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sufficient conditions for the dissipativity of nonlinear VFDEs. The general results
provide a unified theoretical treatment for dissipativity analysis to ordinary differential
equations (ODEs), delay differential equations (DDEs), integro-differential equations
(IDEs) and VFDEs of other type appearing in practice. Then the dissipativity property
of the backward Euler method for VFDEs is investigated. It is shown that the method
can inherit the dissipativity of the underlying system. The close relationship between
the absorbing set of the numerically discrete system generated by the backward
Euler method and that of the underlying system is revealed.

Keywords: dissipativity; Volterra functional differential equation; Banach space;
backward Euler method

1 Introduction

Many dynamical systems are characterized by the property of possessing a bounded ab-
sorbing set where all trajectories enter in a finite time and thereafter remain inside. Such
systems are called dissipative. Dissipativity means that the eventual time evolution of so-
lutions is confined to a bounded absorbing set. In the study of numerical methods, it is
natural to ask whether those discrete systems preserve the dissipativity of the continuous
system.

Since the 1990s considerable process has been made in dissipativity analysis of numer-
ical methods. The papers [1-5] focus on the numerical methods for ordinary differential
equations. For the delay differential equations (DDEs) with constant delay, sufficient con-
ditions for the dissipativity of analytical and numerical solutions are presented in [6-8].
Since that, the analysis is extended to DDEs with variable lags [9, 10] and Volterra func-
tional differential equations [11-16].

The dissipativity analysis of numerical methods for VEDEs in the literature was limited
in Euclidean spaces or Hilbert spaces. The aim of this paper is to investigate the dissipa-
tivity of nonlinear VFDEs in Banach space and their numerical discretization.

The main contributions of this paper could be summarized as follows.
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(a) Sufficient conditions for the dissipativity of nonlinear VFDEs in Banach space are de-
rived. The general results provide a unified theoretical treatment for dissipativity analysis
to ordinary differential equations (ODEs), delay differential equations (DDEs), integro-
differential equations (IDEs) and VFDEs of other type appearing in practice. In particular,
the theory covers the existing dissipativity results of DDEs with a wide variety of delay
arguments such as constant delays, bounded and unbounded vary delays, discrete and
distributed delays and so on.

(b) It is proved that the backward Euler method can inherit the dissipativity of the un-
derlying system. Theorem 4.1 and Theorem 4.2 show the close relationship between the
absorbing set of VFDEs and that of the numerically discrete system generated by the back-
ward Euler method. It implies that the radius of the absorbing set of the discrete system
approaches to that of the underlying system as the stepsize approaches to zero. On the
contrary, most of the existing dissipativity results of numerical methods for VFDEs are
independent of the size of the absorbing set of the underlying system.

This paper is organized as follows. In Section 2, some basic concepts for nonlinear
VEDEs in Banach space are presented. In Section 3, some sufficient conditions for the
dissipativity of nonlinear VFDEs are given. In Section 4, it is shown that the backward

Euler method can inherit the dissipativity of the underlying system.

2 Some concepts

Let X be a real or complex Banach space with the norm || - ||. For any given closed interval
I C R, let the symbol Cx(I) denote a Banach space consisting of all continuous mappings
x:1 — X, on which the norm is defined by ||*|/c = max.e; [|x(£)].

Consider the following initial value problem (IVP) [17]:

Y (@) =f(t,y)y), t=a, on
¥(@) = ¢(0), a-t<t<a, )

where a, T are constants, 0 < v < +00, ¢ € Cx[a — 7,a] is a given initial function, f :

[a,+00) x X x Cx[a — 7,+00) — X is a given continuous mapping satisfying the condi-

tions

(1= 1)) Dy (0, £, 1, 9)

<Dt )+ 2 (v + O max y@)]),

t—po () <E<t—u1 (¢

YA >0,t€[a+00),u e X, € Cxla—t,+00), (2.2)
where
Dyt ¥) = |u—2f (6, 9)| . (2.3)
Here a(¢), B(¢), v () are continuous functions, 11 (£) and puy(2) satisfy

0<mt) Spa(t)<t-a+t, Vtela,+o0). (2.4)
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Define
o) _ (0) .
py = inf () >0,  py (&)= inf (t-pa()>a-1,
a<t<co §1<t=<ép
VE&,€:a <& <& < +o0. (2.5)

We always assume that problem (2.1) has a unique solution on the interval [a — 7, +00).
Condition (2.2) implies that the mapping f(¢, ¥ (£), ) is independent of the values of the
function ¥ (&) with ¢ <& < b, i.e., f(¢, ¥ (£), ¥) is a Volterra functional.

