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Abstract
This paper considers the problem of robust H∞ control for uncertain continuous
singular systems with state delay. The parametric uncertainty is assumed to be norm
bounded. By using the linear matrix inequality (LMI) approach, a sufficient condition is
presented for a prescribed uncertain singular system with time-delay to have
generalized quadratic stability and H∞ performance. Furthermore, the design
methods of state feedback controllers are considered such that the resulting
closed-loop system has generalized quadratic stability with H∞ performance. By
means of matrix inequalities, sufficient conditions are derived for the existence of
memory-less and memorial static state feedback controllers. The controllers are
obtained by the solutions of matrix inequalities.
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1 Introduction
It is well known that a real system inevitably contains some uncertain parameters because
of work environment change, measure error, model approximation and so on. The uncer-
tain parameters perhaps change the system structure and even destroy the system. For a
practical system, the uncertain parameters should be considered, otherwise, one cannot
obtain their desired goals. Recently, robust H∞ (sub) optimal control has become one of
the most important notions in the field of automatic control theory, it has drawn con-
siderable attention from many researchers. Although robust H∞ control theory has been
perfectly developed over the last decade, most of the results were developed based on un-
certain linear systems [–]. Besides, some physical phenomena, like impulse and hyster-
ics, which are important in circuit theory, cannot be treated in the linear system models.
It is well known that time delay is frequently encountered in a variety of industrial and en-
gineering systems, and it has become one of the main sources for causing instability and
poor performance of the network system [, ].

Singular systems are also referred to as generalized systems, descriptor systems,
differential-algebraic systems, or implicit systems, which are also a natural representa-
tion of dynamic systems and describe a larger family of systems than the normal linear
systems []. A singular system provides a suitable way to handle such problems, the ro-
bust control theory based on singular system models has been widely developed for many
years. Dai first gave some notions of controllability, observability and duality in singu-
lar systems [], some excellent results on disk pole constraints [] and robust control
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[, ]. Problem of control and stabilization for uncertain dynamical systems with de-
viating argument is modern now. For example, robust stability and H∞ were studied for
uncertain systems with impulsive perturbations []. Moreover, robust H∞ synchroniza-
tion was studied for chaotic systems with input saturation and time varying delay []. In
[, ], stabilization and perturbation estimation were studied in neutral type direct con-
trol systems. In [], stabilization was studied for Lur’e-type nonlinear control systems by
using Lyapunov-Krasovskii functionals. In addition, dissipativity was studied for singular
systems with Markovian jump parameters and mode-dependent mixed time-delays [].
However, for the singular system, robust H∞ control problem has been little considered
with uncertainties and time-delay recently.

In this paper, by means of linear matrix inequalities (LMIs), we present sufficient con-
ditions for the existence of memory-less and memorial linear state feedback controllers
such that the closed-loop system not only has H∞ performance, but it also is generalized
quadratically stable; moreover, the design methods for such controllers are also provided.

2 System description and preliminaries
Consider a linear singular system with state delay and parameter uncertainties described
by

Eẋ(t) = (A + �A)x(t) + (Ad + �Ad)x(t – d)

+ (B + �B)ω(t) + (B + �B)u(t),

z(t) = (C + �C)x(t) + (Cd + �Cd)x(t – d) ()

+ (D + �D)ω(t) + (D + �D)u(t),

x(t) = φ(t), t ∈ [–d, ],

where x(t) ∈ Rn is the state, ω(t) ∈ Rm is the exogenous input with ω(t) ∈ L[,∞), z(t) ∈ Rp

is the controlled output, u(t) ∈ Rq is the control input. E, A, Ad , B, B, C, Cd , D and
D are known real constant matrices with appropriate dimensions, rank E = r < n. d >  is
a constant time delay, φ(t) is a compatible vector-valued continuous function. �A, �Ad ,
�B, �B, �C, �Cd , �D and �D are time-invariant matrices representing norm-
bounded parameter uncertainties and are assumed to be of the following form:

[
�A �Ad �B �B

�C �Cd �D �D

]
=

[
H

H

]
F(σ )[E E E E], ()

where H, H, E, E, E and E are known real constant matrices with appropriate dimen-
sions. The uncertain matrix F(σ )satisfies

FT (σ )F(σ ) ≤ I ()

and σ ∈ �, where � is a compact set in R. Furthermore, it is assumed that given any matrix
F : FT F ≤ I , there exists σ ∈ � such that F = F(σ ).

