decreasing piecewise smooth factor which can describe the impact of media

coverage on the transmission coefficient, given by

f (I) =

⎧
⎪⎨

⎪⎩

, I ≤ Ic,
 + σ –(e–α(Ic+σ ) – )(I – Ic), Ic < I < Ic + σ ,
e–αI , I ≥ Ic + σ ,

(.)

where α is the factor of influences, σ is a small parameter and Ic is a critical level.
We think that f (I) in (.) is a good approximation to the discontinuous factor in

[] provided σ is small enough. Denote the basic reproduction number R = β̄

γ +μ
with

β̄ = 
T

∫ T
 β(t) dt. When f (I) ≡  in (.), Katriel [] got the existence of periodic positive

solutions for the periodically forced SIR model by Leray-Schauder degree theory provided
R > . By Gaines-Mawhin’s continuation theorem, Jódar et al. [] obtained that a T-
periodic solution exists for a more general system whenever the condition mint∈R β(t) >
γ +μ holds; Bai and Zhou [], Bai et al. [], and Liu [] studied the existence of periodic
solutions for a periodically forced SIR model with saturated incidence rates. By persistence
theory, Zhang and Zhao [] studied a periodic epidemic model in a patchy environment;
Sun et al. [] studied the SEI model with seasonality comprehensively; Rebelo et al. []
extended these results to some delay differential equations and partial differential equa-
tions.

When f (I) in (.) is a non-smooth function, to the best of our knowledge, there are no
results on the existence of periodic solutions. The methods we mentioned above cannot
deal with the non-smooth righthand sides directly.

In this paper, we use an integral version of Leray-Schauder degree theory under Katriel’s
frame to prove the existence of periodic solutions for our SIR model. Some numerical
simulations are presented to illustrate the effectiveness of such media coverage. Our main
results are as follows.

Theorem . Whenever R > eα , there exists at least one T-periodic solution (S(t), I(t),
R(t)) of (.)-(.), all of whose components are positive.

In [], Liu and Xiao consider the non-periodic coefficient SIR model with

f (I) =

{
e–mI , I < Ic,
e–mIc , I > Ic,

(.)

where m >  is a factor of influence and Ic is a critical level. Using the same method as in
Theorem ., we can present the following theorem without a proof.

Theorem . Whenever R > emIc , there exists at least one T-periodic solution (S(t), I(t),
R(t)) of (.) and (.), all of whose components are positive.
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This paper is organized as follows. In Section , we study the properties of the homotopy
equation from the classical autonomous SIR model to our SIR model. In Section , we
construct an equivalent integral equation and define a completely continuous operator.
In Section , we prove the main theorem by Leray-Schauder degree theory. In Section ,
some numerical simulations are presented to illustrate the effectiveness of such media
coverage.

2 Homotopy equation and suitable domain
In the rest of this paper, we assume that f (I) has the expression (.). Observing system
(.), we have dS

dt + dI
dt + dR

dt ≡ . Since S(t), I(t), R(t) are fractions of the population, we have
S(t) + I(t) + R(t) =  for all t. Because R does not appear in the first two equations in (.),
it is sufficient to consider the existence of periodic solutions of following systems:

{
dS(t)

dt = μ – β(t)f (I)SI – μS,
dI(t)

dt = β(t)f (I)SI – (μ + γ )I,
(.)

with

S(t) > , I(t) > , S(t) + I(t) < .

In order to prove the existence of periodic solutions of (.), we consider the following
homotopy system:

{
dS(t)

dt = μ – β̄SI – μS – λ(β(t)f (I)SI – β̄SI),
dI(t)

dt = β̄SI – (μ + γ )I + λ(β(t)f (I)SI – β̄SI),
(.)

where λ ∈ [, ]. Let

D :=
{

(S, I) ∈ C[, T] × C[, T] | S(t) > , I(t) > , S(t) + I(t) < 
}

.

Lemma . D is an invariant region with respect to (.). The disease-free equilibrium
(S, I) = (, ) is the unique periodic solution of (.) satisfying (S, I) ∈ ∂D for any λ ∈ [, ].

Proof First, we will prove that D is an invariant region. In fact, it follows from model (.)
that

dS
dt

∣
∣
∣
S=

= μ > ,
dI
dt

∣
∣
∣
I=

= ,
d(S + I)

dt

∣
∣
∣
S+I=

= –γ I ≤ .

