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Abstract

This paper aims to investigate approximate controllability of stochastic nonlinear
partial differential systems with infinite delay. In the systems under study, nonlinearity
and control variable exist both in drift and diffusion terms, and controllability
problems are considered in the framework with a novel Banach space, which not only
leads to some difficulties in deriving the properties of interest but also bring some
opportunities to study the system in a more general framework. With the help of a
new fundamental lemma established in this paper and some useful inequality
techniques, some improved results for approximate controllability of stochastic partial
differential systems are obtained by using the Banach contraction theorem without
introducing any additional restraints on the terms of the system. An example of
stochastic heat equation is also provided to illustrate our results.

Keywords: stochastic; partial differential systems; approximate controllability;
Banach contraction theorem; infinite delay

1 Introduction

Stochastic partial differential systems are usually used to describe physical and engi-
neering phenomena such as heat process, population dynamics, chemical reactors, fluid
dynamics, etc. and have been widely investigated (for instance, [1-10] and references
therein). As an important concept in control theory, controllability of dynamical systems
has been also investigated by many researchers. In [11-14], Mahmudov developed several
concepts of controllability for linear stochastic differential systems and extended the clas-
sical theory for deterministic dynamical systems to stochastic cases. The authors in [15,
16] considered weak, complete, and exact controllability of semilinear stochastic systems
and stochastic functional differential in Hilbert spaces, and the obtained results therein
can be applied to the stochastic systems with kinds of delays. Moreover, with the help of
semigroup theory, sufficient conditions for the controllability of stochastic integrodiffer-
ential systems were derived in [17, 18].

It should be also noted that the controllability problems can be transformed into fixed
point problems. Fixed point principles such as Banach contraction theorem, Nussbaum
theorem and Schauder fixed point theorem are frequently used and considered as an im-
portant technique in solving the controllability problems. By employing an axiomatic defi-
nition of the phase space introduced in [19, 20], Balasubramaniam and Ntouyas [21] inves-
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tigated controllability of neutral stochastic differential inclusions with infinite delay with
the aid of Leray-Schauder nonlinear alternative. Sufficient conditions for controllability of
neutral functional integrodifferential infinite delay systems in Banach spaces were stud-
ied in [22] with the Nussbaum fixed point theorem. Bao and Jiang [23] considered the
approximate controllability of stochastic partial differential equations with infinite delay.
Recently, in [24, 25], by using the Schauder fixed point theorem and the fixed point theo-
rem for condensing maps due to Martelli, the authors derived some sufficient conditions
for controllability of functional differential systems with infinite delay in a deterministic
case.

However, most of the results for the stochastic systems mentioned above focus on either
finite delays or without delays. Since many systems arising from realistic models greatly
depend on histories, it is highly relevant to discuss stochastic differential systems with
infinite delays, and few works are available for the controllability properties on this case.
Therefore, in this paper, we study the approximate controllability of a class of nonlinear
stochastic partial differential systems with infinite delays. This kind of system can be found
in many engineering practices, especially those relating to continuum physics, vibration
control, and thermodynamics [26—31]. Nonlinearity and control input exist both in the
drift and diffusion terms of the underlying equation, and the control problem of interest
is considered in the framework with a novel Banach space. This may not only enable the
system under study to be a more general case compared to [23], but also bring some diffi-
culties in moment estimations and in employing the fixed point theorem. To this objective,
an important lemma is established, which greatly facilitates the development of the main
result of this paper. Together with the aid of some useful inequality formula adopted in
the proof, improved approximate controllability results of the systems under study can be
obtained without imposing any additional restraints on the system. An example is given
to illustrate our results.

The rest of the paper is organized as follows. In Section 2, we introduce the basic nota-
tions and definitions. In Section 3.1, we introduce Banach spaces B and Bj; and prove an
important inequality. In Section 3.2, we give the controllability results. In the last section,

an example of stochastic heat equation is given to illustrate our results.

2 Preliminaries
In this section, we will briefly give some basic assumptions and definitions.

Let K and H be two separable Hilbert spaces. We denote by | - | and | - |x the norms in
H and K, respectively, by (-,-) the scalar product in H. L(K, H) denotes the space of all
bounded linear operators from K into H. | - || is also used to denote the norm in an ordi-
nary Banach space. Let (2,3, 3, P) be a complete probability space with a filtration {3}
satisfying the usual condition (i.e., the filtration contains all P-null sets and is right con-
tinuous). Let w,,(¢t) (n=1,2,3,...) be a sequence of real-valued one-dimensional standard

Brownian motions mutually independent on (£2, 3, 3y, P). Set

W) =) Jowa()en, t>0,
n=1

wheree, (n=1,2,3,...) isa complete orthonormal basis in K. Let Q € L(K, K) be an opera-
tor defined by Qe, = o,e,, with Z;Zl 0, < 00. For a Hilbert-Schmidt operator G in L(K, H),
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we denote by ||G||, its Hilbert-Schmidt norm, i.e.,
IGI3 = tr(GQG*).

We first give an abstract phase space By,.
Assume that % : (—00,0] — (0,00) is a continuous function with / = f_ooo h(s)ds < oo.
Define

By, = {(f) 1 (-00,0] — H‘d) is continuous on [—a, 0] for any a > 0,and

0
/ h(s) sup ‘¢(9)‘ds<oo}.

00 $<6<0

By, is a Banach space endowed with the norm

0
oz, =/ h(s) sup |¢(8)‘ds for V¢ € By,.

00 $<6<0

The above conclusion will be proved in the next section. In the present paper, we are in-
terested in the controllability problem of the following system:

dx(t) = [-Ax(t) + Bu(t) + f (¢, x,, u(t))] dt + g(t, x¢, u(t)) dw(t), tel[0,T),
x(t) = ";:(t)! te (—OO, 0]1

@)

where —A is a closed, densely defined linear operator generating an analytic semi-
group S(¢), t > 0 on H. Let 0 < @ < 1, and define the Banach space D(A%) with the
norm |x||, = |[A%]| for x € D(A%), where D(A%) denotes the domain of a fractional
power operator A* : H — H [4]. Denote H, = D(A%), define B} = {¢ : (-00,0] —
H,|¢ is continuous on [-a, 0] for any 4 > 0,and f_ooo h(s) sup;g<o 19(0)lle ds < o0}. Let U
be another separable Hilbert space, u(¢) is a U valued process and B is a bounded linear op-
erator from U to H. We also assume that f : (R* x B, x U) - Hand g: (R* x B x U) —
LY(K,H) are two measurable mappings, where L(K, H) denotes the space of bounded
linear operators from K to H with the Hilbert-Schmidt norm. For initial datum £, let
£ e IP(Q,3,P;B}) = LF(Q,B}), and we always assume p > 2. Moreover, denote histories
x; 1 (—00,0] = H by x,(0) = x(¢ + 6) for —co <0 < 0.