�A, �Ad , �B, �B, �C, �Cd , �D and �D are said to be admissible if both ()
and () hold.
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The nominal unforced system of () can be written as

Eẋ(t) = Ax(t) + Adx(t – d). ()

Lemma  [] Suppose that the pair (E, A) is regular and impulse free, then the solution to
() exists and is impulse free and unique on [,∞).

Definition  [, ]
() The singular delay system () is said to be regular and impulse free if the pair (E, A)

is regular and impulse free.
() The singular delay system () is said to be asymptotically stable if for any ε > , there

exists a scalar δ(ε) >  such that, for any compatible initial conditions φ(t) satisfying
sup–d≤t≤ ‖φ(t)‖ ≤ δ(ε), the solution x(t) of system () satisfies ‖x(t)‖ ≤ ε for t ≥ .
Furthermore, x(t) → , t → ∞.

Definition  [] The uncertain singular delay system () is said to be robust stable if
system () with u(t) ≡  and ω(t) ≡  is regular, impulse free and asymptotically stable for
all admissible uncertainties �A, �Ad .

Definition  [] The uncertain singular delay system () is said to be generalized quadrat-
ically stable if there exists a matrix X >  such that

[
(A + �A)T XE + ET X(A + �A) + X ET X(Ad + �Ad)

(Ad + �Ad)T XE –X

]
<  ()

for all admissible uncertainties �A, �Ad .

Lemma  [] If the uncertain singular delay system () is generalized quadratically stable,
then it is robustly stable.

Lemma  [] Given matrices 	, 
, � of appropriate dimensions and with 	 symmetrical,
then

	 + 
F(σ )� +
(

F(σ )�

)T < 

for all F(σ ) satisfying (), if and only if there exists a scalar ε >  such that

	 + ε

T + ε–�T� < .

The robust H∞ problem we consider in this paper is, for an uncertain singular delay system
and a given constant γ > , under zero initial state if

∥∥z(t)
∥∥

 ≤ γ
∥∥ω(t)

∥∥
, ∀ω(t) ∈ L[,∞)

for all admissible uncertainties, then we say the system has H∞ performance γ .
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3 Main results
Theorem  For the unforced uncertain singular delay system of () (i.e., u(t) ≡ ) and a
given constant γ > , if there exist a matrix P >  and a scalar ε >  satisfying the following
LMI:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

AT PE + ET PA + P ET PAd ET PB CT
 ET

 εET PH

AT
d PE –P  CT

d ET
 

BT
 PE  –γ I DT

 ET
 

C Cd D –I  εH

E E E  –εI 
εHT

 PE   εHT
  –εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< , ()

then the system is generalized quadratically stable with H∞ performance γ .

Proof For simplicity, we introduce

[
Ã Ãd B̃

C̃ C̃d D̃

]
=

[
A + �A Ad + �Ad B + �B

C + �C Cd + �Cd D + �D

]
.

Let X = P, then () is the same as

[
ÃT PE + ET PÃ + P ET PÃd

ÃT
d PE –P

]
< . ()

Combing (), () and Lemma , () is equivalent to

[
AT PE + ET PA + P ET PAd

AT
d PE –P

]
+ ε

[
ET PH



][
HT

 PE 
]

+ ε–

[
ET



ET


]
[E E] < 

for a scalar ε > , which is equivalent to

⎡
⎢⎢⎢⎣

AT PE + ET PA + P ET PAd ET
 εET PH

AT
d PE –P ET

 
E E –εI 

εHT
 PE   –εI

⎤
⎥⎥⎥⎦ <  ()

by invoking again a Schur complement argument and () is already by (). Hence, the
unforced uncertain singular delay system of () is generalized quadratically stable.

Then we prove that the system has H∞ performance γ .
Let the candidate on Lyapunov-Krasovskii functional [] be as follows:

V (xt) = x(t)T ET PEx(t) +
∫ t

t–d
x(τ )T Px(τ ) dτ .

