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Abstract
We consider the existence of at least two positive solutions for a system of Caputo

fractional difference equations Ady;(t) = ~Af(y: (t + vy = 1),...,¥n(t + v, - 1)), subject
to boundary conditions y;(v; - 3) = Ay;(v; + b) = A%y;(v; - 3) =0, where 2 < v; < 3,
j=1,...,n. We use the Krasnosel'skii fixed point theorem to obtain the sufficient
conditions of the existence of two positive solutions for this boundary value problem

of Caputo fractional difference equations depending on parameters.
MSC: 26A33; 39A05; 39A12
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1 Introduction

In this paper we consider a system of Caputo fractional difference boundary value problem
(FBVP) of the form:

ALyi() = =M fi(n(t +vi = 1), yu(t + v, = 1), 1.1)
yi(v; = 3) = Ay;(v; + b) = A’y;(v; - 3) =0, (1.2)

wheret € [0,b+1]n, :={0,1,...,b+1},b>3,4;>0,2<v; < 3,f:[0,+00) x - - - X [0, +00) —
[0, +00) are continuous functions for each j (j = 1,2,...,n). Aly(t) is the standard Caputo
difference.

Fractional difference equations have been of great interest recently. It is caused by in-
tensive development of the theory of discrete fractional calculus itself, see [1-19] and the
references therein. Abdeljawad [1] defined left and right Caputo fractional sums and dif-
ferences, studied some of their properties. Holm [2] introduced the fractional sum and
difference operators. He developed and presented a complete and precise theory for com-
posing fractional sums and differences. Atici and Sengiil [3] provided some analysis of
discrete fractional variational problems, their paper also provided some initial attempts
at using the discrete fractional calculus to model biological processes. Abdeljawad and
Baleanu [4] defined the right fractional sum and difference operators and obtained many
of their properties. Then by using those properties they obtained a by-part formula anal-
ogous to that in the usual fractional calculus. In [5] the authors studied the stability of
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discrete nonautonomous systems within the frame of the Caputo fractional difference by
using the Lyapunov direct method. They discussed the conditions for uniform stability,
uniform asymptotic stability, and uniform global stability. Mohammadi and Rezapour [6]
discussed the existence and uniqueness of solutions for some nonlinear fractional differen-
tial equations via some boundary value problems by using fixed point results on ordered
complete gauge spaces. Recently, Wu and Baleanu introduced some applications of the
Caputo fractional difference to discrete chaotic maps in [7, 8].

In particular, the authors [9-19] developed some of the basic theory of fractional dif-
ference both IVPs and BVPs with delta derivative on the time scale Z. In [10], we ob-
tained some results on the existence of one or more positive solutions for the Caputo
fractional boundary value problems by means of cone theoretic fixed point theorems.
Thus, the fractional difference equation has recently attracted increasing attention from
a growing number of researchers. However, systems of discrete fractional boundary
value problems are limited (see [14-19]). Among them, Atici and Eloe [14] studied a
linear system of fractional nabla difference equation with constant coefficients of the
form

Voy(t) = Ay(t) +f(8), t=1,2,...,

where 0 < v <1, A is an n X n matrix with constant entries, and f are n-vector valued func-
tions. The operator V is a Riemann-Liouville fractional difference. They constructed the
fundamental matrix for the homogeneous system and the causal Green’s function for the
nonhomogeneous system.

In [15], the authors investigated the existence of solutions for a k-dimensional system of
fractional finite difference equations:

Ay (@) + iyt + v = 1), 32+ va = 1), k(£ + 0k = 1)) =0,
Ay () + fo(yr(E+v1 = 1), y2(E+ vy = 1), 3kt + vk = 1)) =0,
A%y(0) + fie (€ +v1 = 1),y2(¢ + vy = 1), (E + v = 1)) =0,
y1(n1 =2) = Ayi(v1 +b) =0,
ya(vy —2) = Ays(vy + D) = 0,

vey

Yk = 2) = Ayr(vi + b) = 0,

where b € Ny, 1 < v; < 2, f; : Rk — R are continuous functions for k = 1,2,.... They investi-
gated the existence of solutions for this k-dimensional system of fractional finite difference
equations by using the Krasnosel’skii fixed point theorem.

