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Abstract

The current article is mainly concerned with applying generalized fractal derivatives
in a macroeconomic model. We propose a discrete model involving four
macroeconomic variables, the gross domestic production, exchange rate, money
supply and exports/imports by using the generalized fractal derivative. The fractal
derivative can describe the power-law phenomenon and memory property of
economic variables more accurately. Based on the concrete macroeconomic data of
Canada, the coefficients of this nonlinear system are estimated by the method of least
squares. The statistical test results show that the four variables we have selected have
an apparent causal connection, and the sum of squared residuals of the fitting
equations is also acceptable. In simulation, the actual data of Canada from 1990 to
2008 are considered, and the effectiveness of our model is verified. The empirical
study shows that in the coming few years, the money supply will grow quickly and
hence it may lead to proper inflation.
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1 Introduction

The fractal and fractional derivatives can be regarded as the generalization of usual deriva-
tives [1-3]. They are powerful tools in modeling anomalous physical processes, macro-
and micro-scale phenomena, long-term relation description and many discontinuous
problems since they involve extra parameters, the order of derivatives. Selecting different
fractional and fractal derivatives and their associated order values leads to various frac-
tional and fractal derivative models. In recent forty years, fractional calculus has gained
considerable attention in both applied mathematics and engineering fields such as vis-
coelastic mechanics, quantum physics, ecology, power-law phenomenon in fluids, elec-
tromagnetic field, economics modeling and financial systems. For a comprehensive un-
derstanding of this subject and its applications in economic and financial models, we refer
readers to [4—16]. The advantage of applying fractional derivative in modeling economic
and financial problems is that the non-local property of fractional derivative can depict
the memory characteristics in many real economic and financial data [8, 9].

Besides the memory characteristics, some of the actual economic and financial data ex-
hibit a power-law property [17—-21]. Power law is the form taken by a remarkable number
of regularities in economics, and it renders a relation of the expression Y = kX?, where Y
and X are variables considered, p is called the power-law exponent, and k is a constant
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coefficient. As we observed, many economic laws take the form of power laws, such as
macroeconomic scaling laws, the distribution of income, GDP, interest, trading volume,
etc. In empirical studies, fractal derivative is an important modeling tool for anomalous
diffusion with the power-law property. Fractal derivatives arise from the fractal time-space
metric and thus can naturally depict the intrinsic fractal structure of turbulence. In par-
ticular, its anomalous diffusion phenomena. To describe the anomalous inner structure
of economic and financial models, many dynamical systems are proposed to model the
relations of macroeconomic variables. In [22], the study of economic system by using van
der Pol equation is discussed. The variation of initial conditions and control parameters
of the van der Pol model enables us to understand the periodic, quasiperiodic, and chaotic
motion of economic variable considered. In [23, 24], the bifurcation topological structure
and the global complicated character of the kind of a nonlinear financial system are stud-
ied. A simplified macroeconomic model discussing the investment, interest rate, and price
index is proposed, and various evolution results of these economic variables depending on
time and parameters are illustrated. There are also many economic models defined by frac-
tional derivatives. In [25], a fractional order financial model based on the fractional Chen
system is proposed. It involves the macroeconomic variables, such as investment, inter-
est, and price index, and exhibits the interesting dynamics behavior of them. In [26], the
chaos dynamics and chaos control of an economical system have been studied using the
sliding mode method. In [27], a delayed fractional-order financial system is proposed and
the complex dynamical behaviors of this system are discussed by numerical simulations.
In [28], a macroeconomic system model with Caputo fractional derivative (the definition
is given in Section 2) is proposed firstly as

Dt x(8) = anx(t) + any(t) + azz(t) + c1,
D2 y(t) = anx(t) + axny(t) + axz(t) + 2, @)
‘D3z(t) = anx(t) + asny(t) + assz(t) + cs,

where a;;, ¢;, i,j = 1,2, 3, are the coefficients, a1, a, a3 are the order of fractional derivative.
The lower terminal in the fractional derivative can be replaced by some other nonzero
constant. However, we consider the economic model in this paper, and the ¢ generally
denotes the time, hence we consider ¢ € [0, +00). Variables x, y, and z indicate the gross
domestic product (GDP), inflation, and unemployment, respectively.