Second, we will prove that the disease-free equilibrium (S, I) = (, ) is the unique pe-
riodic solution of (.) satisfying (S, I) ∈ ∂D. We assume that (S, I) ∈ ∂D is a solution of
(.), which means that at least one of the following conditions holds:

(i) There exists t ∈ [, T] such that I(t) = .
(ii) There exists t ∈ [, T] such that S(t) = .

(iii) There exists t ∈ [, T] such that S(t) + I(t) = .
We now consider each of these three cases:

In the case of (i), we have I(t) =  and I ′(t) = , which implies I ≡ . Thus, the only
possible periodic solution of S′ = μ( – S) is S ≡ .
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In the case of (ii), we have S(t) =  and S′(t) = μ > . Thus, it is easy to obtain that
S(t) <  for t < t sufficiently close to t, which contradicts the fact that D is an invariant
region.

In the case of (iii), we get

(S + I)′(t) = μ
(
 – S(t) – I(t)

)
– γ I(t) = –γ I(t) ≤ .

Because the case of I(t) =  has been discussed, we only discuss the case S(t) + I(t) = ,
(S + I)′(t) < , which contradicts the fact that D is an invariant region. �

To use the continuity method, we need to choose a bounded open set U ⊆ D such that
there is no solution (S, I) of (.) satisfying (S, I) ∈ ∂U for any λ ∈ [, ]. Since (S, I) ∈
∂D is a solution of (.), we need to exclude (S, I) from the boundary of U we chose.
Following the idea of Katriel [], we take U to be the open subset of D given by

U =
{

(S, I) ∈ D
∣
∣ min

t∈[,T]
S(t) < δ

}
, (.)

where δ ∈ (, ) is to be fixed.

Remark . For fixed t, U is an open set in R
. Furthermore, for any t ∈ [, T], U with

norm ‖(S, I)‖ = maxt∈[,T](|S(t)| + |I(t)|) is an open set in C[, T] × C[, T].

Lemma . Let R > eα . If we choose δ ∈ ( eα

R
, ), then there is no solution (S, I) of (.)

with (S, I) ∈ ∂U for any λ ∈ [, ].

Proof Suppose (S, I) ∈ ∂U . Then either (S, I) ∈ ∂D or (S, I) ∈ D and

min
t∈[,T]

S(t) = δ. (.)

In the first case, Lemma . and the fact that (S, I) /∈ ∂U imply that (S, I) is not a solution
of (.).

In the second case, we can infer that I(t) >  and S(t) ≥ δ, ∀t ∈ [, T]. If (S, I) is a solution
of (.), we can divide the second equation of (.) by I . Integrating over [, T], we obtain
that


T

∫ T


β̄S dt – μ – γ +


T

∫ T


λ
(
β(t)Sf (I) – β̄S

)
dt = . (.)

Thus

μ + γ =

T

∫ T


( – λ)β̄S + λβ(t)Sf (I) dt

≥ δ

T

∫ T


( – λ)β̄ + λβ(t)f (I) dt

≥ δe–αβ̄ .
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By the assumption δ > eα

R
, we have

μ + γ < δe–αβ̄ ,

which is a contradiction. �

3 Existence of periodic solutions
3.1 Equivalent integral equation and completely continuous operator
We rewrite (.) as

d
dt

(
S
I

)

+
(

μ 
 μ + γ

)(
S
I

)

=
(

F(S, I,λ)
F(S, I,λ)

)

, (.)

where F(S, I,λ) = μ – β̄SI – λ(β(t)f (I)SI – β̄SI), and F(S, I,λ) = β̄SI + λ(β(t)f (I)SI – β̄SI).
If 	(t) is the fundamental solution matrix of

d
dt

(
S
I

)

+
(

μ 
 μ + γ

)(
S
I

)

= ,

satisfying 	() = Id, we have

	(t) =
(

e–μt 
 e–(μ+γ )t

)

.

Then (.) can be transformed into the equivalent integral equation

(
S
I

)

(t) = 	(t)
((

S()
I()

)

+
∫ t


	–(τ )

(
F(S, I,λ)
F(S, I,λ)

)

dτ

)

. (.)

If S, I is a T-periodic solution of (.), then

(
I – 	(T)

)
(

S()
I()

)

= 	(T)
∫ T


	–(τ )

(
F(S, I,λ)
F(S, I,λ)

)

dτ . (.)