In [16], Goodrich studied the following pair of discrete fractional boundary value prob-
lems:

—A"y1(8) = Mar (¢ + vy = D (71t + v1 = 1),92(8 + v, — 1)),

—A2yy(t) = haaz(t +v1 = D)fa (1(¢ + v1 = 1), y2(t + v, = 1)),
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yl(Vl -2)= 1,01()’1); yz(Vz -2)= l/fz()/z),
y1(v1 +b) = g1(n), Y2 (v2 + b) = ¢2(y2),

where t € [0, ]y, :={0,1,...,b}, A1, X2 > 0, v1, v, € (1,2]. Goodrich obtained the existence
of at least one positive solution to this problem by means of the Krasnosel’skii theorem for
cons.

In [18], the authors considered the existence of at least one positive solution to the dis-
crete fractional system:

“A"y(t) = MAE+ v =Ly +v 1), +v2-1)), tell,b+1],
A2y, (t) = Afa(t + vy — Ly (E+ vy —1),90( +v2 = 1)), te[l,b+1],
y1(1=2) =y +b+1)=0,
y2(v2=2) =y2(12 +b+1) =0,

where v, 15 € (1,2].
Following this trend, in [19], we discussed the boundary value problems of fractional
difference system of the form

—Ay;(t) = kjﬁ(yl(t v =D)Lyt + v, - 1)),
yi(vi=2) =00, ¥(v;+b) =),

where £ € [0,b]y, := {0,1,...,b}, ;> 0,1 <v; <2, f;:[0,+00) X --- X [0,+00) = [0, +00)
are continuous functions. For each j we have that v}, ¢; : RY*3 - R (j=1,2,...,n)are given
functions. We obtained the sufficient conditions for the existence of two positive solutions
to the boundary value problem of a fractional difference system. In this paper we open
our studies in this field. We establish some conditions on parameters A; which are able to
guarantee that FBVP (1.1)-(1.2) has at least two positive solutions and one positive solution,
respectively, based on the Krasnosel'skii theorem.

This paper is organized as follows. In Section 2, we provide basic definitions and demon-
strate some lemmas in order to prove our main results. In Section 3, we establish some
results for the existence of at least two positive solutions to FBVP (1.1)-(1.2), and we con-
clude with an example explicating our main result.

2 Preliminaries
In this section, we present some basic definitions in the discrete fractional calculus and
establish some lemmas.

Definition 2.1 [1] We define

W) _ C+1)
TT@E+1-v)

for any ¢ and v for which the right-hand side is defined. We also appeal to the convention
that if £ + 1 — v is a pole of the gamma function and ¢ + 1 is not a pole, then £ = 0.

Definition 2.2 [1] The vth fractional sum of a function f is defined by

1

A_f(t):m

> (s -1 (s)
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forv>0andtef{a+v,a+v+1,...} =N, We also define the vth Caputo fractional
difference for v > 0 by

t—(n-v)
ALFE) = AN = — Y (s -1 AT (),

" Tn-v)
wheren—-1<v <n.

Lemma 2.3 [1, 2] Assume that v >0 and f is defined on domains N, then

n-1

A g DL =f(8) =) et - a),
k=0

wherec;€R,i=0,1,...,n-1L;n-1<v <n.

Lemma 2.4 [2] Letf:N,,, x N, = R be given. Then

t-v

A(if(t,s)) =Y A f(ts) +f(t+LEt+1-v) forteNg,,.

In order to get our main results, we now state an important lemma. This lemma gives a
representation for the solution of (1.1)-(1.2), provided that the solution exists.

