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Abstract
In this paper, we discuss the continuous dependence of mild solutions on initial
values and orders for the initial value problem of fractional evolution equations in
infinite dimensional spaces. The results obtained in this paper improve and extend
some related conclusions on this topic. This paper can be considered as a
contribution to this emerging field.
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1 Introduction
Fractional differential equations have recently come to be considered to be a very powerful
tool to help scientists explore the hidden properties of the dynamics of complex systems in
various fields of sciences and engineering. In recent years, fractional differential equations
played the key role of a fundamental, efficient, and convenient theoretical framework for
more adequate modeling of complex dynamic processes. Indeed, we can find numerous
applications in viscoelasticity, electromagnetism, diffusion, control, mechanics, physics,
signal processing, chemistry, bioengineering, medicine, and in many other areas. For more
details as regards fractional differential equations we refer to the monographs by Miller
and Ross [], Podlubny [] and Kilbas et al. [], the papers by Eidelman and Kochubei []
and Lakshmikantham and Vatsala [], and the survey by Agarwal et al. [].

In this paper, we are concerned with the continuous dependence of mild solutions on
initial values and orders for the initial value problem (IVP) of the fractional evolution
equation

{
C
 Dα

t u(t) + Au(t) = f (t, u(t)), t ≥ ,
u() = u

(.)

in Banach space E, where C
 Dα

t is the Caputo fractional derivative of order  < α < , A :
D(A) ⊂ E → E is a closed linear operator and –A generates a uniformly bounded C-
semigroup T(t) (t ≥ ) in E, f : [,∞)×E → E is a continuous nonlinear mapping, u ∈ E.

In recent years, there has been a significant development in the theory of fractional evo-
lution equations. Due to fractional semilinear evolution equations being abstract formula-
tions for many problems arising in engineering and physics, fractional evolution equations
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have attracted much attention in recent years; see [–] and the references cited therein.
In addition, some numerical methods have been used to solve space-time or space frac-
tional evolution equations; see [–].

However, we observed that all of the existing articles are only devoted to the study of the
existence, uniqueness, and controllability of mild solutions for fractional evolution equa-
tions; up to now the continuous dependence of mild solutions on parameters for fractional
evolution equations has not been considered in the literature. In order to fill this gap, we
are concerned with the continuous dependence of mild solutions on the initial values and
orders for IVP (.).

2 Preliminaries
In this section, we introduce some notations, definitions, and preliminary facts which are
used in the sequel.

Let E be a Banach space with the norm ‖ · ‖ and let a >  be a constant. We denote by
C([, a], E) the Banach space of all continuous E-value functions on interval [, a] with the
supnorm ‖u‖C = supt∈[,a] ‖u(t)‖. Throughout this paper, we assume that A : D(A) ⊂ E →
E is a closed linear operator and –A generates a uniformly bounded C-semigroup T(t)
(t ≥ ) on E. Let M = supt∈[,+∞) ‖T(t)‖L(E), where L(E) stands for the Banach space of all
linear and bounded operators in E. For more details of the theory of operator semigroups,
see [].

Let  < α < . The Caputo fractional order derivative of order α with the lower limit 
for a function u ∈ C[, a] is defined as

C
 Dα

t u(t) = J–α
t u′(t) =


�( – α)

∫ t


(t – s)–αu′(s) ds, t > , (.)

where � stands for the gamma function, and the fractional integral of order α >  with the
lower limit  for a function u is defined as

Jα
t u(t) =


�(α)

∫ t


(t – s)α–u(s) ds. (.)

If u is an abstract function with values in E, then the integrals which appear in (.) and
(.) are taken in Bochner’s sense. For the details as regards the definitions of fractional
derivative and integral, please see [–].

Definition . By a mild solution of IVP (.) on [,∞), we mean a continuous function
u defined from [,∞) into E satisfying

u(t) = Tα(t)u +
∫ t


(t – s)α–Sα(t – s)f

(
s, u(s)

)
ds, t ∈ [,∞), (.)

where

Tα(t) =
∫ ∞


hα(s)T

(
tαs

)
ds, Sα(t) = α

∫ ∞


shα(s)T

(
tαs

)
ds,

hα(s) =


πα

∞∑
n=

(–s)n– �(nα + )
n!

sin(nπα), s ∈ (,∞),
(.)
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is a function of Wright type defined on (,∞) which satisfies

hα(s) ≥ , s ∈ (,∞),
∫ ∞


hα(s) ds = 

and
∫ ∞


svhα(s) ds =

�( + v)
�( + αv)

, v ∈ [, ].

The following lemma will be of fundamental importance in what follows (see [, ]).

Lemma . The operators Tq(t) (t ≥ ) and Sα(t) (t ≥ ) have the following properties:
() For every fixed t ≥ , Tα(t) and Sα(t) are linear bounded operators, i.e.,

∥∥Tα(t)u
∥∥ ≤ M‖u‖,

∥∥Sα(t)u
∥∥ ≤ M

�(α)
‖u‖, u ∈ E.