Since (I – 	(T)) is invertible, we have

(
S()
I()

)

=
(
I – 	(T)

)–
	(T)

∫ T


	–(τ )

(
F(S, I,λ)
F(S, I,λ)

)

dτ . (.)

Substituting (.) into (.), we have

(
S
I

)

(t) = 	(t)
(
I – 	(T)

)–
	(T)

∫ T


	–(τ )

(
F(S, I,λ)
F(S, I,λ)

)

dτ

+ 	(t)
∫ t


	–(τ )

(
F(S, I,λ)
F(S, I,λ)

)

dτ . (.)
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Define an operator Pλ : C[, T] × C[, T] → C[, T] × C[, T] such that

Pλ

[
(S, I)

]
(t) = 	(t)

(
Id –	(T)

)–
	(T)

∫ T


	–(τ )

(
F(S, I,λ)
F(S, I,λ)

)

dτ

+ 	(t)
∫ t


	–(τ )

(
F(S, I,λ)
F(S, I,λ)

)

dτ . (.)

Lemma . Pλ in (.) is a completely continuous operator.

Proof Since f (I) is a non-smooth but continuous function, the operator Pλ is continuous
with respect to S and I . Since β(t), 	(t) and 	–(t) are all bounded in [, T], S and I are
bounded on U , e–α ≤ f (I) ≤  on U , it is easy to see that the operator Pλ in (.) is uni-
formly bounded and equicontinuous, which implies Pλ in (.) is a completely continuous
operator. �

3.2 Main results
We recall that the existence of a periodic solution (S, I) of (.) can be assured by Leray-
Schauder degree theory [] if the following conditions hold:

() (Id –Pλ)(S, I) �=  for all (S, I) ∈ ∂U , λ ∈ [, ],
() deg(Id –P, U , ) �= .
By Lemma ., there are no solutions (S, I) of (.) with (S, I) ∈ ∂U , λ ∈ [, ]. Now we

prove that deg(Id –P, U , ) �= .

Lemma . For λ = , (.) has only one periodic solution in U , which is endemic equilib-
rium: (S∗, I∗) = ( γ +μ

β̄
,μ( 

γ +μ
– 

β̄
)).

Proof When λ = , (.) is an autonomous system. μ( – S) – β̄SI and β̄SI – (μ + γ )I are
both C in D. If we set the Dulac function to be h = 

SI in D, we have

∂(h(μ( – S) – β̄SI))
∂S

+
∂(h(β̄SI – (μ + γ )I))

∂I
= –

μ

SI
< ,

so there is no closed orbit in D.
Since eα

R
< δ < , γ , μ and β̄ are positive constant, we have  < S∗ < δ

eα < δ and  < I∗ <
μ

γ +μ
< . For λ = , it is easy to calculate that (S∗, I∗) is the unique constant periodic solution

in U , which implies that (.) has only one periodic solution in U . �

Lemma . [] Let � be a bounded open set in the Banach space X. Assume that a com-
pletely continuous field f = Id –F : �̄ → X has no zero points on ∂�, and there are only
finite zero points x, x, . . . , xn in �. Then we have the index formula

deg(f ,�, ) =
n∑

i=

index(f , xi). (.)

Lemma . [] Let � be a bounded open set in the Banach space X. x is the zero point
of a completely continuous field f = Id –F : �̄ → X in �. We assume that f is Frechet dif-
ferentiable at x and  is not the eigenvalue of A = F ′(x). Then x is an isolated zero point
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of f , and

index(f , x) = index(Id –A, ) = (–)β , (.)

where β =
∑

λj>|λj∈σ (A) βj and βj = dim
⋃∞

k= Ker(λjI – A)k .

Define the operator

DP
[(

S∗, I∗)] ◦ (V , W )(t)

= 	(t)
(
Id –	(T)

)–
	(T)

∫ T


	–(τ )

(
–β̄(I∗V + S∗W )
β̄(I∗V + S∗W )

)

dτ

+ 	(t)
∫ t


	–(τ )

(
–β̄(I∗V + S∗W )
β̄(I∗V + S∗W )

)

dτ . (.)

