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Abstract
Memristive neurodynamic systems find many potential applications in mixed
analog-digital multichip neurogrid and integrated photo-supercapacitor nanotube
arrays. Analysis and design of memristive neurodynamic systems have attracted a
large amount of research interest. In this study, some new neurodynamic approaches
are proposed for stability analysis of delayed memristive neural networks. Some less
conservative stability criteria are established by considering the memristor multiport
effect, which is ignored in the previous literature. Numerical examples are given to
demonstrate the effectiveness of these stability criteria.
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1 Introduction
In recent years, memristive neurodynamic systems have become one of the most widely re-
searched topics in the computing architecture enabled by memristors [–]. A multiport
memristive neurodynamic system is a promising electronic system for its neuromorphic
memristor memory []. It is worth mention that using memristors as synaptic connec-
tions in neuromorphic electronic systems has been suggested with different neural archi-
tectures. One of the main characteristics hindering the neural architecture of memristive
neuromorphic systems is the sneak-paths phenomenon. Consequently, various interesting
nonlinear properties of memristive neuromorphic systems have emerged [–, –].

Recently, some works [, , –, –] have demonstrated the interest in studying
global stability for some types of memristive neurodynamic systems, such as fractional-
order memristive neurodynamic systems [] and integral-order memristive neurodynamic
systems [, –, –]. Periodic oscillation in neurodynamic systems is an interesting
dynamic effect, furthermore, the analysis of persistent oscillation for memristive neuro-
dynamic systems is able to reveal crucial features of the dynamics [, ]. In an associative
memory model based on memristors, multiple stable states are necessary. The multista-
bility of memristive neurodynamic systems has been investigated in [, ]. To control
the memristive physiological states, some control strategies of exponential stabilization
for memristive neurodynamic systems are proposed in []. Consider, for example, the
dynamic-state sequence objects where, under the universal need of multi-attractor, the
multi-object flow closely relates to a multi-attractor of the network cluster. Thus, Wu and
Zeng [] discussed the Lagrange stability of memristive neurodynamic systems with var-
ious feedback functions.
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Despite some clear progress on the qualitative analysis of memristive neurodynamic
systems, the issue of the memristor multiport effect has not been fully used in the exist-
ing studies, except [, , ], when dealing with the qualitative analysis of such systems.
As is well known, the memristor multiport effect explains how intelligent behavior arises
from neural models. Ignoring the memristor multiport effect in developing computing
platforms based on memristive neuromorphic systems is very unreasonable. Once aban-
doning the memristor multiport effect, designers of these systems face a major problem:
whether such neuromorphic system can accurately simulate memristive intelligent behav-
ior in a mixed analog-digital integrated circuit.

In this paper, we consider the global exponential stability and global asymptotical stabil-
ity for a class of delayed memristive neural networks. The analytical method differs from
those considered in most of the existing literature on qualitative analysis of memristive
neurodynamic systems, where the memristor multiport effect is ignored. The obtained
algebraical criteria, which can be directly derived from the network parameters, are easily
testable. Consequently, a physical realization of such a system is rather simple.

The rest of this paper is organized as follows. Section  presents the network model and
preliminaries. Section  details the analytical framework and theoretical results. Section 
provides two illustrative examples. Section  gives the concluding remarks.

2 Model description and preliminaries
Based on [, ], in this paper, consider a class of delayed memristive neural networks
described by the following delay differential equations: for i = , , . . . , n,

ẋi(t) = –dixi(t) +
n∑

j=

aij
(
xi(t)

)
fj
(
xj(t – τij)

)
+ ui, ()

where xi(t) denotes the memristive neuron state, di >  is the self-inhibition,  ≤ τij ≤ τ

(τ ≥  is a constant) is the transmission delay, feedback function fi(·) is bounded and
fi() = , ui denotes the external input, aij(xi(t)) is the connection memristive weight,
which is defined as

aij
(
xi(t)

)
=

{
âij, xi(t) > ,
ǎij, xi(t) < ,

()

for i, j = , , . . . , n, where âij and ǎij are constants.
The initial condition of neurodynamic system () is assumed to be

x(t) =
(
x(t), x(t), . . . , xn(t)

)T = φ(t) =
(
φ(t),φ(t), . . . ,φn(t)