Definition 2.1 A stochastic process x is said to be a mild solution of (1) if the following
conditions are satisfied.
(1) x(t, w) is measurable as a function from [0, T] x Q to H, and x(¢) is J, adapted.
(2) E|x(t)|? < oo for each t € (—00,0].
(3) Foreachu e L%t(Q;LP(O, T; U)) (u(t) is J; adapted, and EfOT [lu(t)||? dt < 00) the
process « satisfies the following equation:

x(t) = S(£)&(0) + /OtS(t —s)Bu(s)ds + /Ot S(t - s)f(s, Ks, u(s)) ds

+ /tS(t—s)g(s,xs,u(s)) dw(s), t>0,
0

xo =& € I (Q, B})).
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Remark 2.2 The dynamic system is controlled by u(f). Sometimes, control term u(¢) af-
fects the system not only in a linear manner, but also in a nonlinear way [32, 33]. Especially
for stochastic differential systems, u(¢) exists in both the diffusion and drift terms. These

cases are all taken into consideration in the present study.

Definition 2.3 System (1) is said to be approximately controllable on [0, 77 if
R(T) = L*(,3,P; H),
where R(T) = {x(T) = x(T,u) : u € LP(0, T; U)}.

Lemma 2.4 [15] Forany h* € LP(Q,3, P; H), there exists ¢ € LP(S;L*(0, T; L3 (K, H))) such
that

T
W =Eh* + / o(t) dw(t).
0

Lemma 2.5 [15] Ifp € L*(0, T; L3(K, H)), A% € L*(0, T; LA(K, H)) and ¢(t)k € H, for t >
0 and arbitrary k € K, then

A"’/O o(s) dw(s) :/0 A%p(s) dw(s).

Lemma 2.6 Letp>2, ¥ € LF(QL%(0,T;L(K, H))), we have

4

/S X (r) dw(r)
0

/s X (r) dw(r)

P
)fcp sup E
0

0<s<t

E( sup
0<s<t

[T

E
~

of

where ¢, = (&) and C, = (5(p - 1)2 (5

Lemma 2.7 [4] Let —A be the infinitesimal generator of an analytic semigroup S(t). If 0 €
0(A), then
(1) There exist a constant M > 1 and a real number a > 0 such that
|S(O)h| < Me *|h|  forallt>0andh € H.
(2) There exists a constant M, such that the fractional power operator A* satisfies that
|A“S(Oh| < Mye*t™|h|  forallt>0andhe H.
(3) Let 0 < <1andh € D(A%), there exists a constant Ny such that

|S(t)h—h‘ §Nat°‘|A"‘h} forallt>0and h e H.

For system (1), we have the following hypotheses:
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(A1) 0€p(A).
(A) Forany n1,n2 € Bf, v,vp € U and 0 < t < T, there exists a constant Kj such that
lf(t’ M, Ul) _f(t: 12, UZ) |17 + ”g(t’ m, Ul) _g(t’ N2, U2) ”127

<Ki(|lm - 772||1;Z + v = va?),

[f(&nu o)’ + | gt m, Ul)Hg <Ki(L+|m ||f;g + [ulP).

(A3) Forany ny,ny € B}, v,vs € U and 0 < ¢ < T, there exists a constant K such that

lf(t: n, Ul) _f(tr N2, UZ) ’P + ”g(t! N1, Ul) _g(t’ 12, U2) ”Z

<Ky(llm - 772”1;% + v = val?),

[f (& nu o)’ + | gt m,v) Hg <Ks.

(A3) Foreach 0 <s< T, the operator A(Al + I'T)™! — 0 in the strong operator topology as
L — 0%, where I'T = fST S(T —r)BB*S*(T — r) dr is the controllability Grammian.

3 Main results
3.1 Banach spaces B, and B}
In this section we prove that B;, and B} are two Banach spaces and establish an important
lemma, which will be used in the next section.

It is obvious that || - ||, is a norm. Following a similar discussion in [20] and [23], the
following lemma can be obtained.

Lemma 3.1 Foranye >0 andk > 0, there exists § = §(¢,k) > 0 such that for any 1,2 € By,
if lm = n2ll, <8, then sup_j., o Im(r) —ma(7)| <e.

Lemma 3.2 Let X, = {x € X, is an H valued continuous function defined on [—a, 0], where
a is a positive constant and sup_,,, |x(t)| < oo}, then X, is a Banach space endowed with

the norm ||x|| = sup_, ;¢ 1x(2)].
Lemma 3.3 By, is a Banach space.

Let By = {x € Br|x is an H valued continuous J; adapted process defined on (-o0, T,
Esupy;r ()P < 00 and xy = A%¢ € LP(2, By,)}. Here J; := Jp for all £ < 0. We take a
seminorm || - |7 defined by

=

1
Il = (Elxolly,)? + (E sup [+(@)f")”.

<t<T

In the following, an important lemma is established, which will play a crucial role in the
development of the main results in the next section.

Lemma 3.4 Assume x € By, then for t € [0, T], x, € LP(2, By,), and

PE[x(@)|" < Ellx |, < 2" PE sup |x(s)|” + 277 Ellxollf, .
0

<s<t
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Proof Forany ¢t € [0, T'], we have

Ellx|I%, h(s) sup |xt(r)|ds)

s<t=<0

=E h(s) sup |xt(t)|ds+ h(s) sup |xt(t)|ds>

s<t=<0 s<t=<0

0 P
E f h(s) sup ‘x t)‘ds+/ h(s) sup ‘x(r)‘ds)
00 —t

(/.
(.
=+
(/
/
(L.

/ th(s) sup |x(r)| + sup |x(r |) ds+/ h(s) sup |x 1:)|ds>

oo t+s<r<0 0<t<t

-t P
=E h(s) sup |x(f)|ds+ h(s) ds x sup |x(7) |)
—00 t+s<t<0 0<t<t

0 p
<E h(s) sup ’x ’ds+l sup |x(r)|>

—00 s<t=<0 0<t<t

E

h(s) sup |x0(r)|ds+l sup |x(r)|>

s<t<0

E(l sup |x + ||x0||3h>p

0<t<t

< E(Zp‘llp< sup |x(r)|>p + 2”‘1||xoll’§h)

0<t<t

= 27"'PPE sup |x(s)|” + 2" Ellxoll}, »

0<s<t

and (Ellxi|5, ) < 27 UEsupy-o- 1¥(6)P)7 + 27 (Ellxoll5, )7, then x, € LP(2, By). More-

over,
0 p
Ellxt||§h :E< h(s) sup |xt(r)| ds> > E|xt(0)|P </ h(s) ds) =
—00 s<1<0 oo
and (E||xt||1;h)1l’ > [(E|x(t) |1”)1l’. We complete the proof. O

3.2 Controllability results
In the following, we give the controllability results.

Let J = [0,T], define an operator W, on Br x C(J,L7(R2,3,P;U)) by W, (Z,u)(t) =
(Z*(t),u*(t)) for (Z,u) € By x C(J,LP(R,3,P;U)). We prove that the terminal value of
the system can approximate to /#*. Here, hi* € LP(2,3, P; H) is arbitrary, and 4* = Eh* +
[ (s) dw(s).