Lemma 2.5 [10] Let2<v <3andg:[v-2,v—1,...,v + b]y,_, = R be given. Then the
solution of the FBVP

Agy(t) =gt +v -1), (21)

y(v=3)= Ay(v +b) = A’y(v-3)=0 (2.2)

is given by

b+l

y(t) =) Gt,s)gls +v -1),

s=0

where the Green’s function G: [v —2,v —1,...,v + b]y,_, X [0,b + 1]n, = R is defined by

w=DEt-v+3)(v+b-s-—1)2=2
G(t,s):m —(t-s—1)x, 0<s<t-v+1<b+l,
W=-Dt-v+3)v+b-s—-12=2 0<t-v+1<s<b+l.

Remark Notice that G(v — 3,s) = 0, G(¢,b + 2) = 0. G could be extended to [v — 3,v +
bln, s x [0,b + 2]n,, so we only discuss on (¢,5) € [V — 2,V + b]y,_, X [0,b + 1],

Lemma 2.6 [10] The Green'’s function G satisfies the following conditions:
(i) G(t,s)>0,(t,s)e[v—-2,v+Db]n, , X [0,b+]1]y,.
(ii) MaXee[v-2,v+by, G(t,s) = G(v + b,s),s€[0,b +1],.
(iii) min,.p

ub<i<

: £ G(t,s) > %maxte[,,_z,,),,h]NH G(t,s) = iG(v +b,s),s€[0,b+1]y,.
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The proofs of Lemma 2.5 and Lemma 2.6 can be found in [10], so we omit their proofs.
Let

B;:= {yj (v -3,v+ b]Nv = R,y;(vj—3) = Ay(vj+ b) = Azy,»(v,» -3)= 0}

be equipped with the usual maximum norm || - |, it is easy to verify that B; is the Banach

space. Then we put IC:= By x By x - - x B,,. By equipping K with the norm

O3] = ol + -+ lyall,

it follows that (/C, || - ||) is a Banach space.
Now consider the operator T : K — K defined by

T()/l, ;yn tlyn ty) = (Tl(yly :yn T ()’1, :yn ty ) (23)

where we define T : K — B; by

b+1

Ti(y1s -5 ¥n)( ,ZG( s)fyl(s+v1 1),...,y,,(s+v,,—1)). (2.4)

Let [ := [V1+b, 3(v1+b)] X% [vn+b 3(v2+b)

. -, ]. In the sequel, we shall also make use of the

cone
{()/1, :yn S IC yl: ’yn Z 0:

min_ [(6) -+ (6] 2 1|0 ,yn)||}~

(t1,e-.

Lemma 2.7 Let T be the operator defined as in (2.3). Then T : A — A.

Proof We show first that for (y1,...,¥,) € K, by the definitions T} (j=1,2,...,#n), it is clear
that

Tiy .. ¥a)(t) =0, j=1,2,...,n

On the other hand, we show that

. 1
‘ min) [T1(y1, Syn)(B) + e+ Tn(ﬁ’l»-wyn)(tn)] = 4 H TG 9n) ”
Toeees n
for (y1,...,y4) € K. In fact, by Lemma 2.6(iii), we have
]Erbugl( " Ty, ya)()
t] [ T]
b+l
> min ) Gyt s)(ns v =1 yuls + v, = 1)
™)
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b+1
1
> A/Z ZGj(vj +b,9)fi(ni(s+v1 —1),...,yu(s + v, — 1))

s=0
b+1
max A Z Gi(t,)fi(n(s+vi —1),...,¥(s + vy — 1))

1
4 tl‘E[Vj72,vj+b]ij72 0
1
L)
for (y1,...,y,) € K andj=1,2,...,n. Then we obtain
min) [Tl()/h Syn)(B) + e+ Tn()’l,myyn)(tn)]

Z mlIl) Tl(yly"wyn)(tl) -t InlIl) T(y1’ 7yn)(tn)

(t1yestn) €l (G

1
zz”Tl(yl,...,yn)||+ +—”T Oy
1
> Z{”Tl(yl,u-,yn)” +oo 4 | TaOs sy ||
1
Z || T()’l; 7yrl) ||
for (y1,...,y4) € K. So, we conclude that T: A — A. This completes the proof. O

Theorem 2.8 Let f; : [0,4+00) x --- x [0,4+00) — [0,+00) be given for j =1,...,n. If
1) --->9n) € K is a fixed point of T, then (y1,...,y,) € K is a solution of FBVP (1.1)-(1.2).