Obviously, V (xt) ≥  and

V̇ (xt) – γ ω(t)Tω(t) + z(t)T z(t)

=
[
x(t)T x(t – d)T ω(t)T

]
L
[
x(t)T x(t – d)T ω(t)T

]T ,
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where

L =

⎡
⎢⎣

ÃT PE + ET PÃ + P ET PÃd ET PB̃

ÃT
d PE –P 
B̃T

  –γ I

⎤
⎥⎦

+ [C̃ C̃d D̃]T [C̃ C̃d D̃].

Now we consider the condition of L < . By using a Schur complement argument, it
follows that L <  is equivalent to

⎡
⎢⎢⎢⎣

ÃT PE + ET PÃ + P ET PÃd ET PB̃ C̃T


ÃT
d PE –P  C̃T

d
B̃T

  –γ I D̃T


C̃ C̃d D̃ –I

⎤
⎥⎥⎥⎦ < . ()

By () and Lemma , () holds if and only if

	 + ε

T + ε–�T� <  ()

for a scalar ε > , where

	 =

⎡
⎢⎢⎢⎣

AT PE + ET PA + P ET PAd ET PB CT


AT
d PE –P  CT

d
BT

  –γ I DT


C Cd D –I

⎤
⎥⎥⎥⎦ ,


 =
[
HT

 PE   HT

]T , � = [E E E ],

and () is equivalent to () by a Schur complement argument, then we have

V̇ (xt) ≤ γ ω(t)Tω(t) – z(t)T z(t).

Therefore the system has H∞ performance γ from dissipative theory. �

Based on Theorem , we will further discuss the robust H∞ control problem via state
feedback for system ().

Consider a memory-less state feedback controller as follows:

u(t) = Kx(t). ()

Then the resulting closed-loop system is

Eẋ(t) = Ãcx(t) + Ãdx(t – d) + B̃ω(t),

z(t) = C̃cx(t) + C̃dx(t – d) + D̃ω(t),
()

where[
Ãc

C̃c

]
=

[
A + BK

C + DK

]
+

[
H

H

]
F(σ )(E + EK).
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From Theorem , we can easily obtain the following theorem.

Theorem  For system () and a given constant γ > , if there exist matrices P > , K and
a scalar ε >  satisfying the following matrix inequality:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

� ET PAd ET PB �T
 �T

 εET PH

AT
d PE –P  CT

d ET
 

BT
 PE  –γ I DT

 ET
 

� Cd D –I  εH

� E E  –εI 
εHT

 PE   εHT
  –εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< , ()

where

� = AT PE + ET PA + ET PBK + KT BT
 PE + P,

� = C + DK ,

� = E + EK ,

then there exists a memory-less state feedback controller such that the closed-loop uncertain
delay singular system is generalized quadratically stable with H∞ performance γ ; more-
over, the controller can be of the form ().

Remark  According to Theorem , a controller can be obtained by solving the matrix
inequality (). However, it is worth pointing out that () is not a linear matrix inequal-
ity, so it cannot be solved using the LMI Toolbox of Matlab. However, using the method
dealing with inequalities which was developed in [], note that a necessary condition of
() is

⎡
⎢⎢⎢⎣

–P CT
d ET

 
Cd –I  εH

E  –εI 
 εHT

  –εI

⎤
⎥⎥⎥⎦ < . ()

Obviously, () is a strict LMI about matrix P and a scalar ε > , which can be solved
numerically very efficiently by using the LMI Toolbox of Matlab.

Substituting the matrix P and the scalar ε >  obtained by solving () into (), we can
get the strict LMI about K , so the gain matrix can be obtained.

Since a memory-less state feedback controller does not sufficiently use the information
of delay state, we want to consider a memorial state feedback controller as follows:

u(t) = Kx(t) + Kx(t – d), ()

where K 
= , then the closed-loop system is

Eẋ(t) = Ãcx(t) + Ãdx(t – d) + B̃ω(t),

z(t) = C̃cx(t) + C̃dx(t – d) + D̃ω(t),
()
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where
[

Ãc Ãd

C̃c C̃d

]
=

[
A + BK Ad + BK

C + DK Cd + DK

]

+

[
H

H

]
F(σ )[E + EK E + EK].