ZH(t) = S(t)A“E(0) + [ A*S(t — s)Bu(s)ds + [y A*S(t - s)f (s, A Zs, u(s)) ds
+ [y A%S(t - 9)g(s, A Zg, u(s)) dw(s), te],
ZMt) = A%E(t), te(-00,0],
u(t) = B*S*(T — t)(M + D)"Y (Eh - S(T)£(0)) (2)
—B*S*(T 1) [y(M + TT)IS(T = s)f (s, A~ Z, u(s)) ds
~B*SH(T —t) [(M +TT)™
X [S(T - $)g(s, A~ Zs, u(s)) — p(s)] dw(s), te].
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Let B} = {x|x € Br,x0 = 0 € L?(2, By)}, and for any x € BY,

ST

1 1
I#l7 = (Ellxollg,)” + (E sup |+)]")" = (E sup [x(e)f")""
T 0<t<T

0<t=<

1
It is obvious that B}, is a Banach space with the norm || - |7 = (E supy_,~ 1 [%(£)|P)? . For £ (¢),

we define

_ A, t € (-00,0],
| swacs©), te),

and £(t) € LP(Q, By). Let
YHt)=ZMt)-E(t) and Y(£)=Z(t)-E(2),

then it can be easily concluded that Y(¢) € B(}. Define an operator @, on B(% x C(J,LP (S,
3, P;U)) by (Y, u)(t) = (Y*(t), u*(2)) for (Y,u) € B} x C(J,LP(R,3, P;U)), where BY. x
C(J,L"(R,3,P; U)) is a Banach space with the norm || - || = |Y]l7 + |l#||. Then from the
above definition of (Z*, "), it holds that

YA(t) = [y A*S(t — )Bu(s)ds + [ A*S(t — s)f (s, A~ (Y +&,), u(s)) ds
+ [y A%S(t - 9)g(s, A (Vs + E,), uls)) dw(s), te],
YMt)=0, te(-00,0],
u(t) = B*S*(T — t)(M + T L)Y (Eh - S(T)£(0)) 3)
~ B (T —t) [y(M + TT)IS(T = s)f (s, A (Y; + E,), u(s)) ds
~B*S*(T —t) [(M +TT)™
X [S(T - 5)g(s, A~ (Ys + &), u(s)) — p(s)] dw(s), te].

By Lemma 3.4, we also remark that for any ¢ €/,

E[A™ (Y + 8| = ENYe+ &,
< E(I1Y:llg, + IE,llz,)”
< 2TEIY I, + 27 EIIE |,

< @ ENYolly, + 4 ElE, Iy, + 4P sup |Y(s)f”

0<s<t

+477PE sup E(s)|p

0=s<t
< 4 (Elgl, + PE sup [YOF +PE sup [S@A"5©O))
By 0<t<T 0st=T

< 47 (EI& 1y + PIYIG + PMPE|AEO)P).

It can be seen that the operator W, has a fixed point on By x C(J, LP(£2, 3, P; U)) if and only
if the operator ®; has a fixed point on B} x C(J, LF(R,3, P; U)).
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Lemma3.5 Let 0 <« < 22, and (A1), (A,) hold, then for any A > 0, the operator ®, maps
BY. x C(J,LP(Q,3,P; U)) mtoBO x C(J,LP(,3, P; U)).

Proof We just need to prove that Y*(¢) and #*(¢) are bounded on J and continuous in L”
sense on /. By (A1), (A;), the Holder inequality and the Burkholder-Davis-Gundy inequal-
ity, we have

E|u@®)]" = E‘ B*SH(T - t)(M + TT) ™ (Eh - S(T)(0))

—B*S*(T -t) /t(M + FST)_IS(T —9)f (5, A (Y + &), u(s)) ds
0

t
_B*S*(T—t)/ (u+1“ST)‘1
0

p

X [S(T - s)g(s,A‘“(Ys +£), u(s)) - <p(s)] dw(s)

<577 B ST - )(\ + T L) En|”
+ 57| BESH(T - )(\ + T1) ' S(T)£(0) ¥

p
+5P71F

B*S*(T —t) f t(u +TT)IS(T = s)f (5, A (Y, + E,), us)) ds
0

+5°71E

B*S*(T -¢) /t(u + FST)_IS(T —s)
0

x g(s; A7 (Y; + &), uls)) dw(s) ’

+ 5P| B*SH(T - £) / t(u +TT)7S(T - $)g(s) dw(s) ’
=h+h+L+1+15 0
For each one
L=5"B*S"(T-t)(M +Tg )" Eh||” <5pt ||B||PMP |Eh|p
= 5PVE||B*S* (T - ) (A + FOT)‘ S(TE(0)|” < 57~ 1||B||PM2P E\s

p

I =57 E| B*S*(T - ¢t) /t(M + FsT)flS(T - s)f(s,A’“(Ys +£,), u(s)) ds

0

t
=5 BPMY T [ (s A (s B ue)| ds
0
t
< 5P- ||B||PM2P 1 — TP 1/ 1(1(1+E||A‘°‘(YS+ES)||’;Z +E||u(s)|”) ds
<5 1||B||1’M21’ T”I<1(1+41’ (E||.§||’;z + P\ Y| + PMPE[A*E(0)[7) + [lul?),

P
I, =51E

B*S*(T - t)/ ()J + FsT)flS(T - s)g(s,A’“(Ys +£,), u(s)) aw(s)
0

V4

<5 ||B||PMPCPE< /0 t G2+ T S(T = 9)|*|lg (s, A (Y + ), us)) |2 ds> i
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t
<5t ||B||pM2”Cp%p T4-1E f (s, A= (Y, + ), u(s)) [ ds
0
t
< 5P*1||B||PM2PCp%pT§4/ Ki(1+ E|A™ (Y + 8 + E|u0)]") ds
0
< S UBIMP o TEK (1 7 (BN + PNV I + PMPE[AEO)) + Lul?),

p
I =5""'E

B*S*(T —t) / t(u +TT)S(T = $)g(s) dw(s)
0

< 5”‘1||B||PMPCPE</OtH (M + FST)_lS(T—s)HZ||<p(s)||§ds) ’