Proof Suppose that the operator T has a fixed point, say (y1,...,y,) € K. Let (#1,...,t,) €
Ny -2 x -+ x N,,_5, then we have

¥i(t) = Tiy, ... 9)(),  j=1,2,...,n,
where Tj is defined as in (2.4). It is easy to check that
Ty, 9a)(vj—3) =0
and

AT()/I; ;_yn (U] +b)
=T ¥+ b +1) = Ti(y1,- .., ) (vj + b)

b+l
= ,»Z Gi(vi+b+ l,s)ﬁ(yl(s +v =1), ., yu(s+ v, — 1))
s=0
b+1
- fZGj(Vf +b,8)fi(n(s+vi = 1), yuls + v, — 1))
s=0
b+1

= ,Z (v +b+1,5) - Gi(v +b,s)]ﬁ(y1(s+ v =1), .., (s + v, —1))

b+l
A Di Vi
- TI)E [ =D +b+1-v43) (v +b—s -1~ (yy+ b+ 1-s- 1)
v
s=0

Page 6 of 14
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—(v,-—l)(v,+b—v,+3)(v,+b—s—1)ﬂ+(vj+b—s—l)ﬂ]

xfiyi(s+v1=1),...,yu(s + v, — 1))

b+1

M Dot b s — 12
_I‘(v)g{(v} D(j+b-s-1)

i+b-s)T'(vj+b-s) T(vy+b-s)
_[(b—s+l)r‘(b—s+1) - F(b—s+1)“

Xﬁ(y1(s v =1), L yu(s+ v, — 1))

_ )\.] bl ) (Uj—l)F(U]‘+b—S)
- m;[(vj—l)(v,+b—s—1)—— (b—s+1)F(b—s+1)i|

Xﬁ(y1(s +v=1), ., yu(s+ v, — 1))
=0.

Finally, when 0 <t —-v;+1<s<bh+1,

(=1 —v +3)(vj+b—s— 122,

1
Gi(t;,5) = m

then
Af}G,(t,,s) =0.
Therefore, we can get
AZT/(YL oo :yn)(vj - 3) =0.
So the boundary conditions are satisfied, which completes the proof. O

Finally, to accomplish proof of our main results, we state cones theory. In particular, we
require the following well-known fixed point theorem for cons in [20].

Theorem 2.9 [20] Let B a Banach space and let KC C B be a cone. Assume that Q) and 2,
are bounded open sets contained in B such that 0 € Q, and Q, C Q,. Assume further that
T:KN(\Q1) — K is a completely continuous operator. If either

() 1Ty < Iyll fory € KN 9 and | Ty]l = Iyl for y € K N 92, or

) 1731l = llyll for y € K099y and | Tyl < liyll for y € K 0 9<%,
then the operator T has at least one fixed point in K N (Q\Q1).

3 Main results

In this section, we state and prove the existence of at least two positive solutions regard-
ing FBVP (1.1)-(1.2). Then we conclude this section with examples to illustrate our main
results. First, denote

b+l [ s —\)}'+1] b B 1)]»
Qj = Z Gi(vj + b,s), Bi = Z G; 5[ tus)

s=0
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For convenience, we now present the conditions that we presume in the sequel.

) lim(y1+...+yn)_>0+ m =
Hy) limg,,...
Hg) llm(ler..

Hs) limg,,...
H6) llm(yl+

Qe = {1 y) €A O] < £
0% = {01, 7m) € A 0| = £}

(H
(
(
(Hy) limgy,,...
(
(

IR — 00, 4 € [y = 2,0+ Bl 1 j= 120,

];’(3'1 ::::: In)

)00 Gy = 00 4 € (v -2, +b]NU_72,j:1,2,...,n,
a0 B2 20, 45 € v = 2,1+ Bl = 12,000,
+yn)%oo€?3’:1yyz)—0 t€ly=20+blN, 5 j=12....,n
a0t B = by € [y = 2,0 4 Bl 0= L2,
oo DA [t € [y~ 2, 4Bl 5 f =120,

where 0 < /;, L; < +00.