We notice that most of the above mentioned works concentrate on the continuous eco-
nomic and financial models. There are very few works discussing the modeling of actual
macroeconomic data using discrete dynamical system. In mathematics, a discrete dynam-
ical system usually describes a recurrence relation, which is also an equation that recur-
sively defines a sequence or multidimensional array of values once one or more initial
terms are given. In difference equation, each further term of the sequence or array is de-
fined as a function of the preceding terms. Discrete dynamical models are widely applied
in many mathematical and engineering realms [29-31]. In real-world cases, many macroe-
conomic variables are observed sequently, i.e., daily, monthly or annually, which motivates
us to construct a new model by using difference equation involving a generalized fractal
derivative. The coupled relation of macroeconomic variables is expressed via a group of
difference equations and the power-law property is characterized by the generalized frac-
tal derivative containing two parameters.
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The main contribution of the current paper consists of three aspects. Firstly, the fractal
derivative is introduced and a generalized form of fractal derivative is applied to a con-
structed discrete macroeconomic model to describe the actual data of the given nation.
Different from the fractional economic models in literature, the fractal derivative model
proposed in this paper can depict the power-law property in macroeconomic series more
accurately. Secondly, we consider the actual data of Canada and the effectiveness of our
model is verified in simulation. Moreover, the method can be also applied to study the re-
lation of other macroeconomic variables from other countries without many major mod-
ifications. Finally, instead of linear terms in model (1), our new discrete model involves
nonlinear relation of macroeconomic variables, which is more accurate in describing the
actual data. The rest of this paper is organized as follows. In Section 2, the definitions of
fractal derivative and its generalized form are given. In Section 3, the discrete macroe-
conomic model using generalized fractal derivative is discussed, and the coefficients are
estimated via the actual macroeconomic data of the given country. In Section 4, we simu-
late the dynamics of the new model and some useful observations are given. The effective
predictions of macroeconomic variables can be obtained by computing the model cor-
responding to the future time. Finally, the conclusions are drawn in Section 5, and some
additional remarks are listed in Section 6.

2 Fractal derivative and its generalized form
In [32, 33], a class of fractal derivatives is defined as

Ou . u(t) —u(f)
— = lim ———=

= , 2
oty n—t Y —t* @

where a > 0, and function u(¢) is continuous over the domain. The notation ‘*’ indicates
that the fractal derivative is different from the common integer-order partial derivative.
In what follows, we consider a more generalized form of the above definition:

“duf - lim ub(t) - uﬂ(t), 3)

ar  u-t - t¥

where the parameters « and § are real numbers. Notice thatif o« = 8 =1, (3) reduces to the
first-order derivative of function u(¢). In our study, parameters « and 8 can be negative.

The general relationship between fractional calculus and fractals is explored in [34].
It is verified that the fractal dimension of function is shown to be a linear function of the
order of fractional integro-differentiation. This motivates us to employ fractal derivative to
model the previous fractional relationship discovered between macroeconomic variables
[8, 9]. Theoretically, fractal modeling has been applied in many random processes, e.g.,
see [35]. However, to the best of authors’ knowledge, there is no particular research on the
application of fractal derivative modeling in macroeconomic models. It will be important
to study economic and financial models further by using fractal derivatives.

There exist different definitions of fractional derivatives such as Riemann-Liouville
derivative, Caputo derivative and Riesz potential (see [1], Chapter 2). The Riemann-
Liouville and Riesz derivatives are frequently used in theoretical analysis, while the Caputo
derivative is commonly applied in modeling many real-world problems. The Riemann-
Liouville, Caputo, and Riesz derivatives of a given continuously differentiable function
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u(t) of order « are, respectively, defined as

(RLD‘ju)(t):ﬁ dtm{f (t—7)"* lu(r)dr}, (4)
(%fu)(t):ﬁ/ot(t— a1y, () dt, (5)
(RD;““)(“ZQCO_S@)[F(; ~ dtm{ / (t- r)’”lu(r)dr}

e a0 o] ©

where m —1<a <m, m € N*, 0 <t <1, and the upper and lower terminals 1 and 0 can be
replaced by other fixed real numbers. I" denotes the gamma function.

It is easy to notice that the corresponding difference approximations of the above frac-
tional derivatives involve infinitely many terms as step size approaches zero, which is in-
convenient in approximate computation. The fractal derivative defined by (3) contains

only one term in its difference form, and hence it is more convenient in approximation.