V4
1 r 2
< 5”_1||B||pM2pCpA—p T’5-15</ | o(s) Hids) .
0
For ¢ € ] is arbitrary, we can easily obtain that supy,.7 E | (&) ||P < oo. On the other hand,
set t, > 4 > 0 for u*(¢;) and u*(¢;), we have
E|u (1) - u (&) |
<577 B (SHT - 1) = S (T - 1)) (M + TT) " En)”

+ 57| B (SH(T - 1) = S*(T — 1)) (M + ) "' S(T)e(0) ||

+5P7LE| B*S*(T - ty) /-tz ()J + FST)_IS(T - s)f(s,A‘"‘(Ys +£), u(s)) ds
0

p

-B*S*(T - 1) /tl (M + L) S(T = 5)f (5, A™(Y; + &), uls)) ds
0

+ 577 E| B*S(T - t,) /tz (M + FsT)flS(T - s)g(s,A“"(Ys +£), u(s)) aw(s)
0

p

—-B*'S" (T -t) /tl ()J + I’ST)_IS(T - s)g(s,A_“(Ys +£,), u(s)) aw(s)
0

+5P7LE| B*S*(T - ty) /tz ()J + FST)_IS(T —8)o(s) dw(s)
0

p

4
—B*S¥(T - tl)/ (M + FST)_IS(T —8)(s) dw(s)
0
=In+hy + 63+ 6y + 15,

and
Iy = 57| B*(S*(T ~ 1) = S(T — 1)) (M + T3 ) " Eh|/”

= 577V B*SH(T - 1) (S*(ta — 1) — 1) (M + TL) " ER|”

p

1
< 5P‘1||B||PMPA—p|Eh|P |S*(t2 —t1) -1

Ly = 5" E||B*(S*(T — t5) - SX(T - 1)) (M + T) ' S(T)&(0)||”

= 5PE| B*S*(T = 1) (S* (8 — 11) = 1) (M + T7) "' S(D)E(0)[|”

p
)

1
< 5P*1||B||PM2PA—I,E!$(0)!” Is*(t: —t1) -1
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L5 =5P7'E|B*S*(T - t2)/ ’ ()J + I"ST)_IS(T - s)f(s,A_“(YS +£), u(s)) ds
0

—-B*S*(T-t) /t] ()J + FST)_IS(T - s)f(s,A’a(Ys +£), u(s)) ds ’
0

= 5"E| B*S*(T - 1) / i (M + T S(T = s)f (5, A7 (Y, +E,), u(s)) ds

5]

+B*(S*(T— 1) — ST - tl)) /:1 ()J + FsT)flS(T —s)f(s,A’“(YS + gs),u(s)) ds ’

<1077 'E|B*S*(T - t,) /tz ()\1 + FsT)flS(T —s)f(s,A“"(Ys +£), u(s)) ds ’

n

+107'E

B*(SNT - 1) - ST - 1))

p

X /tl (M + FST)_IS(T —)f (5 A (Y; + &), u(s)) ds
0

1
-1 2 -1
<1077 B|IPM ”A—p(tz - 1)Ky (1+47 (Elléll’;z + P Y5
1
+PMPE[A®E(0)[7) + lull?) + 10P*1||B||PM2PA—pTP

x Ki(1 +4J’"I(EIIEII§Z + PIY I+ PMPE[A“E(0)]") + llul) [ S*(t2 - ) - 1],

hy = 5" E|B*S"(T — 1) / i (A +TT)'S(T = 9)g(s, A(Y, + E,), u(s)) dw(s)
0

—B*S"(T -t) /t] (M + FST)_IS(T - 9)g(s, A7 (Y, + &), u(s)) dw(s) ’
0

p
<10*7'E

B*SY(T - t) /tz (M + FST)_IS(T —9)g(s, A7 (Y, + &), u(s)) dw(s)

+107'E| B*(SY(T - t5) - SY(T - 1))

X /tl ()J + FST)flS(T - s)g(s,A’“(Ys +£,), M(S)) dw(s) ’
0

_ 1 p _
<107 1Cp||B||pM2p)\—p(tz — )2 Ki(1+ 477 (ENE Nl + PIY I
1 _»
o 2 — 14
+ PMPE|A®E(0)[7) + [|lull?) + 107 1cp||B||1’1v121’A—p:rz

x Ki(1+ 477 (E||€ ||§Z + P\ Y5 + PMPE[A®E(0)7) + ull?) | S* (& - 1) — I|”

)

Lis =577'F

B*S*(T - t,) /tz ()J + FST)AS(T —8)p(s) dw(s)
0

—-B*'S" (T -t) /Otl ()J + FST)flS(T —8)p(s) dw(s) !

<1077 'E|B*S*(T - t,) /tz (M + FsT)flS(T —8)p(s) dw(s) ’

4]

p
+1077'E

B*(S*(T - t,) - S(T - 1)) /0 ! (M +TT)'S(T = 5)p(s) dw(s)
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p
1 r b
<10771G, | BIPM — (82 - t1)1%15< / le®)]; ds)
0
T P
-1 2 1 L 2 . p
+107G, | BIPM? ST 'E lo@|,ds | | @ -a)-1|".
0
From the above equations, we can obtain that E|u*(t;) — u” ()| — 0 as f; — t,. Then
u(t) is continuous in L” sense on J and u*(t) € C(J,L?(R, S, P; U)). Moreover, for Y*(¢)

and t > 0, we have

E sup |Y’\(s)|p = E sup

0<s<t 0=s=<t

/SAQS(S —r)Bu(r)dr
0

/0 AS(s - 1) (r, A(Y, +E,), u(r)) dr

p

/ A*S(s—r)g ( (Y, +E,), u(r)) dw(r)

0

s p
< 3P7E sup / A%S(s — r)Bu(r) dr
0<s<t|JO
s _ »
+3771E sup / A“S(s - r)f(r,A‘“(Y, +£&,), u(r)) dr
0<s<t|JO
s _ »
+3P71E sup / A“S(s— r)g(r,A‘“(Yr +£,), u(r)) dw(r)
0<s<t|Jo

< Iy + 1y + b,

Let 117 + é =1. From Lemma 2.7, it can be obtained that

21 = SP_IE sup

0<s<t

s p
/ A%S(s — r)Bu(r) dr
0

s p
< 377'E sup </ |A“S(s — r)Bu (r)| dr>
0

0<s<t

s 4
< 377'E sup ( / Mo (s — )| Bu (r)| dr)
0

0<s<t

S 12 S
< 377! B|IPMEE sup (/ (s—r)™ ds) ! / H u*(r) ||pdr
0 0

0<s<t
) [ 1o
||B||PMPE( ) / )| ds

Tl—aq 5
<3"BIPME,
“\1l-aq

= 3"V B|IPMLE sup (

0<s<t

p
122 = Sp_lE sup

0<s<t

/SA"‘S(S =r)f(r,A™(Y, +&,),u(r)) dr

0

< 371E sup (/SiAwS(s ~n)f(r A, + &), u(r))|dr>p
0

0<s<t
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<37'E sup ( / M s, A (Y, 4 B )| dr)p
0