)T , t – τ ≤ t ≤ t, ()

where φi(t) ∈ C([t – τ , t],�), i = , , . . . , n.
Let xt ∈ C([t – τ , t],�n) be defined by xt(s) = x(t + s), t – τ ≤ s ≤ t, and () can be

rewritten as

xt = φ ∈ C
(
[t – τ , t],�n).
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In addition, we also assume that the feedback function fi(·) (i = , , . . . , n) satisfies the
Lipschitz condition with the Lipschitz constant li > , i.e.,

∣∣fi(χ ) – fi(χ̂ )
∣∣ ≤ li|χ – χ̂ |, i = , , . . . , n,∀χ , χ̂ ∈ �. ()

Remark  From a systems-theoretic point of view, neurodynamic system () is basi-
cally a state-dependent switched network cluster. For analyzing and controlling the state-
dependent switched network cluster, nonsmooth analysis will be devoted to dealing with
neurodynamic system (). The theory and application of conventional nonlinear systems
have been extensively studied over the past few decades; see [–]. However, little at-
tention has been paid to the switched network cluster [].

In this paper, solutions of all the systems considered are in the following interpreted
in Filippov’s sense. K(P) denotes closure of the convex hull of set P . co{�̃, �̂} denotes
closure of the convex hull generated by real numbers �̃ and �̂. Let aij = max{âij, ǎij}, aij =
min{âij, ǎij}, ãij = max{|âij|, |ǎij|}, for i, j = , , . . . , n.

When considering neurodynamic system (), throughout this paper, let us define the
set-valued maps as follows:

K
(
aij

(
xi(t)

))
=

⎧
⎪⎨

⎪⎩

âij, xi(t) > ,
co{âij, ǎij}, xi(t) = ,
ǎij, xi(t) < .

()

Obviously, for i, j = , , . . . , n,

co{âij, ǎij} = [aij, aij].

By the theory of differential inclusions, from (), for i = , , . . . , n,

ẋi(t) ∈ –dixi(t) +
n∑

j=

K
(
aij

(
xi(t)

))
fj
(
xj(t – τij)

)
+ ui. ()

A solution x(t) = (x(t), x(t), . . . , xn(t))T in the sense of Filippov of neurodynamic sys-
tem (), with initial condition x(s) = φ(s), s ∈ [t – τ , t], is absolutely continuous on any
compact interval of [t, +∞), and

ẋi(t) ∈ –dixi(t) +
n∑

j=

K
(
aij

(
xi(t)

))
fj
(
xj(t – τij)

)
+ ui.

Remark  Filippov solutions are mainly used to analyze nonlinear switched systems. On
the concept of Filippov solutions, one may refer to the well-known publication [].

Definition  A constant vector x∗ = (x∗
 , x∗

, . . . , x∗
n)T is called an equilibrium point of neu-

rodynamic system (), if for i = , , . . . , n,

 ∈ –dix∗
i +

n∑

j=

K
(
aij

(
x∗

i
))

fj
(
x∗

j
)

+ ui.
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Definition  The equilibrium point x∗ = (x∗
 , x∗

, . . . , x∗
n)T of neurodynamic system () is

said to be globally exponentially stable, if there exist constants κ >  and κ̃ >  such that

∣∣xi(t, t, x) – x∗
i
∣∣ ≤ κ

∣∣xi() – x∗
i
∣∣ exp

{
–κ̃(t – t)

}
, ∀t ≥ t, i = , , . . . , n.

Definition  The equilibrium point x∗ = (x∗
 , x∗

, . . . , x∗
n)T of neurodynamic system () is

said to be globally asymptotically stable, if it is locally stable and globally attractive.

The following two lemmas play an important role in discussing the qualitative behavior
of neurodynamic system ().

Lemma  For neurodynamic system () there exists at least one equilibrium point.

In subsequent sections, we will denote by x∗ = (x∗
 , x∗

, . . . , x∗
n)T the equilibrium point

of ().

Lemma  For neurodynamic system (),

∣∣K
(
aij(xi)

)
fj(xj) – K

(
aij(yi)

)
fj(yj)

∣∣ ≤ ãijlj|xj – yj|, ∀i, j = , , . . . , n,∀xi, yi ∈ �.

Lemmas  and  can be proved using standard arguments as the Lemmas  and  in [],
respectively.