() The operators Tα(t) (t ≥ ) and Sα(t) (t ≥ ) are strongly continuous on [,∞).

In what follows, we recall the following Gronwall-Bellman type inequalities, which can
be used in fractional differential equations and integral equations with singular kernel.

Lemma . ([]) Suppose that m > , n ≥ , and q > . If u(t) is nonnegative and locally
integrable on  ≤ t < C (some C ≤ +∞) with

u(t) ≤ m + n
∫ t


(t – s)q–u(s) ds (.)

on this interval. Then

u(t) ≤ mEq
(
n�(q)tq),  ≤ t < C, (.)

where Eq is the Mittag-Leffler function defined by

Eq(z) =
∞∑

n=

zn

�(nq + )
, z ∈C. (.)

Lemma . ([]) Suppose q > , m(t) is a nonnegative function locally integrable on  ≤
t < C and n(t) is a nonnegative, nondecreasing, continuous function defined on  ≤ t < C,
n(t) ≤ K (constant), and suppose u(t) is nonnegative and locally integrable on  ≤ t < C
with

u(t) ≤ m(t) + n(t)
∫ t


(t – s)q–u(s) ds (.)

on this interval. Then

u(t) ≤ m(t) +
∫ t



[ ∞∑
n=

(n(t)�(q))n

�(nq)
(t – s)nq–m(s)

]
ds,  ≤ t < C. (.)
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3 Main results
In this section, we state and prove the main results of this paper. We suppose that the
nonlinear term f satisfies the following local Lipschitz condition:

(Hf ) For any t >  and constant r > , there exists a positive constant L = L(r, t) such that

∥∥f
(
t, u(t)

)
– f

(
t, v(t)

)∥∥ ≤ L
∥∥u(t) – v(t)

∥∥
for every t ∈ [, t] and all u, v ∈ E satisfying ‖u(t)‖ ≤ r, ‖v(t)‖ ≤ r.

Theorem . Assume that the condition (Hf ) is satisfied, then there exists a constant a > 
such that IVP (.) has a unique mild solution u on [, a]. Moreover, for any ε > , there
exists a constant δ >  such that for arbitrary u ∈ E satisfying ‖u – u‖ < δ, the initial
value problem (IVP) of the fractional evolution equation

{
C
 Dα

t u(t) + Au(t) = f (t, u(t)), t ≥ ,
u() = u

(.)

has a unique mild solution u on [, a] and ‖u(t) – u(t)‖ < ε for every t ∈ [, a].

Proof We first prove the local existence and uniqueness of mild solutions for IVP (.)
on interval [, a] for an appropriately small constant a > , which will be given later.
Consider the operator F : C([, a], E) → C([, a], E) defined by

(Fu)(t) = Tα(t)u +
∫ t


(t – s)α–Sα(t – s)f

(
s, u(s)

)
ds, t ∈ [, a]. (.)

From the continuity of nonlinear term f and Lemma .() one can easily see that the
operator F : C([, a], E) → C([, a], E) is continuous. By Definition ., the mild solution
of IVP (.) on [, a] is equivalent to the fixed point of the operator F defined by (.). Let
R = M‖u‖, L = L(R, ), N = max≤t≤ ‖f (t, θ )‖. Denote �R = {u ∈ C([, a], E) : ‖u(t)‖ ≤
R, t ∈ [, a]}, then �R is a closed ball in C([, a], E) with center θ and radius R. Set

a := min

{
,

(
�(α + )‖u‖

LR + N

) 
α

,
(

�(α + )
ML + 

) 
α
}

. (.)

For any u ∈ �R and t ∈ [, a], by Lemma .(), (.), (.), and the condition (Hf ), we
have

∥∥(Fu)(t)
∥∥ ≤ M‖u‖ +

M
�(α)

∫ t


(t – s)α–(∥∥f

(
s, u(s)

)
– f (s, θ )

∥∥ +
∥∥f (s, θ )

∥∥)
ds

≤ M‖u‖ +
(LR + N)Maα


�(α + )

≤ M‖u‖
= R. (.)

Therefore, Fu ∈ �R. Thus, we proved that F : �R → �R is a continuous operator. Now we
show that the operator F is a contraction in �R. For any u, v ∈ C([, a], E), and t ∈ [, a],
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it follows from Lemma .(), (.), (.), and the condition (Hf ) that

∥∥(Fu)(t) – (Fv)(t)
∥∥ ≤ M

�(α)

∫ t


(t – s)α–∥∥f

(
s, u(s)

)
– f

(
s, v(s)

)∥∥ds

≤ MLaα


�(α + )
‖u – v‖C

< ‖u – v‖C . (.)