0<s<t

P

<oty ([e-oeras)” [ Efoar By u) s
0 0

Tl—ozq
<3 mP "TK, 1+ 47N ENE N5 + PIY I + PMPE|A“E(0)]7) + [[ull?),
1 h

Iz = 3P7'E sup

0<s<t

<37LC,E (/t |A*S(t - )g(s, A~ (Y + &), u(s)) ”; ds) 7
0

/SA"‘S(S - r)g(r,A“"(Y, +£,), u(r)) dw(r) ’
0

Ij

<3 CE(/ M2 (¢ — )72 g (5, A (Y, + E,), u(s)) | > d )

1 tl_% [ = p
<3r cng( - 2“—‘;) /0 E|g(s,A™(Y; + &), u(s))|| ds
=
T\
= BP_ICpMﬁ(—z)
1-— 9P
p-2
x TK;(1+47~ (E||g||"a + P\ Y5 + PMPE[A*E(0)]7) + llul?).

Then it can be obtained that Esupy_,_; |Y*(£)I” < co. Meanwhile, for Y*(#;) and Y*(t,),
we have
E|Y*(ty) - Y (1)["

[5) 5] V2
/ A%S(ty — $)Bu(s) ds — / A%S(t, — s)Bu (s) ds
0 0

<3 E

+37°'E /tz A*S(ty = )f (5, A (Y + &), u(s)) ds
0

p

_/OlA"‘S(tl—s)f( 5, A (Y, + E,), u(s)) ds

+3E /tz A%S(ty — s)g(s,A’“(Ys +£,), u(s)) dw(s)

0

»

_ /O AUt — g (5, A (Y, + ), u(s)) dw(s)
=131 + I3 + I33,

and

5] n P
I = 37'E / A%S(ty — 8)Bu(s) ds — / A%S(t; — s)Bu’(s) ds
0 0

V4 5] P
<6’'E +6"'E / A% (S(ta = 8) = S(t1 — 8))Bu* (s) ds

0

/ ’ A%S(ty — s)Bu(s)ds

5]

ty p
< 6"\ M2 |BIPE (/ (£ —5) e ur(s)| ”’S>
f
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+6p—1M5E</t1(t12—s>‘0‘e_a(z2 H(S(tz—t1) 1)< : )Buk(s) )19
0

P
15} q )
seleannp( f <t2—s)“qe“q““>ds> E f |u(s)]” ds
151 i

+6P1M§E</tl<t12_5>_aeﬂ<’l H(S(tz—tl) 0s (tz )Bu’\(s)
0

; p
<67 MP ||B||P( / "ty -9 ds) (- )|
0

p-1p1p “(h-s —a( @
+ 67T MPE 5 TN (82— 1)
0

1-qu L
< 6PIM£||B||p(1t2 )q(tz -0) ||’

y

p
ds)

A°S ( )BuA (s)

Pt b — —2u P
+ 6P1M§Ng||B||PE< f ( ! 5 S) e 19ty — 1) | u(s) dS>
0

QS

- T AP
= MBI (= ) (- a)]]

51 L-s —2qa 17.; 5]
+6P1M§N§||Bllp(tz—t1)p“( / ( 5 ) e“‘“‘”)ds) E / | (s)]" ds
0 0

Tl—qoz
< 6”'1M§||BII”(

p
q
o) ol

51 L-s -2qa % 5]
+6P-1M{;N5||B||P(tz—t1>m( / ( 5 ) e‘”‘f(“‘”ds) E / [ @] ds
0 0

P
qe \ g
)qaz—mnuwv

chl qo
1-2q«a

T
< 6‘”"11\/I§IIBII”(1

+6P-1M§N§||B||P(t2-n>W( ) T|u|” ds,

Iy = 377'E ftz A“S(ty —s)f(s,A’“(Ys + gs),u(s)) ds

0

'3

- /tl A“S(t - s)f(s,A’“(Ys +£,), u(s)) ds
0

4
<6’ 'E

sz“S(tz—sy’( A(Y, + ), uls)

+6p_1E/tlAa(S(tz—S)—S(tl—S))f( AT, + &), ())dsp

0

. T1-q« qu 1) o — 4
<6\ Mmp / E[f(s,A (Y + gs),u(s))| ds
1-qu f

p
2an1—qa q
+6P1M5N5<t2—n)"“<m> / Elf(s A™ (s +E)u(s) [ ds

Tl—qa %
<6 1M’“<1_q ) (&2~ 1)
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x Ki(1+ 47 (E|& ”f%z + P Y+ PMPE|AYE0)]") + llull?)

29« Tl—qa %
1-2qa )

+ 6P L MENP (1, — mf’"(
xTK; (1 +477"(E|& ||j;h, + P\ Y| + PMPE[A*E(0)]7) + lul?),

Lz = 377'E f 2AO‘S(L‘Z —9)g(s, A7 (Y, + &), u(s)) dw(s)

0

p

- /Otl A%S(t - s)g(s,A""(Ys + 55), u(s)) dw(s)

2
<6’ 'E

f " AS(ts - s)g(5, A (Y, + ), u(s)) dw(s)

p
+ 677 E

/OIA“(S(tz—s)—S(tl—s))g( A™(Y, + E)), u(s)) dw(s)

< Ge( [ 15t - 9glo A0 B ) 1)

p

+ 6”_1CPE(/O 1 ||A"‘ (S(tg —8)=S(t - s))g(s,A“"(Ys +£), u(s)) ||§ ds) '

p

t
< 61"1CI,M§E( / (t — s) 2720 | g (5, A (Y, + E,), u(s)) | 5 ds) i
51

+6771C 15(/t1
’ 0

X S<tl2_ S)g(s,A_“(YS + &), u(s))

A"’S(t12_5>(5(t2—t1)—1)

2 \}
ds)
2
p—2

t a e
<6 'C,ME ( / ((tz - s)’zae’z"(‘ﬂ))l’-2 ds)

51

x / ’ E|g(s, A (Y + &), u(®)[; ds

A}

/g g —2a
+6p_1CpM§NgE< /0 (22 ) e gy )"

4

< lelo A (v, ), [2s)

_Zap  p-2

-1 14 T ’ 2 —a = p
<6’ C, M, [ % E|g(s,A™(Y; +&,), u(s)) ||2 ds
-2z %

. ot (D ,
+ 6P I C,MENE (b — 12T ( ) / E|g(s, A (Y; + &), u(s)) | ds
0

20p
1_17_2
1-2ep  p2
1 » T p2 p
<6’ C,ME, [ (h—t)
p-2

x Ki(1+ 47" (E|& ||1”,1 + P\ Y| + PMPE[A*E(0)]") + [|ul?)
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T1_201T12? p=2

P-1C AP NP pagtt ((Z) 72N 7
+ 6 CMINI (6~ 02 (2,
p-2

x TKi(1+ 47 (E|& ”1;2‘ + P\ Y| + PMPE[A*E(0)[7) + lul?).