Remark  Lemma  of this paper makes good use of the memristor multiport effect.
It establishes a kind of internal ties between system attribute and its neurodynamic ap-
proaches.

3 Main results
According to Lemma , neurodynamic system () has the equilibrium point x∗ = (x∗

 , x∗
, . . . ,

x∗
n)T ; we shift the equilibrium point x∗ = (x∗

 , x∗
, . . . , x∗

n)T to the origin by the translation
z(t) = x(t) – x∗ in the differential inclusion (), which results in

żi(t) ∈ –dizi(t) +
n∑

j=

K
(
aij

(
zi(t)

))
fj
(
zj(t – τij)

)
, i = , , . . . , n, ()

where

K
(
aij

(
zi(t)

))
fj
(
zj(t – τij)

)
= K

(
aij

(
zi(t) + x∗

i
))

fj
(
zj(t – τij) + x∗

j
)

– K
(
aij

(
x∗

i
))

fj
(
x∗

j
)
. ()

According to Lemma ,

∣∣K
(
aij

(
zi(t)

))
fj
(
zj(t – τij)

)∣∣ ≤ ãijlj
∣∣zj(t – τij)

∣∣. ()

From ()-(),

∣∣żi(t)
∣∣ ≤ –di

∣∣zi(t)
∣∣ +

n∑

j=

ãijlj
∣∣zj(t – τij)

∣∣, i ∈ {, , . . . , n}. ()
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Theorem  The equilibrium point x∗ = (x∗
 , x∗

, . . . , x∗
n)T of neurodynamic system () is glob-

ally exponentially stable, if any one of the conditions () and () holds:

di >
n∑

j=

ãijlj, i = , , . . . , n, ()

di >
n∑

j=

ãjili, i = , , . . . , n. ()

Proof Consider the comparison systems of ()

∣∣ ˙̃zi(t)
∣∣ = –di

∣∣z̃i(t)
∣∣ +

n∑

j=

ãijlj
∣∣z̃j(t – τij)

∣∣, i ∈ {, , . . . , n}, ()

where z̃i(t, z) = zi(t), i = , , . . . , n.
According to the comparison theorem [],

∣∣zi(t, t, z)
∣∣ ≤ ∣∣z̃i(t, t, z)

∣∣, ∀t ≥ t, i = , , . . . , n.

When () holds, choose a sufficiently small positive constant ρ >  such that

di – ρ >
n∑

j=

ãijlj, i = , , . . . , n. ()

Let ẑi(t) = exp{ρt}z̃i(t), i = , , . . . , n. Then

∣∣ ˙̂zi(t)
∣∣ = (–di + ρ)

∣∣ẑi(t)
∣∣ +

n∑

j=

ãijlj
∣∣ẑj(t – τij)

∣∣, i ∈ {, , . . . , n}, ()

where ẑi(t) = exp{ρt}zi(t), i = , , . . . , n.
Based on the work in [], it follows that the zero solution of () is globally asymptoti-

cally stable if and only if the conditions () and () hold:

[
(–di + ρ)δij + ãijlj

]
n×n is a Hurwitz matrix, ()

det
[(

iωδij + (di – ρ)
)
δij – ãijlj exp{–iωτij}

]
n×n 	= , ∀ω ∈ �, ()

where

δij =

{
, i = j,
, i 	= j, i, j = , , . . . , n.

Applying the Groshgorin circular disc theorem [], by (), it implies that () is true.
On the other hand,

|iω + di – ρ| –
n∑

j=

ãijlj
∣∣exp{–iωτij}

∣∣ ≥ ∣∣Re(iω + di – ρ)
∣∣ –

n∑

j=

ãijlj
∣∣exp{–iωτij}

∣∣

= |di – ρ| –
n∑

j=

ãijlj > , i = , , . . . , n.
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Combining with () and the Groshgorin circular disc theorem [], () holds, then the
zero solution of () is globally asymptotically stable. Meanwhile,

∣∣zi(t, t, z)
∣∣ ≤ ∣∣z̃i(t, t, z)

∣∣ = exp
{

–ρ(t – t)
}∣∣ẑi

(
t, t, exp{ρt}z

)∣∣,

∀t ≥ t, i = , , . . . , n.

Therefore, the zero solution of () is globally exponentially stable, i.e., the equilibrium
point x∗ = (x∗

 , x∗
, . . . , x∗

n)T of () is globally exponentially stable. �

When () holds, the proof can be presented using standard arguments similar to the
proof above.