Page 8 of 14

Theorem 3.1 Suppose that there exist two different positive numbers ry and ry (r1 < 1)

such

that
max ﬁb/lr ;yVl)
0<y1+-+yn=ri k oc]
. r
min S0y = .
Tra<yi+etynsry n)‘/ﬂj

Then the operator T has a fixed point (y,,...,5,) € A such that

rn=< ”@1”-771)” <r.

Proof For any (y1,...,¥,) € 2y, and ||(y1,...,¥4) || = 11, we have

j=1,...

|50

ryn) ||
b+l

max ,ZG

yl(s+ vi=1), ., yu(s + vy —1))

t,e[vl -2, v,+b]N

<X E max
S

<A,ZG(v]+b s)
:_”(ylr 1yn

1T, ...

b+1
G,(tj,s)ﬁ(yl(s +v =1), ., yu(s+ v, — 1))

o tie [Vj—Z,u]+b]NV1_2

b+l

s=0 /

,n. That is,

yyn)(tlr ceortn) ||

= “(Tl(yl:“wyn)(tl)r T ()’1, :yn n)) H
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=||T1()’1,-~,yn)||+"'+“Tn()/1y--«,yn)||
1

Sl (RS B +—H(w» ol

= o9

for (y1,...,94) € 02,,.

On the other hand, for any (y1,...,%,) € €2,, and Lb <t =< 3 ), note that [ ’] + €
vi+b  3(vj+b)
[“3 =51, we have
b—v;
ro([57]
2
b+l
= 1ZG<|: i|+v,, )ﬂ(yl(s+vl—l),..,,y,,(s+vn—1))
[ 3(”{;1;) el

SR
> A Z Gj( 21 +v,',s)f,»(y1(s+vl—l),...,y,,(s+vn—l))

Uj+b
s=[“g—-vj+l]

[ 2 —vj+1] _ _
b—v; r
= DY Gi( : +V/’S>—2
vi+h - 2 - Vl)\.]ﬁ]
s:[’T—UjH]
T n
Then
”Tj(yl,...,yn)H_———”(yl, Sy, j=1...,m
That is,

|| T(yl,...,yn t,...5¢L )“
= ||(T1()/1; 3 Yn (tl) s Ty ()/1, :yn ty )“
= ||T1(y1,-~,yn)” oot “Tn()’hm,yn)”

1
2 2 onel + -+ 3 [
=63

for (y1,...,¥) € 0R2,,.
By the use of Theorem 2.9, there exists (3,,...,,) € A such that T(y,,...,y,) =
1»...,%,), the proof is complete. O

Theorem 3.2 Suppose that conditions (H1) and (Hy) hold. Then, for every A; € (O,A;‘),
FBVP (1.1)-(1.2) has at least two positive solutions, where
1 r

Af = —sup .
/ l’lC(j r>0 maX0§y1+~~+yn§rﬁ'(ylx oo ryn)
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Proof Define the function

r

}’lO{j max0§y1+...+yn§,ﬁ()/1, v ’yn) ’

@i(r) = j=1,...,n.

It is easy to know that ¢; : (0, +00) — (0, +00) is a continuous function. From (H;), we see
. roo_ e 13 r_
that lim,_, ¢ ok 0, that is, lim,_, ¢ ) 0, and

r

r
<
1O MAX0 <y, 4oy <r fi(V1s o3 Vn) nozlﬁ(r)’

0<g(r) =

so lim,_, ¢ ¢;(r) = 0.