Obviously,

∥
∥P

[(
S∗ + V , I∗ + W

)]
– P

[(
S∗, I∗)] – DP

[(
S∗, I∗)] ◦ (V , W )

∥
∥ = o

[
(V , W )

]
. (.)

Thus, DP[(S∗, I∗)] is the Frechet derivative of P[(S, I)].

Lemma .  is not the eigenvalue of DP(S∗, I∗).

Proof Let λ be the eigenvalue of operator DP(S∗, I∗):

DP
[(

S∗, I∗)] ◦ (V , W )(t) = λ(V , W ). (.)

Multiplying 	–(t) by both sides of (.) and taking the derivative with respect to t, we
have

	–(t)
(

–β̄(I∗V + S∗W )
β̄(I∗V + S∗W )

)

=
d
dt

(

λ	–(t)
(

V
W

))

, (.)

which is equal to

λ

(
V̇
Ẇ

)

=
(

–β̄I∗ – λμ –β̄S∗

β̄I∗ β̄S∗ – λμ – λγ

)(
V
W

)

. (.)

If  is an eigenvalue of DP(S∗, I∗), we have

d
dt

(
V
W

)

=
(

–μR –(γ + μ)
μ(R – ) 

)(
V
W

)

. (.)

The characteristic polynomial of the above matrix is

p(x) = x + μRx + (γ + μ)μ(R – ). (.)
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It is easy to calculate that p() > , and p(ωi) �=  for ω ∈ R, which means that the matrix
has no imaginary or  eigenvalues, so that (.) has no periodic solutions except (V , W ) =
(, ), which is a contradiction to (.). �

Now we will finish to prove that deg(Id –P, U , ) �= . Id –P is a completely continuous
field,  is not the eigenvalue of DP(S∗, I∗). By Lemma ., we have index(Id –P, (S∗, I∗)) =
(–)β �= . Since we have proved that (Id –P)(S, I) �=  for all (S, I) ∈ ∂U , and (S∗, I∗) is the
unique zero point in U , by Lemma . we have

deg(Id –P, U , ) = index
(
Id –P,

(
S∗, I∗)) �= .

Finally, by Leray-Schauder degree theory, we obtain

deg(Id –P, U , ) = deg(Id –P, U , ) �= .

Thus, there exists at least one positive periodic solutions for a seasonally forced SIR model
with impact of media coverage.

4 Simulation
In this section, we present some numerical examples to illustrate the effectiveness of such
media coverage. Furthermore, we show how various parameters influence the solutions of
our SIR model.

With the period T = π of the forcing representing one year, we take γ =  π
 corre-

sponding to a two-week infectious period. We set β̄ = γ , μ = .
π

, β(t) = β̄( + . cos(t)),
Ic = . and δ = .. Let [, π ] be divided into k =  intervals equally. Given the initial
point (S∗∗, I∗∗) = ( μ+γ

β̄
, μ

μ+γ
– μ

β̄
), which is the endemic equilibrium of SIR model without

periodic transmission rate and impact of media coverage. The periodic solutions of system
(.) can be solved by the Newton iteration method.

In Figure , we make ten steps of Newton iteration to get the approximate infective pop-
ulation and susceptible population of system (.) with different α. Obviously, the infective

Figure 1 Infective population and susceptible population with α = 0, α = 2.5, α = 5 and α = 6.15.
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Figure 2 Infective population and susceptible population with Ic = 0.1, Ic = 0.15, Ic = 0.2 and Ic = 0.25.

population of system (.) with impact of media coverage (α > ) is lower than the infective
population of system (.) without impact of media coverage (α = ). The effectiveness of
impact of media coverage grows as α grows. The solutions in both cases are locally stable
and the error is about –.

In Figure , we fix α =  and make ten steps of Newton iteration to get the approximate
infective population and susceptible population of system (.) with different Ic. Obviously,
the infective population of system (.) becomes smaller as Ic decreases. The solutions in
both cases are locally stable and the error is about –.

In a word, it is effective to reduce the infective population by media coverage.

5 Conclusion
In this paper, we study the existence of positive periodic solutions for a seasonally forced
SIR model with impact of media coverage. This paper can be divided into two parts. In
the first part, we construct a homotopy equation from an autonomous system to our SIR
model. Using Leray-Schauder degree theory, we establish a new result on the existence of
at least one positive periodic solution for our SIR model. In the final part, some numerical
simulations are presented to illustrate the effect of media coverage.
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