Theorem  The equilibrium point x∗ = (x∗
 , x∗

, . . . , x∗
n)T of neurodynamic system () is glob-

ally asymptotically stable, if any one of the conditions () and () holds:

di ≥
n∑

j=

ãjili, i = , , . . . , n, ()

di ≥
n∑

j=

ãijlj, i = , , . . . , n. ()

Proof When () holds, consider the following functional:

V (t) =
n∑

i=

∣∣zi(t)
∣∣ +

n∑

i=

n∑

j=

∫ t

t–τij

ãijlj
∣∣zj(ϑ)

∣∣dϑ .

Calculating the upper right Dini derivative of V (t) along the solution z(t, t, z) of (),

D+V (t) ≤ –
n∑

i=

di
∣∣zi(t)

∣∣ +
n∑

i=

n∑

j=

ãijlj
∣∣zj(t – τij)

∣∣ +
n∑

i=

n∑

j=

ãijlj
∣∣zj(t)

∣∣

–
n∑

i=

n∑

j=

ãijlj
∣∣zj(t – τij)

∣∣

= –
n∑

i=

di
∣∣zi(t)

∣∣ +
n∑

i=

n∑

j=

ãijlj
∣∣zj(t)

∣∣

=
n∑

i=

[
–di +

n∑

j=

ãjili

]
∣∣zi(t)

∣∣

≤ .

This implies that the zero solution of () is globally asymptotically stable, i.e., the equilib-
rium point x∗ = (x∗

 , x∗
, . . . , x∗

n)T of () is globally asymptotically stable.
When () holds,

(di – ãiili) –
n∑

j=,j 	=i

ãijlj ≥ , i = , , . . . , n. ()
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Let

γi = (di – ãiili) –
n∑

j=,j 	=i

ãijlj ≥ , i ∈ {, , . . . , n},

thus

(di – ãiili) – γi =
n∑

j=,j 	=i

ãijlj, i ∈ {, , . . . , n},

then there must exist constants σi >  (i = , , . . . , n) such that

[
(dj – ãjjlj) – γj

]
σj –

n∑

i=,i	=j

ãijljσi = , j = , , . . . , n. ()

The coefficient matrix of () is singular, and combining with (), the existence of σi > 
(i = , , . . . , n) can be understood. In fact, some of the references concerning this claim can
be found in Liao et al. [].

From (),

(dj – ãjjlj)σj –
n∑

i=,i	=j

ãijljσi = γjσj ≥ , j = , , . . . , n, ()

that is,

dj –
n∑

i=

ãijljσi

σj

= γj ≥ , j = , , . . . , n. ()

Make a full rank linear transform:

w(t) = diag(σ,σ, . . . ,σn)z(t).

From (), it follows that

∣∣ẇi(t)
∣∣ ≤ –di

∣∣wi(t)
∣∣ +

n∑

j=

σiãijlj

σj

∣∣wj(t – τij)
∣∣, i ∈ {, , . . . , n}. ()

Consider the following functional:

Ṽ (t) =
n∑

i=

∣∣wi(t)
∣∣ +

n∑

i=

n∑

j=

∫ t

t–τij

σiãijlj

σj

∣∣wj(ϑ)
∣∣dϑ .

Calculating the upper right Dini derivative of Ṽ (t) along the trajectory of (),

D+Ṽ (t) ≤ –
n∑

i=

di
∣∣wi(t)

∣∣ +
n∑

i=

n∑

j=

σiãijlj

σj

∣∣wj(t – τij)
∣∣

+
n∑

i=

n∑

j=

σiãijlj

σj

∣∣wj(t)
∣∣ –

n∑

i=

n∑

j=

σiãijlj

σj

∣∣wj(t – τij)
∣∣
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= –
n∑

j=

dj
∣∣wj(t)

∣∣ +
n∑

i=

n∑

j=

σiãijlj

σj

∣∣wj(t)
∣∣

=
n∑

j=

[
–dj +

n∑

i=

σiãijlj

σj

]
∣∣wj(t)

∣∣

≤ .