From (H;), we see further that lim,_,. ¢j(r) = 0. Then there exists ro > 0 such that
@j(ro) = max,.o ¢;(r) = A}", j=1,...,n Forany A; € (O,A;‘), by the intermediate value the-
orem, there exist two points d; € (0,7), dy € (rp,00) such that ¢;(d;) = ¢;(d2) = ;. Thus,
we have

d
]7’()’1~~;)’n)§ ! ) y1+"'+yn€[0’d1]1
Vl)\l'Ol]'

2 i+ 4y €[0,dy).
I’l)uj()lj

ﬁ(yli .. ~:yn) =<

On the other hand, since (H;) and (H;) hold, there exist e; € (0,d)), ey € (da, o0) such
that

S oym) - 4

1
Y1+ +y.€(0,e1]U [—ez,oo>.

Yoty k] 4
Thus
e 1
i 7"'1"2—7 M ne - b 7
[0 9n) ) Vit +y [46161}
€y 1
i :~~—;n2—: Tt ne -2 .
[0 9n) v Y+ +Y [46262}

Application of Theorem 3.1 and Theorem 2.8 leads to two distinct positive solutions of
FBVP (1.1)-(1.2) which satisfy

e = H @1, ce ,y,,,) || = dl} d2 = || (71, ce ;7,,) || =<e.
The proof is complete. d
By the proof of Theorem 3.2, we obtain the following.

Corollary 3.3 If one of conditions (Hi) and (H,) is satisfied, then for every 0 < A; < A},
FBVP (1.1)-(1.2) has at least one positive solution.

Theorem 3.4 Suppose that (Hs), (Ha) hold. Then, for any 1; > 1*, FBVP (1.1)-(1.2) has at
least two positive solutions, where

r

1
A= —inf .
] , i ;
np; r>0 m1n%r§yl+m+yngrﬁ()’1,...,yn)
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Proof Define the function

r

}’lﬂj minr/4§y1+---+yn5rﬁ(y1: e ;yn) ’

Y;(r) = j=1,...,n

We know that v; : (0, +00) — (0,+00) is a continuous function. For A; > )\I’f*, there exists
0 < e3 < +00 such that

1
S oym) = , y1+~~-+yne[zes,es}

€3
n;p;

By condition (H3), there exists 0 < ds < e such that

d
[0 yn) < 5, i+ +y,€[0,d3].
Vl)»jOlj

From condition (Hy), there exists e3 < dy < +00 such that

f(yl; yy}’l 1

Nt + yn }’[)\I'Ol]'

, Y1+ + Y, € [do, +00).

Let M; = maXo<y, 4.y, <do fi(91s- - - ¥n). Choose dy > dy such that dy > M;Mja;. Then

7]
ﬁ(ylwu:yn)f 4 ) y1+”’+yn€[0,d4]'
Vl)\l'Oé/'

By Theorem 3.1 and Theorem 2.8, the proof is complete. O
From the proof of Theorem 3.4, we get the following.

Corollary 3.5 Suppose that one of conditions (Hs) and (Ha) holds. Then, for every 4; > 1},
FBVP (1.1)-(1.2) has at least one positive solution.

Theorem 3.6 Suppose that one of the following cases is satisfied:
(1) (Hy), (He) hold, and 0 < &; <

(2) (Ha), (Hs) hold, and 0 < A; < ml
Then FBVP (1.1)-(1.2) has at least one positive solution.

naL’

f(yl ''''' y n .
]1+ o = L]', t/ (S] [vj—2, Vj +b]N|772,] =12,

., n), for any €; > 0, there exists a number Ry > 0, for y; + - - - + ¥, € (Ro, +00), we have

Proof (1) From (Hg) (namely limy, ...sy,)— 00

[0 o) <L+ €)+ -+ ).
M,
Let M; = maXo<y, +...ty,<ro Ji(¥15+ - -» ¥u). Choose R > max{Ry, L,T]e,}’ then

ﬁ(yl"“)yn) < (L1 + 6}')()/1 RPN +yn)

for y1 + --- +y, € [0,R]. As arbitrarily of €j, so fj(y1,...,¥,) < LjR. Note that 0 < A; <
then

naL’

v 1 R 1R 1 30,
j = —Sup — >Ai >
7 nay g0 MaXo<y, sy, <rf (y) na IR na,L,
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Namely 0 < A; < k;‘. By means of Corollary 3.3, FBVP (1.1)-(1.2) has at least one positive

solution.
The proof is similar to (2) and hence omitted. O

Similarly, we have the following.