For simplicity, we use the symbol A(e, B, ¥, i1, i42) to denote the problem class consist-
ing of all problems (2.1) satisfying condition (2.2).

For the special case where X is a Hilbert space with the inner product (-, -) and the cor-
responding norm || - ||, condition (2.2) is equivalent to
2

2Refuf(u ) <y @ +aOllul® + p@O) max [y(E)

o (t)<E<t-p1

Vt € [a, +00),u € X,y € Cxla - 1,+00). (2.6)
The dissipativity analysis of (2.6) can be found in [14, 16].

3 Dissipativity of nonlinear Volterra functional differential equations
Definition 3.1 [6] The evolutionary equation (2.1) is said to be dissipative in X if there
is a bounded set B C X such that for all bounded sets ¥ C X there is a time £y = £,(¥)
such that for all initial functions ¢(£) contained in ¥, the corresponding solution y(¢) is
contained in B for all ¢ > £;. B is called an absorbing set in X.

Lemma 3.2 Equation (2.2) implies that y (t) > 0 and B(t) > 0.

Proof Setting u = 0 in (2.2) we obtain

2

’

0<ilf&.0. W) +y®+p®)  max [y

t-po (O <E<t—p1(2)

VA >0,t € [a,+00), Y € Cxla—1,+00),

which yields

2

0<y(t)+B(t) max (t)”l/f(g) , Vtela,+00), ¥ € Cxla—1,+00) (3.1)

t-pa () <E<t-my
as A — 0.Let y(t) = 0. It follows from (3.1) that ¥ (£) > 0. If there is > a such that () < 0,
it is easy to find a function ¥ € Cx[a — 7, +00) which satisfies

y®+p@  max [y@)] <o,
t-pa(t)<E<t-p1(2)
which contradicts (3.1). Therefore, 5(¢) > 0.
For a continuous real-valued function y(¢) of a real variable, the Dini derivatives D* y(z)
and D_y(t) are defined as
y(t +8) - y(t)

and D_y(¢) = liminf Ne+8) -y
5,70

D*y(t) = limsup AR AL
J 5N\O s 0
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Lemma 3.3 Ifu(t) >0, t € (—o0, +00), and

U(t) <y +a@ut) + B(t) sup u§), t>a, 3.2)
t-t(t)<&<t

u(t) = [ (t)

’ tia’

where (t) is bounded and continuous for t < a, continuous functions y(t) > 0, (t) > 0
and a(t) < 0 for t € [a, +00), T(t) > 0 and

t
lim (¢£-1(2)) — +oo, sup a(t) <0, sup ) (3.3)
t—+00 a<t<+oo a<t<+oo |O[(t)|
Then, for any given € > 0, there exists t = 1(G, €) > a such that
v 5
ult) < —+e¢, t=t, (3.4)
o

y*= sup y(®), G= sup |y().

a<t<+00 —oo<é<a

Proof The last two inequalities of (3.3) imply that (2.10) and (2.12) of [16] hold. The con-
clusion follows from Theorem 2.3 of [16] directly. O

Theorem 3.4 Suppose problem (2.1) € A(a, B,y, 11, 42) and that

t
lim (£ - pa(2)) = +00, sup a(t) <0, sup ) (3.5)
I—>+00 a<t<+oo a<t<ioo |(E)]
Then, for any given € > 0, there exists t = 1((, €) such that
2 V" M
ly®| <= +e, t>§, (3.6)
o

where y* = sup,.., v (t), ¢ = sup,, ll¢(?) 2. Hence the system is dissipative with an absorb-

ing set B=B(0,/y*/o +€).