Then it is clear that E|Y*(t,) — Y*(t;)|? — 0 as t; — t;, therefore Y*(¢) is continuous in L?
sense.

From all inequalities above, we conclude that the operator ®; maps B). x C(/,L7(<,
3,P;U)) into BY x C(J,LP(R,3, P; U)). The proof is completed. a
Lemma 3.6 Let 0 < < 1’2;;, and (A1), (Ay) and LP with p lower case hold, then for any
A > 0, the operator ®; has a unique fixed point in By. x C(J,L(Q,3,P; U)).

Proof The proofis based on the Banach fixed point theorem for contractions. In the proof,
we take @ (Y7, u1)(2) = (Y] (£), u} () and @, (Ya, ua)(£) = (Y3 (¢), u5(¢)). Then we have

E|uy(6) - i 1)

=E B*S*(T—t)/t()J+ TT) 7 S(T = 8)(F (5, A (Yas + Ey), 1 (s))
0

—f(s AT (Yi5 + &), u1(s))) ds

+B*S*(T —t) / t(u + TT)S(T = 5)(g (s, A (Yas + E,), tas))
0

p
— g(s, A (Yiy + E), 11 (s))) dwis)

< 2P LE|| B*SH(T — 1) /t(M + FST)_IS(T —9)(f (s, A7 (Yos + &), u2(s))
0

p

—f(s AT (Yis + &), u1()) ) ds

+ 277 E|B*S*(T - t) /t(M + FST)flS(T —s)(g(s,A’“(Ygs +£), uz(s))
0

p

- g(5, A7 (Y1 + §,), m(s)) ) dw(s)

<o ||B||PM2”A—1P "E /0 (oA (o E )
—f (A7 (Y15 + E,),(s)) | ds
C 2 BIM T E /0 oo i+ £
—g(s A (Yis + &), m(s)) |5 ds

<2 a1 [ (Bl B - a0 B,

1
+ EJus(s) ~a(9)|) ds + 27 B M — 15

x K t(EHA_“(st +E) A (Yis + &) b + E|ua(s) — ua(s)]”) ds
0 i
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1 t
<2 1||B||pM2p (Tp 1y T--1)1<1/ E|| Yy — Ylsnfgh ds
t
+2P° 1||B||PM2P (TP 1y Ti’l)KI/ E|us(s) — ur(s)|” ds

< 4p- 1||B||PM2P (TP -1y T7-1)1<111’/ E sup |Ya(z) - Yi(z)[" ds

0<t<s

1
+ 2P 1||B||PM2P (T + T3 K, / E|uz(s) —mi(s)|[” ds,
which yields that there exists a constant K3 such that
Ellu;) - @]

E[(g(/tEiiuz(S)—M1(3)||pd5+/ E sup |Y2(r)— Yl(‘L')|pdS>
0

0<t<s

- 1<3/0 (Elw© - m©)|" + E sup [Ya() - ) ds

For Y} and Y}, we have

E sup |Y}(s) - Y7 (9)[”

0<s<t

=FE sup

0<s<t

/SA"‘S(S - 1)B(uj(t) - uj(v)) dr

0

+/ A*S(s =) (f(1, A (Yar + &), ua(7)) = f (T, A (Yir +&,),m(7))) dt
0

s »
+ f A*S(s—1)(g(t, A (Yor +&,),un(7)) —g(t, A (Yir + &), m1(7))) dw(t)

0
s »
<3P7'E sup /A“S(S—t)B(ug(t)—u%(t))dt
0<s<t|JO
+377'E sup / A*S(s—T)(f(t,A™(Yor +&,),us(1))
0<s<t|JO

»

_f(T’A_a(Ylt + gr)r ul(T))) dt

+3P71E sup

0<s<t

fo A*S(s - 7)(g(t,A™ (Yar + &), u2(1))

»
-g(t, A (Y1 + &), ”1(7))) dw(t)

=1Iy1 + 1y + Iy3,

and

»
[4,1 = 317—1E sup

0<s<t

/OA"‘S(S—t)B( 5(T) = I/tl(‘L'))

s p
<3"7FE sup s—1)B(u; —i\t T
<3 </ |A*S(s — 7)B(u}(x) u())|d>
0

0<s<t
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Iy =

s p
<3"'E sup ( f Moe (s — ) [B(u5(x) —u%(r))ldf)
0

0<s<t

<wuraze sw [ ( [6-0rar)” [ -l ar]
0 0

0<s<t

Sl—ozq % N
= 37| BIIPMEE sup [(1 ) / |5 (x) = (0| dr]
0<s<t —oq 0

tl—aq

=3 1||B||”M1’( E/t”uz(s) uy (s)|” ds
0

1-oag

)4
)q
Tl—th 2
<3/ ||B||1”M1’(1 )q T sup EHué(s) - uf(s) Hp
oq

0<s<t

Tl oq

=< BP‘IIIBII”Mﬁ(

—

;IT sup 1(3/ (E”uz(f)_ul(f)”p
0

0<s<t

+E sup |Y2(o) - Yl(o)|p> dr

0<o<t

1-aq

T4\ § ¢
< SP'IIIBII”Mﬁ(l_aq> TKs/O (Elluz(S) —wm )|’

+E sup ‘Yg(r) - Yl(r)|p) ds,

0<t<s

3771E sup

0<s<t

/o A*S(s—1)(f(t,A (Yar +&,),ua(1))

»

—f(T, A (Yie + §,),un(7))) dt

< 3P71E sup </S|A°‘S(s —O)(f(r, A (Yar + &), ua2(1))
0

0<s<t

P
—f(T, A (Ve +€,),m(7))) | dt)

<37 E sup (/:Mae_“(s_’)(s - [f(r,A“"(YzT + ET), uz(t))

0<s<t

»
—f(r,A_ (Yi; +&,), )|dr>

< 37V B’ MPE sup [( / S(S—r)“"qu)q / (0, A Yy + By 1a(2)
0 0

0<s<t

—f(T, A (Yie +€,) (7)) !p dr:|

= 3?1 B|PMPE sup (

0<s<t

_aq) / (1, A (Yar + E.),1s(0))
—f(t, A (Yie +€,),m (7)) [  dr

_ qpr-1 P AP e § ! —a =
= 37| B|IP M, 1—ag E lf(s,A (Yas + &), ua(s))