Thus, by (.) we have

‖Fu – Fv‖C < ‖u – v‖C ,

which means that F has a unique fixed point u ∈ �R, which is in turn a unique mild solu-
tion of IVP (.) on [, a]. Using a similar method we can prove that IVP (.) has a unique
mild solution u on [, a] for appropriate constant a > . Let a = min{a, a}. Then for any
t ∈ [, a], u(t) and u(t) are the unique mild solutions of IVP (.) and IVP (.), respectively,
and they are given by

u(t) = Tα(t)u +
∫ t


(t – s)α–Sα(t – s)f

(
s, u(s)

)
ds (.)

and

u(t) = Tα(t)u +
∫ t


(t – s)α–Sα(t – s)f

(
s, u(s)

)
ds. (.)

Next, we prove the continuous dependence of the mild solutions on the initial values.
For any ε > , choosing δ = �(α)ε

MEα (ML(R,a)aα )+ such that ‖u – u‖ ≤ δ, where Eα is the Mittag-
Leffler function defined by (.). From (.), (.), Lemma .(), and the condition (Hf ),
we get

∥∥u(t) – u(t)
∥∥ ≤ M

�(α)
‖u – u‖ +

M
�(α)

∫ t


(t – s)α–∥∥f

(
s, u(s)

)
– f

(
s, u(s)

)∥∥ds

≤ Mδ

�(α)
+

ML(R, a)
�(α)

∫ t


(t – s)α–∥∥u(s) – u(s)

∥∥ds (.)

for any t ∈ [, a]. Therefore, by (.) and Lemma . one gets

∥∥u(t) – u(t)
∥∥ ≤ Mδ

�(α)
Eα

(
ML(R, a)aα

)
< ε.

This completes the proof of Theorem .. �

Next, we discuss the continuous dependence of the mild solutions for IVP (.) on the
orders.

Theorem . Assume that the condition (Hf ) is satisfied, then there exists a constant a > 
such that for any  < β < , for IVP (.), and for the IVP of the fractional evolution equation

{
C
 Dβ

t u(t) + Au(t) = f (t, u(t)), t ≥ ,
u() = u

(.)
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there exist unique mild solutions u and ũ on [, a], respectively, and ‖ũ(t) – u(t)‖ →  as
α → β for every t ∈ [, a].

Proof By using a similar method to the proof of Theorem ., we can prove that for IVP
(.) and IVP (.) there exist unique mild solutions u and ũ on [, a] for an appropri-
ate constant a > , respectively, and u and ũ are given by (.) and the following integral
equation:

ũ(t) = Tβ (t)u +
∫ t


(t – s)β–Sβ (t – s)f

(
s, ũ(s)

)
ds. (.)

Without loss of generality, we may assume that α > β . Then by (.), (.), (.), Lem-
ma .(), and the condition (Hf ) one has

∥∥u(t) – ũ(t)
∥∥ ≤ ∥∥Tα(t)u – Tβ (t)u

∥∥ +
∥∥∥∥
∫ t


(t – s)α–Sα(t – s)f

(
s, u(s)

)
ds

–
∫ t


(t – s)β–Sβ (t – s)f

(
s, ũ(s)

)
ds

∥∥∥∥
≤

∫ ∞



∥∥hα(τ )T
(
tατ

)
u – hβ (τ )T

(
tβτ

)
u

∥∥dτ

+
MF

α�(β)
tα –

MF
�(β + )

tβ

+ F
∫ t


(t – s)α–

∫ ∞


τ
∥∥αhα(τ )T

(
(t – s)ατ

)
– βhβ (τ )T

(
(t – s)βτ

)∥∥dτ ds

+
ML(R, a)

�(β)

∫ t


(t – s)α–∥∥u(s) – ũ(s)

∥∥ds (.)

for every t ∈ [, a], where F = max≤t≤a{‖f (t, u(t))‖ : ‖u(t)‖ ≤ R}. By (.), the properties
of the Wright type functions hα(·), hβ (·), and the semigroup T(t) (t ≥ ), we know that for
any t ∈ [, a],

m(t) :=
∫ ∞



∥∥hα(τ )T
(
tατ

)
u – hβ (τ )T

(
tβτ

)
u

∥∥dτ +
MF

α�(β)
tα –

MF
�(β + )

tβ

+ F
∫ t


(t – s)α–

∫ ∞


τ
∥∥αhα(τ )T

(
(t – s)ατ

)
– βhβ (τ )T

(
(t – s)βτ

)∥∥dτ ds

→  as α → β . (.)

Therefore, by (.), (.), and Lemma ., we get

∥∥u(t) – ũ(t)
∥∥ ≤ m(t) +

∫ t



[ ∞∑
n=

(ML(R, a)�(α))n

�(β)n�(nα)
(t – s)nα–m(s)

]
ds

→  as α → β

for every t ∈ [, a]. This completes the proof of Theorem .. �
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Remark . The results obtained in this paper can be applied to all kinds of time-
fractional partial differential equations. Using Theorems . and . one can obtain the
continuous dependence results for the concrete fractional partial differential equations.
Based on Theorem ., obtained in this paper, we can approximate the solutions of time-
fractional differential equations by the solutions of integer order differential equations,
which are easier to obtain. Therefore, Theorem . gives an approach to obtain an ap-
proximate solution of fractional differential equations.
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