3 New discrete macroeconomic model
To derive the discrete model, we consider the equispaced time notes as ¢ = £y, £,..., ¢y,
Lusls- .. . If we remove the limit operation in (3), we get the difference form of generalized

fractal derivative as

Buf | PN ulten) — ut,)) o (s — )
3t ety At (L1 — L) - ah(nh)®

; (7)

where n=0,1,2,..., h = t,,1 — t, is the step size. Substituting (7) into model (1) and ex-

tending it to a four-variable form, we obtain

-1
B 1)
o1 hy (nh)*1

pa-1
BoYn” Ons1-yn)
J;hz(”;:;)az = anXy + A2y + 232, + dogly + C,

=anXy + anyn + a3z, + aul, +C,

) 8)
8323 (@n1—zn)
ashz(nh3)*3
-1
ﬂ4”54 (Up41—t4n)
aghy(nhy)*4

=azX, + a3y + a3zzy + azaly +C3,

= A Xy + A42Yn + A432, + 44Uy + Cy.

The remaining task is to evaluate the coefficients in model (8). To simplify the expres-

sions, let us denote the parameter sets as

Py = (o1, ly, an, aro, ars, aaas €1, Pr),s
Py, = (ct2, iy, an, 4z, a23, aza, €2, Pa)s
P, = (a3, h3,a3,a32,a33,a3a, c3, B3),

Py = (ota, My, asy, Aaz, Aas, Aaa, Cas Pa),
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then the iteration form of the discrete model (8) is given as

X1 = %y + 1 (Lo X1 Vit 2, W),
Yui1 = Y + 2 (Pys Xy Vs Z,Un),
Zps1 = Zn + [3(Pzy Xy Vs Z,Un)s
Ups1 = Uy + fa (P X, Vo Z,Un),

)

where
1
O[ll’lo[1 h<1>q+
S (Prs Xy Yy 2,1n) = 7 (A% + A1) + @132, + raly + 1),
1Xn
1
0(2}’10[2 hgw.
SoPys Xy Yy 2,Un) = ———5-=— (A% + AnoYn + A23Zn + Aralhy + C2),
ﬁ2yn
1
a3n®hy>"
S3(Pey Xy Ys 2,Un) = 51 (@31%n + A32Yn + A33Z, + A3aldy + C3),
133Zn
1
ogn® by
JaPuy X, Yy 2,Un) = W(ﬂéﬂxn + A2Yn + A43Zn + Aaally + Ca).
4 Un

Let Xy, Y4, Zn, and #,, be the actual data of GDP, exchange rate, money supply and ex-
ports/imports, respectively, where n = 1,2,...,N, and N is the length of the macroeco-
nomic variable. To apply the method of least squares, it suffices to solve the following

minimizing problem:

N
Min > {1&n = %al” + [Fir = Yl + 1 — 2al” + |ty — ]} (10)

n=1

subject to x,41 = X, + fi(Pys X, Vi 2, W),
Yn+1 =Yn +f2(Py:xmyn: Z,un):
Zp+l = Zp +fI:3(P27xn:_ym Z,Mn),

Upsl = Uy +f;L(Puxxn’ynx Z,un)’
where the corresponding data in the first year is regarded as the initial conditions.

4 Empirical study

In this section, we present the dynamics of the new discrete model. The difference between
the actual data and the numerical solution of the model is given, which demonstrates the
effectiveness of the model. Then the prediction of the future behavior of the model is
shown. By our model, it is reliable to make an estimation of the considered macroeconomic
variable in the next few years.

4.1 Data description

In discrete model (8), the GDP (x), exchange rate (y), money supply (z) and exports/im-
ports (u) are governed by a nonlinear dynamical system involving power laws. We pre-
process the unit and scale of all data such that they are reasonable in a coupled nonlinear
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Table 1 Parameter sets in new discrete model (8)

Py Value Py Value P, Value Py Value

a 822 o) -1.21E-02 o3 33.27 o7 6.85E-05
hy 0.15 hy 563 hs 0.12 hy 3947

an 28638.61 ani 24.82 asg 1969186.23 da1 -0.97

ann -58927.57 ann -12.20 asp 1160522253 a4 -0.62

ais 5641.35 a3 0.29 as3 -62813.00 ad43 5.80E-03
dig -1113498.44 a4 -9.75 adz4 164429009.80 dag -5.08

<} 1141119.70 (%) —24.61 a3 —212825070.60 C4 66.17

B 828 ps 112 B 1500 Bs  -031

25

Figure 1 The actual data series of
macroeconomic variables.
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system. The annual data starts from year 1990 and continues to 2008. The unit of vari-
ables x and z is thousand billion US dollars and thousand billion Canadian dollars, re-
spectively. The original data of these four macroeconomic variables are downloaded from
http://data.worldbank.org.cn/indicator.