—f(s,A’ (Yis + &), )‘pds

Page 17 of 25
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1-agq

q);,Kl /0 (E|A=(Ya +E)

—A(Yi +E,) ”;Z +E|ua(s) —wi(s)||”) ds

~ T
=3 1IIBII’”M§(1

1-aq \ g t » p
l—aq> [(1/0 (EllY2s = Yasllg, + E|ua(s) 1 (s)[") ds

= BP"IIIBIIPMﬁ(

14

Tl-2q \ q t
< 3""1||B||’”1VI§(1 aq) K1/ (21"11"’}5 sup |Ya(7) - Ya(x)|
- 0

0<t<s

+ E||u2(s) —u1(s) ||p> ds

P

e s (Lo ke [E sup |10 - v d

< | BII” ME, 1 sup |Ya(7) - Yi(r)| ds
l-aq 0 0<t<s

1-a

a\ 7 ¢
+3P-1||B||PM5<1T q)qkl / E|ua(s) - i (s)[" s,
0

Iz = 3P7'E sup

0<s<t

/ A%S(s - t)(g(t,A’“(Yzz + EI)»Mz(T))

0

P
—g(r, A (Y +E)(0))) dw()

< SP‘ICPE( /0 |[A*S(t~ 5) (g (s, A (Yas + &), ua(s))

p

~gls, A (Y + £, ()] d5> 2

<37C,E ( / t M09 (t = 5)7 | g (5, A7 (Yas + E), ua(s))
0

14
2

- g(s, A7 (Y15 + &), m(s)) Hi ds>

2ap p-2
I_E -

<3G, Mi(t—a) " [ Elets A+ 5 n09)
re\1- 2 /0 ’ ’

(6 A (Y 4 B a(9) s

t
Ki [ (Ela B -a i+ Bl
0

20, p-2
2ap
1-53
L2p  p2 ,
T p-2 2 »
< 3P-1c,,M§( —) K& / (271PE sup |Ya(r) - 1i(@)|
1- ap 0 0<t<s

)
1-5%5 N\ 57 t
_ M ( ! ) K [ Y- Yill, Bl - w0 s
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-3\ & ‘
< 6P-1c,,Mg<T ;p) 1<11P/ E sup |Y(r) - Yi(o)[ ds
1—172 0 0<t<s
TR\
+3’”‘1CpM§<1_2ﬂ> Kl/(; EHuz(s)—ul(s)”pds.
p-2

From the estimates I, I4; and I3, we deduce that there exists a constant K such that

E sup ’YZ’\(S) - Ylk(s)"!J

0<s<t

51<4</t5 sup |Ya(7) - Yl(r)|pds+/[E”uz(s)—ul(s)des)
0 0

0<t<s

=K4/ (E sup |Y2(t)—Yl(r)‘p+E||u2(s)—u1(s)”p> ds
0

0<t<s
Denote K5 = K3 + Ky. It can be derived that

E sup |V6) - YO + |0 - 0|

0<s<t

§K5/0 (E sup |Y2(‘L’)—Yl('()’p+EHM2(S)—L£1(S)||p) ds

0<t<s

<Kst(1Y2 = Yall7 + luz — wa|17).

We denote that for any (Y,u) € B) x C(,L7(RQ,3,P,U)), ®2(Y,u) = ©,®;(Y,u) =
@, (Y, u*) = (Y*,u*). Similarly, noting ®(Y,u) = (Y"*,u"), we can obtain that for
DY (Y1, m) = (Y{’A,ul’\) and &% (Y, uy) = (anx,uzx) n=12,.

E sup |Y22A( YZA s){p +E||u () - uf*(t)”p

0<s<t

<K5/t(E sup |Y§(r)—Yll(t)|p+E||u%(s)—uf(8)||p) ds

0<t<s

<K / [ (& s [120) - ¥+ Elar) - 0" ) e s

0<o<t

<K2 (||Y2—Y1||p + luz — w|IP).

By a simple iteration, it can be obtained that forn =1,2,...,

E sup |Y3%(6) - Y{* @) + sup E||u§’\(t) u (@)

0<t<T

n

T
=<Ki— (||Y2 = Y1l + lluz —ml?).

It is obvious that for some sufficiently large 7, it holds that 27! K” 7;—," < 1. In the following,
let L =2°1K2 L <1,

| @} (Y1, m1) — @F (Yo, u0) ||

1
= ((& sup [y @ -v*O)" + sup (E[u®) - w0 ||P)%)”
0=<¢<T 0<t<T
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<2(E sup [¥34(0) - HHOF + sup EJa ) - w0 ”)

0<t<T
<L(IY2 = Y1l + lluz — w1 |IP)

<L(IY2 = Yill7 + lluz —mll)",
which implies
| ®7 (Y1, 1) = D2 (Yo 1) | < L7 (I1Ya = Yill + 14z — 1)
< (12 = Yill + lluz =) = || (Yo, u2) = (Y1, 1)

This shows that for large enough 7, @ is a contraction. Thus, ®; has a unique fixed point
in BOT x C(J,LP (2,3, P, U)). We complete the proof. O

Remark 3.7 The general Banach space B} x C(J,L(R,, P; U)) and the operator ®; are
constructed to transform the controllability problem into a fixed point problem. It shall
be emphasized that the fundamental Lemma 3.4 is purposely established, which plays an
important role in obtaining the boundedness of the operator and in solving the problems
brought by the infinite delays. Although the control input and nonlinearity exist both in
the drift and diffusion terms of the system, which makes it complicated to prove the con-
traction property of the operator, some inequality techniques are deliberately adopted as
demonstrated in the proof of Lemma 3.6, which can effectively overcome the difficulty.
With these techniques, the main conclusion will be established in a more general space
with less restrictive conditions.

For any A > 0, let (Y*,u*) be the fixed point of ®;, Z*(t) = Y*(t) + £(¢t) and x*(¢) =
A~%Z*(t). Then (Z*(¢), u*(¢)) is the unique fixed point of the operator ¥;, and x*(¢) is a
solution of system (1). We also have

x*(£) = S()&(0) + TES*(T — ) (M + TL) ™ (EW* - S(T)€(0))
t
+ / [I-TiSHT —t) (M + I’ST)flS(T = 0)]S(T - s)f (5,47, u"(s)) ds
0
t
+ / [I-TLSYT —t) (M + I”ST)flS(T = 0)]S(T - s)g(s,x7, u*(s)) dw(s)
0
t
+ / TESH(T - t) (M + FST)_lw(s) aw(s), tej,
0
x() =), t=<0.
Letting ¢ = T in the equation above, it can be obtained that
XH(T) = i = A(M + TL) 7 (En - S(T)E(0))

T
—Af (M+T]) S(T—s)f(sx u*(s)) ds
0

T
_a / (L + TT) [S(T - 9)g (5,2, 1(5)) + p(5)] dws).
0
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Theorem 3.8 Under hypotheses (A,), (A}), and (As), system (1) is approximately control-
lable on [0, T].