Theorem 3.7 Suppose that one of the following cases is satisfied:
(1) (Hz), (Hg) hold, and ﬁ < Aj < +00;
(2) (Hy), (Hs) hold, and # <Aj<+00.

Then FBVP (1.1)-(1.2) has at least one positive solution.

Theorem 3.8 Suppose that conditions (Hs) and (He) hold. If A; satisfies —— nﬁL <Aj< ﬁ]l] or
"/3/ <A< ij, then FBVP (1.1)-(1.2) has at least one positive solution.

Proof Suppose that —— n,sL <Aj< m]l] holds. Choose ¢; > 0 such that m <A< m
With condition (Hs), there exists 7 > 0 such that fj(y1,...,y.) < (; + e,)(y1 + -+ +y,) for

Y1+ -+ 9, €(0,7). Thus, for y; + - -- +y, € 94,

|50
b+l
— tle[vl g}f’ﬁj]N ] ; G](t],S)ﬁ(yl(S +V — 1), .. .,yn(s +V, - 1))
b+1

< }‘j(lj + Gj)(yl +oee +yn) Z max Gf(tj’s)

> tie[”/_z"’i*b]ijfz

b+1
=M+ €)oo+ +yn) Z Gi(vj + b,s)
s=0
<A
1% iha, nijo;
T
n
1
- || (yl,
o

j=1,...,n. Thatis,

|| T(yl:uw}/n)(tl’--wtn)“
= ”(Tl(yl’“-)yn)(tl)r Ty ()/1, :yn )”
= ”TI(YI,-nryn)” +-0t ” Tn(Yly---,}/n)”
1
= Mo+ ol
= om0

for (y1,...,y4) € 092;.
By condition (Hs), there exists R; > 0 such that fj(y1,...,¥4) = (L; — €))(y1 + - - - + y,) for
YL+ 4 yn = R
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Let Ry = max{2t, Ry}, for (y1,...,¥,) € 0Qg,, we get

(i r ¥ )([b;')’] + v,)

b+1

= 1ZG<|: i|+v,, )fj(yl(s+vl—l),...,y,,(s+vn—1))

3(vj+b
(ALY

b—
> ML —€)) Z G,'(|: 2v:|+v,, )(y1+ “+ V)

vj+b
s=[~g——vj+1]

3(vj+b
[ (VE )—vj+1]

1 b—vj
> )L]E(Lj —€)Ry Z GI([T]] + v/,s>

v]'+b
s=[~g—-v;+1]

Then

|00 = 2 = —H(yh )

j=1...,n
That is,
” T(y17 ryn) tl: tn)”

= ||(T1(yl"u)yn)(t1)r T ()/1, ’yn )“
I 7100 o)+ + [ Tals )|

1
o]+ +—||(y1» S|
||(J’1,,J’n)||

v

for (y1,...,¥,) € 02,
By using Theorem 2.9, we obtain the Conclusion.

A similar proof holds when ;3 <A< The proof is complete. d

We now present an example illustrating the sorts of boundary conditions that can be
treated by Theorem 3.2.

Example 3.1 Consider the following boundary value problems:

AFy(E) = =il (e + 2t + D)),
AT yy(t) = ~hofs (0t + D ya(t+12)),
n(=2) = Ay (%) = A% (—Z) =0,
y2(—2) = App(2L) = A%yy(-2) = 0,

where b =19, v; = 187, vy = i‘g’, we take

Fiuya) = f(yuyz)zwﬁyz , fz(y1,y2):%()’1+y2)%+é()’1+)’2)%
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fisfa 1 [0,+00) x [0,+00) — [0, +00), and y; is defined on the time scale {-Z, 1,..., %%}, 5,

is defined on the time scale {—%, %, e %}. fi and £, satisfy conditions of Theorem 3.2.
A computation shows that A7 ~ 0.01456, A3 ~ 0.032845, then, for every ; € (0,1}) (j =

1,2), problem (3.1) has at least two positive solutions.
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