Proof By the definition of Dini derivative, we have

£ +8)I2 - |y

D_(|y®)]?) = timint

)
I =
- tmige DO e 0]« )
§ 2 (3.7)
D (|yo|?) = limint lly (e + 8)”5 ~ @)l

~ liminf EF N = O1
§—+0 8

(v + 0] + [»®])-
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Applying Lemma 4.6.2 of [18], we see that the limits

lim (@) + 8y' @Ol = lly@l and lim ly(@) + 8y' @O = Lyl
§—-0 ) 85— +0 )

exist. Lemma 4.6.3 of [18] tells us that

inf Iy + S = y@Il _ ly(@) + 8y' @Ol = Iyl

l%ml0 5 8lim0 5 ’

5 5 (3.8)
liminf ly(t + ) =y - lim lly(2) + y(t)ll—lly(t)ll‘
§—+0 ) §—>+0 1)

Then (3.7) and (3.8) together imply that D_(||y(£)]|>) = D*(|ly(®)[|?). Let u(t) = ||y(¥)|>.
Therefore, /() exists, and

lly( + &)1 = lly@)1?

u'(t) = Blim

s
_ i P® +8Y(©) +0(8)12 = ly(2) + 8 (O)N1* + lly(2) + 8y O)1* = lly@)II*
5—-0 8
. ly(@) + 8y @)NI* - ly@)II*
§—-0 )
. ly(e) + 8f (&, (), Y)II* — IIy(t)IIZ'
§—-0 )

Using condition (2.2), we have

@+ 8 @)y + 8(y (&) + B(&) max,_ iy )<t <t—a @) 1YE)IZ) = 11y (@) II*
s

, .
u'(t) < lim
()_5%—0

=y@+a@yO +p@©)  max [y
t=po () <E<t-p1(t)
that is,
() <y@)+a@)ut) + BE) max u(&). (3.9)
t=po()<E<t-p1(t)
The desired result follows from Theorem 3.3. The proof is complete. g

Remark 3.5 Specializing Theorem 3.4 to Hilbert spaces, we can obtain the corresponding
result which is in accordance with that obtained in [16].

Remark 3.6 Specializing Theorem 3.4 to DDEs in Hilbert spaces with constant delays
and a(f) = o, B(¢) = B, y(t) = y, we can obtain the corresponding result which is in ac-
cordance with that obtained in [6].

Remark 3.7 Specializing Theorem 3.4 to ODEs in Euclidean spaces with «(f) = «,
y(£) =y, we can obtain the corresponding result which is in accordance with that ob-
tained in [4].

Remark 3.8 Theorem 3.4 covers most of the existing dissipativity results of DDEs with
a wide variety of delay arguments such as constant delays [6], bounded varying delays
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[10] and unbounded varying delays [9], discrete and distributed delays [11, 12] and so on.
In brief, Theorem 3.4 provides a unified theoretical treatment for dissipativity analysis
to ordinary differential equations (ODEs), delay differential equations (DDEs), integro-
differential equations (IDEs) and VFDEs of other type appearing in practice.

4 Dissipativity of the backward Euler method
For simplicity, from now on we assume that

Y=y, a(t) =«a, Bt)=p, tela,+o0).
Theorem 3.4 can be rewritten as follows.
Theorem 4.1 Suppose problem (2.1) € A(w, B8,y , 11, 42) and that

lim (£ - pa()) > +00, a+B<0.

t—>+00

Then, for any given € > 0, there exist t = £(@,€), ¢ = sup,, @) such that

ly@)| < /ﬁ ve, t>h

The backward Euler method applied to (2.1) gives
Yn+l = Yn +hf(tn+1:yn+1:yh(')): n=0,12,...,
h h (4.1)

y O=m (tyfﬁ,yl,yz;n-,ynu), a—71 =t =<ty

where 7"

is an appropriate interpolation operator which approximates to the exact solu-
tion y(¢) on the interval [a — 7, b], i > 0 is the stepsize, y, is an approximation to the exact
solution y(¢t,) with ¢, = a + nh.