Proof By (A3), [f(t,n, u)l? + llg(t, n, u)|l5 < Kz in [0, T] x Q for any n; € Bf and u; €
U. Then there exists a subsequence, still denoted by {f(s, x>, u*(s)), g(s, x*, u"(s))}, weakly
converging to some {f(s),g(s)} in H x LY(K, H). By (As3), we also have [|[A(A] + T])7| <1
for 0 <s < T [14]. From the compactness of S(¢), we obtain that, in [0, T] x 2,

S(T - S)f(S, xﬁ‘, u (s)) — S(T - 5)f (s),

S(T - s)g(s, x5, u*(s)) — S(T - 5)g(s).

Meanwhile

E|xN(T) -1

<6 A(M +TT) 7 (ER - S(T)E(0)) [P

+ 6" 1E / |+ 1) ST - 9)[f (s, ,ul(s))—f(s)]|ds>p

+ 671 E / |A )J+F S(T S)f(s)|ds>

p

(
(

e e[ 1) s - ole(o o 9) g0 [1as)
(

+6"'E / (i +1T8) S(T—s)g(s)uzazs)E

T P
. 61”1E< /0 12+ TT) (s ||§ds> "

By the dominated convergence theorem and (A3) (i.e., A(Al + T'T)™ — 0 in strong oper-
ator topology as A — 0*), E|x*(T) — h*|? — 0 as A, — 0*, which implies the approximate
controllability of system (1). The proof is completed. O

Remark 3.9 It shall be noted that a similar but rather preliminary result has been devel-
oped in [23], where the initial datum of the system & € L?(£2, C"') and the delays are consid-
ered in the space L7(2, Cfx‘), where Cg ={x e C(R™,Hy)| f_OOO h(s)sup,,<q ll() |5 ds < o0}.

Since

h(s) sup [x(z)]|,, ds —/ h(s)qh s)P sup |x(z)]|, ds

- s<t=<0 s<t=<0

0 q >
([ o) ([0 s Jocolzas)’
00 - s<7=0

1 (/ h(s) sup ||x(r)||p ds) )

it is clear that BY D C. That is, a more general space is studied in this paper. Moreover,

the case 0 < a < 172;172 is considered in our results, while the result in [23] needs « to be
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O<ac< 1’4;;. Clearly, the result in [23] could not be well applied to the cases which are

studied in this paper.

4 An example

Heat equation describes the flow of heat by conduction through a stationary homoge-
neous, isotropic material. As an application of our results, we consider a heat equation
system described by the following stochastic partial differential equation:

dv(t,x) = (—%v(t, x) + b(x)u(t) + ffoo e*6=0y(s, x) ds) dt

+ (f_[oo e*=Dy(s, x) ds + log(1 + |u(t)])) dw(t),

teJ=[0,T,0<x<m, (4)
v(t,0)=v(t,m)=0, t>0,

v(s,x) =&(s,x) € LP(Q,B}), se€(-00,0],0 <x<m.

Here v(t, x) denotes the temperature at time ¢. u(¢) is the control term to enable the system
temperature achieve the target value approximately for a given time 7. Let H = L*(0, 7r)
be endowed with the usual norm || - ||;2, k(s) = %, fooc h(s)ds = % Note that there exists a
complete orthonormal set {e,}, n > 1, of eigenvectors of A with e,(x) = \/g . The analytic
semigroup S(¢), t > 0, is generated by A such that

o]

Ap =7y r{p.ees peDA),
n=1
> 2
SWp=) e (penen peH.
n=1

We define A* (actually |A|*) for the self-adjoint operator A by the classical spectral theo-

rem, and it can be obtained that
o0
2
Al e p = (1) e (p, en)en
n=1

which yields

|2 n4ae—2n2t|<p’en>|2

K

|Aae—Atp

n=1

(nzt)zae_(z”z_za)t| (p,en) !2.

ol

X
Il
—

On the other hand, for any ¢;, { and { € H,, we have

2, =f |2@)| dx
0

[ee]

=Y (Cen)’

n=1
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<D (e’
n=1
= AP =122,
and

152 = &ullz2 =/(; ‘Q(x)—{l(x)‘zdx

[e¢]

=Y (L -aen)

n=1

n* (5 — t1,e4)”

M2

=<

I
—_

n

=A% =16 - al?.

For any ¢ € By, ¢(s)(x) = ¢(s,%), (s,%) € (—00,0] x [0, 7], it is clear that f(¢,¢) = g(t, @) =
[ e%¢(s)(x) ds, and for ¢, € By,

b 0 2 %
£, 8)— 169 2 = [ /0 ( / e‘“(qs(s)(x)—w(s)(x))ds) dx]

5(/ m) (/ f (5) ) - w(s)(x))zdsdx>2
1 0 4 kg ) 1

= — S _ d d

> / e / (6(5)() — ¥ () )" dx )

1

(
([ #low-voli.)
(

0
/ e’ silrlg |#(s) =¥ (s) ”Lz])

o0

N =

l

IA
S

0
< f & sup [9(6) - w9
1
s

Then the functions f (¢, ¢) and g(¢, ¢) are globally Lipschitz continuous in ¢ € Bj and uni-
formly bounded. On the other hand, it is known that the deterministic linear system cor-
responding to (4) is approximately controllable on every [0,¢], ¢ > 0, provided that for
n=12,...,

/n b(x)e,(x)dx #0.

0
By Theorem 3.8, we can ensure that system (4) is approximately controllable on [0, T'].
Remark 4.1 In system (4), considering the initial datum &, if let ||£(s)|, = e’%s, for oo <

s <0, it can be seen that the result in [23] cannot be applied. Obviously, our results include

such intractable cases.
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5 Conclusion

In this paper, improved approximate controllability results of a class of stochastic partial
differential systems with infinite delays are obtained in a general case by using a fixed point
theorem, stochastic analysis techniques and an important lemma established, which fills a
gap of the research area of control theory for stochastic functional partial differential sys-
tems. Moreover, intuitively, under more hypothesis, the controllability results established
in this study could be also extended to the case of neutral type, which are frequently used
to characterize some Burgers equations, vibration equations, Navier-Stokes equations, etc.
[30]. Thus, it is an important and interesting topic to further study controllability prob-
lems of the neutral stochastic partial differential systems, and the problems will be focused

on in our future studies.
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