This implies that the zero solution of () is globally asymptotically stable, i.e., the equilib-
rium point x∗ = (x∗

 , x∗
, . . . , x∗

n)T of () is globally asymptotically stable. �

Remark  The question remains, in fact, what the significance is of the physical param-
eters of a memristive neurodynamic system to stability. Theorems  and  make use of
the physical parameters of neurodynamic system () when proving the stability. These al-
gebraical criteria, which only depend on the parameters of neurodynamic system (), are
easily verified. Theoretically, such stability criteria are very useful because they provide
some more efficient ways in analysis and design of a memristive neurodynamic system.

Remark  By Theorem , we can see that neurodynamic system () is globally exponen-
tially stable, if

di >
n∑

j=

ãijlj, i = , , . . . , n, or di >
n∑

j=

ãjili, i = , , . . . , n.

From Theorem , we know that neurodynamic system () is globally asymptotically stable,
if

di ≥
n∑

j=

ãjili, i = , , . . . , n, or di ≥
n∑

j=

ãijlj, i = , , . . . , n.

Clearly, the critical conditions

di =
n∑

j=

ãjili, i = , , . . . , n, or di =
n∑

j=

ãijlj, i = , , . . . , n,

reflect the critical dynamics of memristive neurodynamic system ().

Remark  Recently, some delay-independent stability criteria [, , ] and delay-
dependent stability criteria [] for memristive neurodynamic systems were reported.
Generally, delay-dependent stability criteria are less conservative than delay-independent
stability criteria. In order to easily check the stability criteria, stability conditions could
best be directly derived from the parameters of the system. Theorems  and  of this pa-
per, which can be directly derived from the network parameters (without any external
parameters), are easily testable. These new results can bring about convenience in appli-
cations.

4 Illustrative examples
In this section, two numerical examples are given to illustrate the effectiveness of the ob-
tained algebraical criteria.
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Figure 1 Transient behaviors of trajectories of system (25).

Example  Consider a memristive neural network model,

{
ẋ(t) = –x(t) + a(x(t))f(x(t – )) + a(x(t))f(x(t – )) + .,
ẋ(t) = –x(t) + a(x(t))f(x(t – )) + a(x(t))f(x(t – )) + .,

()

where fi(υ) = |υ+|–|υ–|
 ,

a
(
x(t)

)
=

{
., x(t) > ,
., x(t) < ,

a
(
x(t)

)
=

{
., x(t) > ,
., x(t) < ,

a
(
x(t)

)
=

{
., x(t) > ,
., x(t) < ,

a
(
x(t)

)
=

{
., x(t) > ,
., x(t) < .

Clearly,

d –
∑

j=

ãj = . > , ()

d –
∑

j=

ãj = . > , ()

the criterion condition () in Theorem  is satisfied. Figure  shows the time-domain
behavior of the state variables x and x of ().

Example  Consider a memristive neural network model,

{
ẋ(t) = –x(t) + a(x(t))f(x(t – )) + a(x(t))f(x(t – )) + ,
ẋ(t) = –x(t) + a(x(t))f(x(t – )) + a(x(t))f(x(t – )) + ,

()

where fi(υ) = exp{υ}–exp{–υ}
exp{υ}+exp{–υ} ,

a
(
x(t)

)
=

{
., x(t) > ,
., x(t) < ,

a
(
x(t)

)
=

{
., x(t) > ,
., x(t) < ,
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Figure 2 Transient behaviors of trajectories of system (28).

a
(
x(t)

)
=

{
., x(t) > ,
., x(t) < ,

a
(
x(t)

)
=

{
., x(t) > ,
., x(t) < .

Clearly,

d –
∑

j=

ãj = , ()

d –
∑

j=

ãj = , ()

the criterion condition () in Theorem  is satisfied. Figure  depicts the time-domain
behavior of the state variables x and x of ().

5 Concluding remarks
The memristive neurodynamic system exhibits well-characterized analog switching ef-
fects in electrical characteristics for devices formed by multiport architectures. Rigorously
analyzing the nonlinear dynamics of memristive neurodynamic system is very essential for
its neuromorphic computing applications. This paper is concerned with the global expo-
nential stability and global asymptotical stability for a class of delayed memristive neural
networks. The newly proposed approach is based on the comparison method and stabil-
ity theory within a nonsmooth analysis framework. Quite differently, these stability cri-
teria are formulated via some simple algebraical inequalities. The characteristic analysis
of memristive neurodynamic systems might also reveal the electrical behavior of analog
memristor devices.
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