4.2 Dynamics of the new discrete macroeconomic model
Based on the actual data of Canada from 1990 to 2008, and taking the initial condition as

(%0» Y0, 20, o) = (5.4115,1.16,5.1,1.0356),

the above extreme problem (10) is solved in Matlab, and the estimated parameters are
given in Table 1. Substituting the coefficients and parameters into (8), the dynamics of our
discrete fractal model can be easily calculated.

The actual data of the considered macroeconomic variables of Canada from 1990 to
2008 are shown in Figure 1. From this figure, we can observe that in the recent ten years,
Canada has gained considerable development which is reflected by the growing GDP and
money supply. The exchange rate and the ratio of exports and imports maintain an average
level with the previous years.

Remark 1 We take the data from the period 1990 to 2008 mainly because those data are
available in the Internet. The data of 2009 and 2010 will be used to make comparison
with the empirical data given by the new model, which we can observe demonstrates the
effectiveness and robustness of the new discrete fractal macroeconomic model.

To illustrate the effectiveness of model (8), the empirical simulation of macroeconomic
variables is given in Figures 2-5. In Figure 2, we may see that the simulation data fit the ac-
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Figure 2 Comparison between actual and 18
simulation data of GDP. 4 ~ Actual data
13l — Simulation data
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Table 2 Statistical test values on estimation of variable x

Name Value
Mean squared error 0.1804
Sum of squared error 0.5859
Correlation coefficient (R) 0.9980
R? 0.9961
Determination coefficient  0.9960
Chi-square 0.0447

tual data very well, especially since 2002. Even though the simulation curve parts from the
actual curve little, in the view of least square it is still an optimal estimation. The statistical
parameters in the method of least squares are shown in Table 2. We read that the mean
squared error is small comparing to the average value of actual data of x. The correction
coefficient indicates that the fitting data of GDP describe the actual data in an excellent
way. The chi-squared result is 0.0447, which is less than X(1,0.05) = 3.84. It says that our
model is reasonable under the confidence level of 95%. The F-statistic result is 4037.0454,
which is greater than the critical value §o.05(1,1) = 161.4. It further demonstrates that the
fractal model indeed describes the actual data. In practice, we usually consider the chi-
squared result as priority. If it is less than the critical value of some particular confidence
level, then the result shows how accurate the constructed model is.

In Figure 3, it is illustrated that the empirical simulation satisfies the actual data very
well. From the curves, there are some differences between 1994 and 2002, but this does
not go against the trend of evolution. In 1993 and 1994, our simulation even gives the
results pretty close to the actual data. The statistical parameters in the method of least
squares are shown in Table 3. We observe that the mean squared error is 0.0883, which
leads the relative error to be in between 0.0883/1.6 and 0.0883/0.9 (5.52%-9.81%). The
correction coefficient is 0.8360, which implies that the fitting data of exchange rate is also
effective. The chi-squared result is 0.0525, which is less than X(1,0.05) = 3.84. It shows
that the fitting curve of variable y in our model is reasonable under the confidence level of
95%.

Figure 4 shows the fitting data and actual data of money supply, where we see that our
model gives a very nice numerical simulation. From year 2002, these two curves are coin-
cident with each other and there is no evident difference between them. The data of 1991
and 2002 have some deviation; however, the relative errors are acceptable comparing to
the final values that the money supply arrives at. The statistical parameters in the method
of least squares are shown in Table 4. We read that the mean squared error is 0.8443,
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Figure 3 Comparison between actual and 16
simulation data of Exchange Rate.

Exchange Rate
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Year

Table 3 Statistical test values on estimation of variable y

Name Value

Mean squared error 0.0883

Sum of squared error 0.1403

Correlation coefficient (R) 0.8360

R? 0.6989

Determination coefficient ~ 0.6989

Chi-square 0.0525
Figure 4 Comparison between actual and ol ‘ ‘ ‘ ‘ ‘ ‘ ‘
simulation data of Money Supply. ool

Money Supply
I

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
Year

Table 4 Statistical test values on estimation of variable z

Name Value

Mean squared error 0.8443
Sum of squared error 12.8308
Correlation coefficient (R) 0.9924
R? 0.9848
Determination coefficient 0.9823
Chi-square 1.2705

which shows that the fitting of our model is very nice. The correction coefficient is higher
than that of the GDP and exchange rate, which indicates that the numerical simulation
of money supply is better than that of GDP and exchange rate. The chi-squared result is
1.2705, which is less than X(1,0.05) = 3.84. It says that the fitting curve of variable z in our
model is reliable under the confidence level of 95%.