Noting that the backward Euler method for ODEs is of order one, we can use the fol-

lowing piecewise linear interpolation:

=ty + (t— t)yinl, 6 <t <t

o(t), a-t<t<a. (42)

y'(t) =

Theorem 4.2 Assume that problem (2.1) € A(w, B,y , 141, 2) and that

lim (£ - po(t)) > +00, a+B<0.

t—>+00

Let {y,} be the sequence of numerical solutions obtained by (4.1)-(4.2). Then, for any given
€ > 0, there exists ny = no(@, €) such that

IIanIS\/ y . _1-he +€, n>ny.
—(a+B) 1-ha+p)

Proof 1t follows from (4.1) that

|yer = B (busts 71, YV O) | = Il (4.3)
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Using (2.2), we have

||yn+1 - hf(tn+lryn+1¢yh(')) HZ

> (1= h)lynall® = h(y + B max ¥ ©1). (4.4)

tns1 =142 (En+1) <E <tn+1-141 (1)

It follows from (4.3) and (4.4) that

(A= h)lywal® = > + h(y + B max I ©r) (45)

1 =12 (En41) <6 <tyr1 -1t

In view of (4.2), we have

h 2 2 2
tn+1*l’«2(tn+1)Igsa;(trHl*N«I(tnA)||y (S)” S max[l;‘lfa”ﬁ'l ”yl” ,ﬂ}?fafxfﬂnw(t)” ]’ (4'6)

where we used the following inequality:
2
(1= 8)y; + 8yia || < (L= O)yill® + 8llyisa II* < max{ 1y 1>, Nyiaa 1*}-

A combination of (4.5) and (4.6) leads to

(1= he) | < Iyl + by + Bmax| max iy, max Jo@)]’}). (47)

a-1<t<a

For simplicity, for any given nonnegative integer »n, we write

2
Qn=maX{m,ax Iyl max [e@)| ] n>1,
1<i<n a-1<t<a

Q= max [o@®)]”.

a-1<t<a
We now consider two cases:
2
() maX{ max _|yi|%>, max |e@)| }=||yn+1||2,
1<i<n+1 a-t1<t<a
2
() max| max Iyl max [o@)]*} # Il
1<i<n+l a-t1<t<a
In the case of (a), it follows from (4.7) that

”yn+1||2 =< hy + !
W@+ p)  1-h@+p)

1yl (4.8)

In the case of (b), it follows from (4.7) that

h 1
||yn+l||2 = —V

2
1~ + m(”)’n” + h,BQn)- (4.9)

To summarize both of the two cases, we have shown that

llynsall” < max hy ) hy + max ! ,1+hﬂ Qn
- 1-h(a+B) 1-ha 1-h(a+B) 1-ha
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which yields
hy 1+hp
n+ 2 n =t " 4.1

lynsall Sl—h(a+ﬂ)+1—haQ do +d1Q (4.10)

where
hy 1+hp
dg=—"——, =——<1
T 1 e+ B) Y e <

Considering Q, = |[y,||* or Q, # |ly.||* and inserting (4.10) repeatedly, we obtain

lly.l? < do(l +di 4+ 4+ df_l) +di Qo

y 1-ha
—(a+B)1-h(a+pB)

d
<—0+de0:

1= a +d"Qo. (4.11)

Therefore, for any given € > 0, there exists ng = ny(@, €) such that

||yn||s\/ y o lohe e
—(a+B) 1-ha+p)

This completes the proof of the theorem. d

Remark 4.3 Theorem 4.1 and Theorem 4.2 show the close relationship between the ab-
sorbing set of the underlying system and that of the numerically discrete system generated
by the backward Euler method. On the contrary, most of the existing dissipativity results
of numerical methods for VFDEs are independent of the size of the absorbing set of the
underlying system. It is obvious that the radius of the absorbing set of the discrete system
is longer than that of the underlying system because of #ﬁﬁ) > 1. Furthermore, Theo-
rem 4.2 implies the following facts.

+ In the case of ODEs, that is 8 = 0, for any given € > 0, the ball B(0,,/ % +¢€) is an
absorbing set of the discrete system as well as the underlying system. The absorbing
set is independent of the stepsize of the backward Euler method.

« For fixed B >0, 1> 0, if || is sufficiently large, then the difference between the radius
of the absorbing set of the numerically discrete system and that of the underlying

system is sufficiently small.

» Notice that l_ﬁl’(i‘f 5 — 1as h — 0, hence given any € > 0, there exists /g = ho(€) such

that for % < hg the ball B(0, ﬁ + €) is an absorbing set of the discrete system. In
other words, the radius of the absorbing set of the discrete system approaches to that

of the underlying system as the stepsize approaches to zero.
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