Similar to Theorem , we have the following conclusion.

Theorem  For system () and a given constant γ > , if there exist matrices P > , K, K

and a scalar ε >  satisfying the following matrix inequality:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

� �T
 ET PB �T

 �T
 εET PH

� –P  �T
 �T

 
BT

 PE  –γ I DT
 ET

 
� � D –I  εH

� � E  –εI 
εHT

 PE   εHT
  –εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< , ()

where

� = AT PE + ET PA + ET PBK + KT
 BT

 PE + P,

� = ET PAd + AT
d PE + ET PBK + KT

 BT
 PE,

� = C + DK,

� = E + EK,

� = Cd + DK,

� = E + EK,

then there exists a memorial state feedback controller such that the closed-loop uncertain
delay singular system is generalized quadratically stable with H∞ performance γ ; more-
over, the controller can be of the form ().

Remark  According to Theorem , a memorial controller can be obtained by solving
the matrix inequality (). However, it is worth pointing out that () is not a linear matrix
inequality. Similarly, note that a necessary condition of () is

⎡
⎢⎣

–P �T
 �T


� –I 
�  –εI

⎤
⎥⎦ < . ()

Obviously, () is a strict LMI about matrix P, K and a scalar ε > .
Substituting the matrix P, K and the scalar ε >  obtained by solving () into (), we

can get the strict LMI about K, so the two gain matrices can be obtained.
The robust H∞ control problem for singular time delay system with norm-bounded

parametric uncertainties is considered in this paper. All the coefficient matrices except
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the matrix E include uncertainties. The authors derive sufficient conditions about the gen-
eralized quadratic stability and H∞ performance of the closed-loop systems. The control
laws proposed by using strict LMI approaches can guarantee that the resultant closed-loop
systems are generalized quadratic stable for all admissible uncertainties.

4 Numerical examples
In this section, we present an example to illustrate the application of the proposed theo-
retical method given in this paper.

Example Consider the parameter uncertain singular systems with state delay

E =

⎡
⎢⎣

–  
–  
 – 

⎤
⎥⎦ , A =

⎡
⎢⎣

  –
. – 
  –

⎤
⎥⎦ , Ad =

⎡
⎢⎣

.  .
 . 

.  –.

⎤
⎥⎦ ,

E =

⎡
⎢⎣

–
–


⎤
⎥⎦ , D =

⎡
⎢⎣

–


–

⎤
⎥⎦ , C =

⎡
⎢⎣

–  .
 . –.
 . 

⎤
⎥⎦ ,

E =

⎡
⎢⎣

–. –. 
  
  .

⎤
⎥⎦ , E =

⎡
⎢⎣

  
–  .
. – –.

⎤
⎥⎦ ,

H =

⎡
⎢⎣

–



⎤
⎥⎦ , B =

⎡
⎢⎣

–


–

⎤
⎥⎦ , B =

⎡
⎢⎣





⎤
⎥⎦ , D =

⎡
⎢⎣

–


–

⎤
⎥⎦ ,

Cd =

⎡
⎢⎣

– – 
  
  –

⎤
⎥⎦ , D =

⎡
⎢⎣

–


–

⎤
⎥⎦ .

Applying Theorem , choose γ = . We use the software package LMI Lab to solve the
LMI problem () of the parameter uncertain singular systems with state delay. The solu-
tion is as follows:

P =

⎡
⎢⎣

. . –.
. . .

–. . .

⎤
⎥⎦ > , K = [. . –.],

K = [–. –. –.] 
= , ε = ..

A memorial state feedback controller is as follows:

u(t) = [. . –.]x(t)

+ [–. –. –.]x(t – d).

5 Conclusions
A positive solution matrix was proposed for the problem of robust H∞ control via
state feedback for a class of uncertain continuous-time singular systems with state de-
lay. The solution provides sufficient conditions in the form of linear matrix inequalities.
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It was shown by the numerical example that the proposed method can solve generalized
quadratic stability with H∞ performance for the parameter uncertain continuous-time
singular systems with state delay.
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