As before, similar observations can be made in Figure 5. We can see that the empirical

simulation of exports/imports fits the actual data very well, in particular see years after

Page 8 of 11
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Figure 5 Comparison between actual and 1.16
simulation data of Exports/Imports.
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Table 5 Statistical test values on estimation of variable u

Name Value
Mean squared error 0.0265
Sum of squared error 0.0126
Correlation coefficient (R) ~ 0.7380
R? 0.5476
Determination coefficient  0.9823
Chi-square 0.0057

Table 6 Prediction of macroeconomic variables in 2009 to 2010

Variable GDP Exchangerate  Money supply  Exports/Imports
Prediction in 2009 14.602 1.21 22424 1.0921

Actual data in 2009 12.525 - - 3166/3299

Error 2077 - - 0.1324

Relative error 14.22% - - 12.12

Prediction in 2010 14.835 1.08 21.073 1.1081

Actual datain 2010 14.797 - - 3879/4025

Error 0.037 - - 0.1443

Relative error 2.49% - - 13.02%

2005. The statistical parameters in the method of least squares are shown in Table 5. We
notice that the mean squared error is 0.0265, and the sum of squared error is 0.0126,
which demonstrates that the numerical simulation of our model is effective. The correc-
tion coeflicient is 0.7380, which also indicates that the fitting curve coincides with the
actual data well. The chi-squared result is 0.0057, which is less than X(1,0.05) = 3.84. It
says that the fitting curve of variable « in our model is reasonable under the confidence
level of 95%.

4.3 Prediction of the future evolution

To verify the robustness of model (8), we predict the values of the GDP, exchange rate,
money supply, and exports/imports in the next two years, i.e., in 2009 and 2010. The errors
between the numerical simulations and the actual data are given in Table 6, where we can
observe that our discrete model (8) gives an ideal prediction. Due to the fact that the actual
data of exchange rate and money supply of 2009 and 2010 are not available, we only give
the evaluation and comparison of GDP and Exports/Imports in those two years. We may
see that the relative error is around 10% to 15%, and in some cases our model predicts the
future evolution with relative error less than 2.50%, which is remarkable.
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5 Conclusion

In this paper, we proposed a novel nonlinear discrete macroeconomic model based on
the generalized fractal derivatives. The advantage of employing fractal derivative consists
of two aspects. One is that the generalized fractal derivative is suitable for depicting the
power law in macroeconomic variables. The other is that the difference form of general-
ized fractal derivative has finite term, which is different from the fractional derivative in
Riemann-Liouville, Caputo, and Riesz senses, where their difference expressions involve
infinitely many terms as the step size goes to infinity. In our new model, the step size in dis-
cretization and the order in fractal derivative are regarded as parameters in the obtained
discrete equation. All the parameters are estimated by the least-squares method. Based on
the macroeconomic data, we calculate the optimal parameters in fractal derivatives and
step size. The sum squared residuals and the mean squared errors of estimation in sim-
ulation are computed, which demonstrate that the nonlinear discrete model is effective
in modeling the macroeconomic variables of Canada. It would be expected that the non-
linear discrete model proposed in this paper is better than the linear model proposed in

previous references.

6 Additional remarks
Now we would like to make several additional remarks based on our research experience
of this work:

« Asa similar topic, fractional calculus has been applied in many scientific areas and
engineering fields. In economic and financial realms, people found that the fractional
derivative modeling can describe the memory property in many different financial
series. However, as we stated, the power-law phenomenon is also one of the obvious
characteristics that lots of macroeconomic variables usually exhibit. The fractal
modeling, as a strong mathematical tool in studying the power-law feature, has not
been applied widely. In our research, we show that the fractal derivative modeling can
be used to investigate the coupled relation of different macroeconomic variables.

« The modeling method discussed in this paper is nonstandard or unique. We may
obtain other discrete models which are different from equation (9) by using other
approximation scheme in the generalized fractal derivative.

+ Although we only consider the macroeconomic variables, i.e., GDP, exchange rate,
money supply and exports/imports of Canada, many other inner-connected
macroeconomic variables can be considered using the same method. Our modeling
methodology can also be applied to other countries to investigate their evolution of
different macroeconomic variables.
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